Skip to main content

CD1d-Restricted NK T Cells and Autoimmunity

  • Chapter
  • 120 Accesses

Abstract

Autoimmune diseases are disorders of complex etiology, involving environmental triggers interacting with a polygenic susceptibility background. Genetic studies demonstrate that a combinatorial admixture of susceptibility and protective genes influences development of disease (1). Longitudinal studies on twins or large cohorts of at-risk individuals indicate that many high-risk subjects do not develop overt disease (2, 3). In fact, once the nefarious event initiating these disorders occurs, the subsequent autoimmune diseases are typically characterized by a chronic smoldering inflammation. This is in marked contrast to the tempo of most host-immune responses to infectious agents. Although epigenetic events may explain incomplete penetrance of genetic risk, it is less clear why autoreactive T cells and antibodies are often detectable in the circulation of at-risk relatives as well as in healthy human leukocyte antigne (HLA)-matched controls that never go on to develop disease (4). The same is true in animal models of autoimmunity, where a significant fraction of the animals in a homogeneous colony remain disease-free despite prominent evidence of autorecognition (57). These observations suggest that the presence of autoreactive T cells and antibodies are not sufficient to confer disease but that additional immune abnormalities must occur to result in disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Becker, K. G. (1999) Comparative genetics of type 1 diabetes and autoimmune disease: common loci, commmon pathways. Diabetes 48, 1353–1358.

    PubMed  CAS  Google Scholar 

  2. Verge, C. F., Gianani, R., Liping, Y., Pietropaolo, M., Smith, T., Jackson, R. A., et al. (1995) Late progression to diabetes and evidence for chronic b-cell autoimmunity in identical twins of patients with type I diabetes. Diabetes 44, 1176–1179.

    PubMed  CAS  Google Scholar 

  3. Verge, C. F., Gianani, R., Kawasaki, E., Yu, L., Pietropaolo, M., Jackson, R. A., et al. (1996) Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 45, 926–933.

    PubMed  CAS  Google Scholar 

  4. Roep, B. O. (1996) T cell responses to autoantigens in IDDM. The search for the holy grail. Diabetes 45, 1147–1156.

    PubMed  CAS  Google Scholar 

  5. Wicker, L. S., Todd, J. A., and Peterson, L. B. (1995) Genetic control of autoimmune diabetes in the NOD mouse. Ann. Rev. Immunol. 13, 179–200.

    CAS  Google Scholar 

  6. Wherret, D. K., Singer, S. M., and McDevitt, H. O. (1997) Reduction in diabetes incidence in an I-Ag7 transgenic nonobese diabetic mouse line. Diabetes 46, 1970–1974.

    Google Scholar 

  7. Delovitch, T. L. and Singh, B. (1997) The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7, 727–738.

    PubMed  CAS  Google Scholar 

  8. Abbas, A. K., Murphy, K. M., and Sher, A. (1996) Functional diversity of helper T lymphocytes. Nature 383, 787–793.

    PubMed  CAS  Google Scholar 

  9. Berman, M. A., Sandborg, C. I., Wang, Z., Imfeld, K. L., Zaldivar, F. J., Dadufalza, V., et al. (1996) Decreased IL-4 production in new onset type 1 insulin-dependent diabetes mellitus. J. Immunol. 157, 4690–4696.

    PubMed  CAS  Google Scholar 

  10. Serreze, D. V. and Leiter, E. H. (1994) Genetic and pathogenic basis of autoimmune diabetes in NOD mice. Curr. Opin. Immunol. 6, 900–906.

    PubMed  CAS  Google Scholar 

  11. Mueller, R., Krahl, T., and Sarvetnick, N. (1996) Pancreatic expression of interleukin-4 abrogates insulitis and autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 184, 1093–1099.

    PubMed  CAS  Google Scholar 

  12. Cetkovic-Cvrlje, M., Gerling, I. C., Muir, A., Atkinson, M. A., Elliot, J. F., and Leiter, E. H. (1997) Retardation or acceleration of diabetes in NOD/Lt mice mediated by intrathymic administration fo candidate β-cell antigens. Diabetes 46, 1975–1982.

