Skip to main content

The Role of Genomic Instability in the Development of Human Cancer

  • Chapter
The Molecular Basis of Human Cancer

Abstract

Cancer development is a multi-step process through which cells acquire increasingly abnormal proliferative and invasive behaviors. Furthermore, cancer represents a unique form of genetic disease, characterized by the accumulation of multiple somatic mutations in a population of cells undergoing neoplastic transformation (1–5). Several forms of molecular alteration have been described in human cancers, including gene amplifications, deletions, insertions, rearrangements, and point mutations (5, 6). In many cases specific genetic lesions have been identified that are associated with the process of neoplastic transformation and/or tumor progression in a particular tissue or cell type (4). Statistical analyses of age-specific mortality rates for different forms of human cancer predict that multiple (three to eight) mutations in specific target genes are required for the genesis and outgrowth of most clinically diagnosable tumors (7). In accordance with this prediction, it has been suggested that tumors grow through a process of clonal expansion driven by mutation (1,2,8–10). In this model, the first mutation leads to limited expansion of progeny of a single cell, and each subsequent mutation gives rise to a new clonal outgrowth with greater proliferative potential. The idea that carcinogenesis is a multi-step process is supported by morphologic observations of the transitions between premalignant (benign) cell growths and malignant tumors. In some tumor systems (such as colon), the transition from benign to malignant can be easily documented and occurs in discernible stages, including benign adenoma, carcinoma in situ, invasive carcinoma, and eventually local and distant metastasis (11,12). Moreover, specific genetic alterations have been shown to correlate with each of these well-defined histopathologic stages of tumor development and progression (13,14). However, it is important to recognize that it is the accumulation of multiple genetic alterations in affected cells, and not necessarily the order in which these changes accumulate, that determines tumor formation and progression. These observations suggest strongly that the molecular alterations observed in human cancers represent integral (necessary) components of the process of neoplastic transformation and tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foulds, L. (1958) The natural history of cancer. J. Chronic Dis. 8: 2–37.

    Article  PubMed  CAS  Google Scholar 

  2. Nowell, P. C. (1976) The clonal evolution of tumor cell populations. Science 194: 23–28.

    Article  PubMed  CAS  Google Scholar 

  3. Weinberg, R. A. (1989) Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res. 49: 3713–3721.

    PubMed  CAS  Google Scholar 

  4. Bishop, J. M. (