    PubMed  CAS  Google Scholar 

  13. Bradley, L. M., Asensio, V. C., Schioetz, L. K., Harbertson, J., Krahl, T., Patstone, G., et al. (1999) Islet-specific Th1, but not Th2, cells secrete multiple chemokines and promote rapid induction of autoimmune diabetes. J. Immunol. 162, 2511–2520.

    PubMed  CAS  Google Scholar 

  14. Bendelac, A., Rivera, M. N., Park, H.-S., and Roark J. H. (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Ann. Rev. Immunol. 15, 535–562.

    CAS  Google Scholar 

  15. Bendelac, A., Lantz, O., Quimby, M. E., Yewdell, J. W., Bennink, J. R., and Brutkiewicz, R. R. (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865.

    PubMed  CAS  Google Scholar 

  16. Baxter, A. G., Kinder, S. J., Hammond, K. J. L., Scollay, R., and Godfrey, D. I. (1997) Association between αβTCR+CD4−-CD8-T cell defiency and IDDM in NOD/Lt mice. Diabetes 46, 572–582.

    PubMed  CAS  Google Scholar 

  17. Falcone, M., Yeung, B., Tucker, L., Rodriguez, E., and Sarvetnick, N. (1999) A defect in interleukin 12-induced activation and interferon gamma secretion of peripheral natural killer T cells in nonobese diabetic mice suggests new pathogenic mechanisms for insulin-dependent diabetes mellitus. J. Exp. Med. 190, 963–972.

    PubMed  CAS  Google Scholar 

  18. Falcone, M. and Sarvetnick, N. (1999) Cytokines that regulate autoimmune responses. Curr. Opin. Immunol. 11, 670–676.

    PubMed  CAS  Google Scholar 

  19. Wilson, S. B., Kent, S. C., Patton, K. T., Orban, T., Jackson, R. A., Exley, M., et al. (1998) Extreme Th 1 bias of invariant Va24JaQ T cells in type 1 diabetes. Nature 391, 177–181.

    PubMed  CAS  Google Scholar 

  20. Illes, Z., Kondo, T., Newcombe, J., Oka, N., Tabira, T., and Yamamura, T. (2000) Differential expression of NK T cell Valpha24JalphaQ invariant TCR chains in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J. Immunol. 164, 4375–4381.

    PubMed  CAS  Google Scholar 

  21. Koseki, H., Imai, K., Ichikawa, T., Hayata, I., and Taniguchi, M. (1989) Predominant use of a particular alpha-chain in suppressor T cell hybridomas specific for keyhole limpet hemocyanin. Intl. Immunol. 1, 557–564.

    CAS  Google Scholar 

  22. Ohteki, T. and MacDonald, H. R. (1996) Stringent V beta requirement for the development of NK1.1+T cell receptor-alpha/beta+ cells in mouse liver. J. Exp. Med. 183, 1277–1282.

    PubMed  CAS  Google Scholar 

  23. Bendelac, A., Hunziker, R. D., and Lantz, O. (1996) Increased interleukin 4 and immunogloulin E production in transgenic mice overexpressing NK1 T cells. J. Exp. Med. 184, 1285–1293.

    PubMed  CAS  Google Scholar 

  24. Lantz, O. and Bendelac, A. (1994) An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4−8-T cells in mice and humans. J. Exp. Med. 180, 1097–1106.

    PubMed  CAS  Google Scholar 

  25. Mendiratta, S. K., Martin, W. D., Hong, S., Boesteanu, A., Joyce, S., and Van Kaer, L. (1997) CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6, 469–477.

    PubMed  CAS  Google Scholar 

  26. Smiley, S. T., Kaplan, M. H., and Grusby, M. J. (1997) Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275, 977–979.

    PubMed  CAS  Google Scholar 

  27. Porcelli, S., Yockey, C. E., Brenner, M. B., and Balk, S. P. (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4–8-α/β T cells demonstrates preferential use of several Vβ genes and an invariant TCRα chain. J. Exp. Med. 178, 1–16.

    PubMed  CAS  Google Scholar 

  28. Bendelac, A. (1995) CD1: presenting unusual antigens to unusual T lymphocytes. Science 269, 185,186.

    Google Scholar 

  29. Brossay, L. and Kronenberg, M. (1999) Highly conserved antigen-presenting function of CD1d molecules. Immunogenetics 50, 146–151.

    PubMed  CAS  Google Scholar 

  30. Dellabona, P., Padovan, E., Casorati, G., Brockhaus, M., and Lanzavecchia, A. (1994) An invariant Vα24-JαQ/Vb11 T cell receptor is expressed in all individuals by clonally expanded CD4–8-T cells. J. Exp. Med. 180, 1171–1176.

    PubMed  CAS  Google Scholar 

  31. Keino, H., Matsumoto, I., Okada, S., Kurokawa, M., Kato, T., Tokuhisa, T., et al. (1999) A single cell analysis of TCR AV24AJ18+ DN T cells. Microbiol. Immunol. 43, 577–584.

    PubMed  CAS  Google Scholar 

  32. Kent, S. C., Hafler, D. A., Strominger, J. L., and Wilson, S. B. (1999) Noncanonical Valpha24JalphaQ T cells with conservative alpha chain CDR3 region amino acid substitutions are restricted by CD1d. Human Immunol. 60, 1080–1089.

    CAS  Google Scholar 

  33. Behar, S. M., Podrebarac, T. A., Roy, C. J., Wang, C. R., and Brenner, M. B. (1999) Diverse TCRs recognize murine CD1. J. Immunol. 162, 161–167.

    PubMed  CAS  Google Scholar 

  34. Chiu, Y. H., Jayawardena, J., Weiss, A., Lee, D., Park, S. H., Dautry-Varsat, A., and Bendelac, A. (1999) Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J. Exp. Med. 189, 103–110.

    PubMed  CAS  Google Scholar 

  35. Hammond, K. J., Pelikan, S. B., Crowe, N. Y., Randle-Barrett, E., Nakayama, T., Taniguchi, M., et al. (1999) NKT cells are phenotypically and functionally diverse. Eur. J. Immunol. 29, 3768–3781.

    PubMed  CAS  Google Scholar 

  36. Eberl, G., Lees, R., Smiley, S. T., Taniguchi, M., Grusby, M. J., and MacDonald, H. R. (1999) Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J. Immunol. 162, 6410–6419.

    PubMed  CAS  Google Scholar 

  37. Kawano, T., Tanaka, Y., Shimizu, E., Kaneko, Y., Kamata, N., Sato, H., et al. (1999) A novel recognition motif of human NKT antigen receptor for a glycolipid ligand. Intl. Immunol. 11, 881–887.

    CAS  Google Scholar 

  38. Zeng, D., Lewis, D., Dejbakhsh-Jones, S., Lan, F., Garcia-Ojeda, M., Sibley, R., et al. (1999) Bone marrow NK1. l(−) and NK1. 1(+) T cells reciprocally regulate acute graft versus host disease. J. Exp. Med. 189, 1073–1081.

    PubMed  CAS  Google Scholar 

  39. Exley, M., Tahir, S., Cheng, O., Shaulov, A., Joyce, R., Avigan, D., et al. Polyclonal human bone marrow-derived Th2-like non-invariant CD1d-reactive Tcells target lymphoid cells and suppress mixed lymphocyte responses, in press.

    Google Scholar 

  40. Porcelli, S. A. and Modlin, R. L. (1999) The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Ann. Rev. Immunol. 17, 297–329.

    CAS  Google Scholar 

  41. Hong, S., Scherer, D. C., Singh, N., Mendiratta, S. K., Serizawa, I., Koezuka, Y., and Van Kaer, L. (1999) Lipid antigen presentation in the immune system: lessons learned from CD1d knockout mice. Immunol. Rev. 169, 31–44.

    PubMed  CAS  Google Scholar 

  42. Sumida, T., Sakamoto, A., Murata, H., Makino, Y., Takahashi, H., Yoshida, S., et al. (1995) Selective reduction of T cells bearing invariant Vα24JαQ antigen receptor in patients with systemic sclerosis. J. Exp. Med. 182, 1163–1168.

    PubMed  CAS  Google Scholar 

  43. Mieza, M. A., Itoh, T., Cui, J. Q., Makino, Y., Kawano, T., Tsuchida, K., et al. (1996) Selective reduction of Vα14+ NK T cells associated with disease development in autoimmune-prone mice. J. Immunol. 156, 4035–4040.

    PubMed  CAS  Google Scholar 

  44. Beckman, E. M., Porcelli, S. A., Morita, C. T., Behar, S. M., Furlong, S. T., and Brenner, M. B. (1994) Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells [see comments]. Nature 372, 691–694.

    PubMed  CAS  Google Scholar 

  45. Exley, M., Garcia, J., Balk, S. P., and Porcelli, S. (1997) Requirements for CD1d Recognition by Human Invariant Va24+ CD4–CD8-T Cells. J. Exp. Med. 186, 1–11.

    Google Scholar 

  46. Yokoyama, W. M. and Seaman, W. E. (1993) The Ly-49 and NKR-P1 gene families encoding lectin-like receptors on natural killer cells: the NK gene complex. Ann. Rev. Immunol. 11, 613–635.

    CAS  Google Scholar 

  47. Arase, H., Arase, N., and Saito, T. (1996) Interferon γ production by natural killer (NK) cells and NK1. 1+ T cells upon NKR-P1 cross-linking. J. Exp. Med. 183, 2391–2396.

    PubMed  CAS  Google Scholar 

  48. Exley, M., Porcelli, S., Furman, M., Garcia, J., and Balk, S. (1998) CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant V alpha 24 J alpha Q T cell receptor alpha chains. J. Exp. Med. 188, 867–876.

    PubMed  CAS  Google Scholar 

  49. Campbell, K. S. and Giorda, R. (1997) The cytoplasmic domain of rat NKR-P1 receptor interacts with the N-terminal domain of p56(lck) via cysteine residues. Eur. J. Immunol. 27, 72–77.

    PubMed  CAS  Google Scholar 

  50. Iwakoshi, N. N., Greiner, D. L., Rossini, A. A., and Mordes, J. P. (1999) Diabetes prone BB rats are severely deficient in natural killer T cells. Autoimmunity 31, 1–14.

    PubMed  CAS  Google Scholar 

  51. Greiner, D. L., Mordes, J. P., Handler, E. S., Angelillo, M., Nakamura, N., and Rossini, A. A. (1987) Depletion of RT6. 1+ T lymphocytes induces diabetes in resistant biobreeding/Worcester (BB/W) rats. J. Exp. Med. 166, 461–475.

    PubMed  CAS  Google Scholar 

  52. Dellabona, P., Casorati, G., Friedli, B., Angman, L., Sallusto, F., Tunnacliffe, A., et al. (1993) In vivo persistence of expanded clones specific for bacterial antigens within the human T cell receptor α/b CD4–8-subset. J. Exp. Med. 177, 1763–1771.

    PubMed  CAS  Google Scholar 

  53. Norris, S., Doherty, D. G., Collins, C., McEntee, G., Traynor, O., Hegarty, J. E., et al. (1999) Natural T cells in the human liver: cytotoxic lymphocytes with dual T cell and natural killer cell phenotype and function are phenotypically heterogenous and include Valpha24-JalphaQ and gammadelta T cell receptor bearing cells. Human Immunol. 60, 20–31.

    CAS  Google Scholar 

  54. Prussin, C. and Foster, B. (1997) TCR V alpha 24 and V beta 11 coexpression defines a human NK1 T cell analog containing a unique Th0 subpopulation. J. Immunol. 159, 5862–5870.

    PubMed  CAS  Google Scholar 

  55. Nuti, S., Rosa, D., Valiante, N. M., Saletti, G., Caratozzolo, M., Dellabona, P., et al. (1998) Dynamics of intra-hepatic lymphocytes in chronic hepatitis C: enrichment for Valpha 24+ T cells and rapid elimination of effector cells by apoptis. Eur. J. Immunol. 28, 3448–3455.

    PubMed  CAS  Google Scholar 

  56. Masuda, K., Makino, Y., Cui, J., Ito, T., Tokuhisa, T., Takahama, Y., Koseki, H., et al. (1997) Phenotypes and invariant αβ TCR expression of peripheral Vα14+ NK T cells. J. Immunol. 158, 2076–2082.

    PubMed  CAS  Google Scholar 

  57. Ohteki, T. and MacDonald, H. R. (1994) Major histocompatibility complex class I related molecules control the development of CD4+8-and CD4−8-subsets of natural killer 1. 1+ T cell receptor-alpha/beta+ cells in the liver of mice. J. Exp. Med. 180, 699–704.

    PubMed  CAS  Google Scholar 

  58. Roark, J. H., Park, S. H., Jayawardena, J., Kavita, U., S. M., and Bendelac, A. (1998) CD1. 1 expression by mouse antigen-presenting cells and maginal zone B cells. J. Immunol. 160, 3121–3127.

    PubMed  CAS  Google Scholar 

  59. Cardell, S., Tangri, S., Chan, S., Kronenberg, M., Benoist, C., and Mathis, D. (1995) CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J. Exp. Med. 182, 993–1004.

    PubMed  CAS  Google Scholar 

  60. Amano, M., Baumgarth, N., Dick, M. D., Brossay, L., Kronenberg, M., Herzenberg, L. A., and Strober, S. (1998) CD1 expression defines subsets of follicular and marginal zone B cells in the spleen: beta 2-microglobulin-dependent and independent forms. J. Immunol. 161, 1710–1717.

    PubMed  CAS  Google Scholar 

  61. Brossay, L., Jullien, D., Cardell, S., Sydora, B. C., Burdin, N., Modlin, R. L., et al. (1997) Mouse CD1 is mainly expressed on hemopoietic-derived cells. J. Immunol. 159, 1216–1224.

    PubMed  CAS  Google Scholar 

  62. Sonoda, K. H., Exley, M., Snapper, S., Balk, S. P., and Stein-Streilein, J. (1999) CD1-reactive natural killer T cells are required for development of systemic tolerance through an immune-privileged site [see comments]. J. Exp. Med. 190, 1215–1226.

    PubMed  CAS  Google Scholar 

  63. Calabi, F., Jarvis, J. M., Martin, L., and Milstein, C. (1989) Two classes of CD1 genes. Eur. J. Immunol. 19, 285–292.

    PubMed  CAS  Google Scholar 

  64. Moody, D. B., Besra, G. S., Wilson, I. A., and Porcelli, S. A. (1999) The molecular basis of CD1-mediated presentation of lipid antigens. Immunol. Rev. 172, 285–296.

    PubMed  CAS  Google Scholar 

  65. Moody, D. B., Reinhold, B. B., Guy, M. R., Beckman, E. M., Frederique, D. E., Furlong, S. T., et al. (1997) Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278, 283–286.

    PubMed  CAS  Google Scholar 

  66. Schofield, L., McConville, M. J., Hansen, D., Campbell, A. S., Fraser-Reid, B., Grusby, M. J., and Tachado, S. D. (1999) CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283, 225–229.

    PubMed  CAS  Google Scholar 

  67. Zeng, Z.-H., Castano, A. R., Segelke, B. W., Stura, E. A., Peterson, P. A., and Wilson, I. A. (1997) Crystal structure of mouse CD1:an MHC-like fold with a large hydrophobic binding groove. Science 277, 339–345.

    PubMed  CAS  Google Scholar 

  68. Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., et al. (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycoceramides. Science 278, 1626–1629.

    PubMed  CAS  Google Scholar 

  69. Brossay, L., Chioda, M., Burdin, N., Koezuka, Y., Casorati, G., Dellabona, P., and Kronenberg, M. (1998) CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528.

    PubMed  CAS  Google Scholar 

  70. Spada, F. M., Koezuka, Y., and Porcelli, S. A. (1998) CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med. 188, 1529–1534.

    PubMed  CAS  Google Scholar 

  71. Joyce, S., Woods, A. S., Yewdell, J. W., Bennink, J. R., De Silva, A. D., Boesteanu, A., et al. (1998) Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 279, 1541–1544.

    PubMed  CAS  Google Scholar 

  72. Naidenko, O. V., Maher, J. K., Ernst, W. A., Sakai, T., Modllin, R. L., and Kronenberg, M. (1999) Binding and Antigen Presentation of Ceramide-containing glycolipids by Soluble Mouse and Human CD1d Molecules. J. Exp. Med. 190, 1069–1079.

    PubMed  CAS  Google Scholar 

  73. Pulendran, B., Lingappa, J., Kennedy, M. K., Smith, J., Teepe, M., Rudensky, A., et al. (1997) Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J. Immunol. 159, 2222–2231.

    PubMed  CAS  Google Scholar 

  74. Kitamura, H., Iwanabe, K., Yahata, T., Nishimura, S.-i., Ohta, A., Ohmi, Y., et al. (1999) The natural killer (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med. 189, 1121–1127.

    PubMed  CAS  Google Scholar 

  75. Toura, I., Kawano, T., Akutsu, Y., Nakayama, T., Ochiai, T., and Taniguchi, M. (1999) Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with alpha-galactosylceramide. J. Immunol. 163, 2387–2391.

    PubMed  CAS  Google Scholar 

  76. Tomura, M., Yu, W.-G., Ahn, H.-J., Yamashita, M., Yang, Y.-F., Ono, S., et al. (1999) A Novel Function of Valphal4+CD4+NKT Cells: Stimulation of IL-12 Production by Antigen-Presenting Cells in the Innate Immune System. J. Immunol. 163, 93–101.

    PubMed  CAS  Google Scholar 

  77. Exley, M., Garcia, J., Wilson, S. B., Spada, F., Gerdes, D., Tahir, S. M., et al. (2000) CD1d structure and regulation on human thymocytes, peripheral blood T cells,B cells and monocytes. Immunology 100, 37–47.

    PubMed  CAS  Google Scholar 

  78. Park, S. H., Roark, J. H., and Bendelac, A. (1998) Tissue-specific recognition of mouse CD1 molecules. J. Immunol. 160, 3128–3134.

    PubMed  CAS  Google Scholar 

  79. Nicol, A., Nieda, M., Koezuka, Y., Porcelli, S., Suzuki, K., Tadokoro, K., et al. (2000) Dendritic cells are targets for human invariant Valpha24+ natural killer T cell cytotoxic activity: an important immune regulatory function. Exp. Hematol. 28, 276–282.

    PubMed  CAS  Google Scholar 

  80. Takahashi, T., Nieda, M., Koezuka, Y., Nicol, A., Porcelli, S. A., Ishikawa, Y., et al. (2000) Analysis of human valpha24+ CD4+ NKT cells activated by alpha-glycosylceramide-pulsed monocyte-derived dendritic cells [in process citation]. J. Immunol. 164, 4458–4464.

    PubMed  CAS  Google Scholar 

  81. Yang, O., Racke, F. R., Nguyen, P. T., Gausling, R., Severino, M., Horton, H. F., et al. (2000) CD1d on myeloid dendritici cells timulates cytokine secretion from and cytolytic activity of Va24JaQ T cells: a feedback mechanism for immune regulation. J. Immunol. 165, 3239–3246.

    Google Scholar 

  82. Kim, H. S., Garcia, J., Exley, M., Johnson, K. W., Balk, S. P., and Blumberg, R. S. (1999) Biochemical characterization of CD1d expression in the absence of beta2-microglobulin. J. Biol. Chem. 274, 9289–9295.

    PubMed  CAS  Google Scholar 

  83. Gumperz, J. E., Roy, C., Makowska, A., Lum, D., Sugita, M., Podrebarac, T., et al. (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221.

    PubMed  CAS  Google Scholar 

  84. Brossay, L., Naidenko, O., Burdin, N., Matsuda, J., Sakai, T., and Kronenberg, M. (1998) Structural requirements for galactosylceramide recognition by CD1-restricted NK T cells. J. Immunol. 161, 5124–5128.

    PubMed  CAS  Google Scholar 

  85. Cui, J., Shin, T., Kawano, T., Sato, H., Kondo, E., Toura, I., et al. (1997) Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626.

    PubMed  CAS  Google Scholar 

  86. Ito, K., Karasawa, M., Kawano, T., Akasaka, T., Koseki, H., Akutsu, Y., et al. (2000) Involvement of decidual Valpha14 NKT cells in abortion. Proc Natl Acad Sci USA 97, 740–744.

    PubMed  CAS  Google Scholar 

  87. Lehuen, A., Lantz, O., Beaudoin, L., Laloux, V., Carnaud, C., Bendelac, A., et al. (1998) Overexpression of natural killer T cells protects Valpha14-Jalpha281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839.

    PubMed  CAS  Google Scholar 

  88. Brown, D. R., Fowell, D. J., Corry, D. B., Wynn, T. A., Moskowitz, N. H., Cheever, A. W., et al. (1996) Beta 2-microglobulin-dependent NK1. 1+ T cells are not essential for T helper cell 2 immune responses. J. Exp. Med. 184, 1295–1304.

    PubMed  CAS  Google Scholar 

  89. Noben-Trauth, N., Shultz, L. D., Brombacher, F., Urban, J. F., Jr., Gu, H., and Paul, W. E. (1997) An interleukin 4 (IL-4)-independent pathway for CD4+ T cell IL-4 production is revealed in IL-4 receptor-deficient mice. Proc. Natl. Acad. Sci. USA 94, 10,838–10,843.

    PubMed  CAS  Google Scholar 

  90. Wakil, A. E., Wang, Z. E., Ryan, J. C., Fowell, D. J., and Locksley, R. M. (1998) Interferon gamma derived from CD4(+) T cells is sufficient to mediate T helper cell type 1 development. J. Exp. Med. 188, 1651–1656.

    PubMed  CAS  Google Scholar 

  91. Wilson, S. B., Kent, S. C., Horton, H. F., Hill, A. A., Bollyky, P. L., Hafler, D. A., et al. (2000) Multiple differences in gene expression in regulatory Valpha24JalphaQ T cells from identical twins discordant for type I diabetes. Proc. Natl. Acad. Sci. USA 97, 7411–7416.

    PubMed  CAS  Google Scholar 

  92. Smyth, M. J., Thia, K. Y. T., Street, S. E. A., Cretney, E., Trapani, J. A., Taniguchi, M., et al. (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668.

    PubMed  CAS  Google Scholar 

  93. Soiffer, R., Lynch, T., Mihm, M., Jung, K., Rhuda, C., Schmollinger, J. C., et al. (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 95, 13,141–13,146.

    PubMed  CAS  Google Scholar 

  94. Gillesen, S., Santambrogio, L., Naumov, Y., Lee, F. S., Wong, M.-L., Luster, A. D., et al. CD1d-restricted T cells regulate dendritic cell function and anti-tumor immunity in a GM-CSF-dependent fashion. J. Exp. Med., submitted.

    Google Scholar 

  95. Kawano, T., Nakayama, T., Kamada, N., Kaneko, Y., Harada, M., Ogura, N., et al. (1999) Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res. 59, 5102–5105.

    PubMed  CAS  Google Scholar 

  96. Tamada, K., Shimozaki, K., Chapoval, A. I., Zhu, G., Sica, G., Flies, D., et al. (2000) Modulation of T cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat. Med. 6, 283–289.

    PubMed  CAS  Google Scholar 

  97. Ludewig, B., Ochsenbein, A. F., Odermatt, B., Paulin, D., Hengartner, H., and Zinkernagel, R. M. (2000) Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J. Exp. Med. 191, 795–804.

    PubMed  CAS  Google Scholar 

  98. Castelli, C., Rivoltini, L., Andreola, G., Carrabba, M., Renkvist, N., and Parmiani, G. (2000) T cell recognition of melanoma-associated antigens. J. Cell. Physiol. 182, 323–331.

    PubMed  CAS  Google Scholar 

  99. Pittet, M. J., Valmori, D., Dunbar, P. R., Speiser, D. E., Lienard, D., Lejeune, F., et al. (1999) High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J. Exp. Med. 190, 705–715.

    PubMed  CAS  Google Scholar 

  100. Yoshimoto, T., Bendelac, A., Hu-Li, J., and Paul, W. E. (1995) Defective IgE production by SJL mice is linked to the absence of CD4+, NK1. 1+ T cells that promptly produce interleukin 4. Proc. Natl. Acad. Sci. USA 92, 11,931–11,934.

    PubMed  CAS  Google Scholar 

  101. Gombert, J. M., Herbelin, A., Tancrede-Bohin, E., Dy, M., Carnaud, C., and Bach, J. F. (1996) Early quantitative and functional deficiency of NKl+-like thymocytes in the NOD mouse. Eur. J. Immunol. 26, 2989–2998.

    PubMed  CAS  Google Scholar 

  102. Takeda, K. and Dennert, G. (1993) The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms. J. Exp. Med. 177, 155–164.

    PubMed  CAS  Google Scholar 

  103. Wonigeit, K., Dinkel, A., Fangmann, J., and Thude, H. (1997) Expression of the ectoenzyme RT6 is not restricted to resting peripheral T cells and is differently regulated in normal peripheral T cells, intestinal IEL, and NK cells. Adv. Exp. Med. Biol. 419, 229–240.

    PubMed  CAS  Google Scholar 

  104. Hammond, K. I. L., Poulton, L. D., Palmisano, L. J., Silveira, P. A., Godfrey, D. I., and Baxter, A. G. (1998) alpha/beta-T cell receptor (TCR)+CD4-CD8-(NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med. 187, 1047–1056.

    PubMed  CAS  Google Scholar 

  105. Kaneko, B. Y., Harada, M., Kawano, T., Yamashita, M., Shibata, Y., Gejyo, F., Nakayama, T., et al. (2000) Augmentation of Valpha14 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J. Exp. Med. 191, 105–114.

    PubMed  CAS  Google Scholar 

  106. Reis e Sousa, C., Yap, G., Schulz, O., Rogers, N., Schito, M., Aliberti, J., et al. (1999) Paralysis of dendritic cell IL-12 production by microbial products prevents infection-induced immunopathology. Immunity 11, 637–647.

    PubMed  CAS  Google Scholar 

  107. Pulendran, B., Smith, J. L., Caspary, G., Brasel, K., Pettit, D., Maraskovsky, E., et al. (1999) Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Acad. Sci. USA 96, 1036–1041.

    PubMed  CAS  Google Scholar 

  108. Feili-Hariri, M., Dong, X., Alber, S. M., Watkins, S. C., Salter, R. D., and Morel, P. A. (1999) Immunotherapy of NOD mice with bone marrow-derived dendritic cells. Diabetes 48, 2300–2308.

    PubMed  CAS  Google Scholar 

  109. Jansen, A., Homo-Delarche, F., Hooijkaas, H., Leenen, P. J., Dardenne, M., and Drexhage, H. A. (1994) Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and beta-cell destruction in NOD mice. Diabetes 43, 667–675.

    PubMed  CAS  Google Scholar 

  110. Ludewig, B., Odermatt, B., Ochsenbein, A. F., Zinkernagel, R. M., and Hengartner, H. (1999) Role of dendritic cells in the induction and maintenance of autoimmune diseases. Immunol. Rev. 169, 45–54.

    PubMed  CAS  Google Scholar 

  111. Ludewig, B., Odermatt, B., Landmann, S., Hengartner, H., and Zinkernagel, R. M. (1998) Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J. Exp. Med. 188, 1493–1501.

    PubMed  CAS  Google Scholar 

  112. Hoglund, P., Mintern, J., Waltzinger, C., Heath, W., Benoist, C., and Mathis, D. (1999) Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J. Exp. Med. 189, 331–339.

    PubMed  CAS  Google Scholar 

  113. Takahashi, K., Honeyman, M. C., and Harrison, L. C. (1998) Impaired yield, phenotype, and function of monocyte-derived dendritic cells in humans at risk for insulin-dependent diabetes. J. Immunol. 161, 2629–2635.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Exley, M., Wilson, S.B. (2002). CD1d-Restricted NK T Cells and Autoimmunity. In: Kuchroo, V.K., Sarvetnick, N., Hafler, D.A., Nicholson, L.B. (eds) Cytokines and Autoimmune Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-129-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-129-9_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-856-1

  • Online ISBN: 978-1-59259-129-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics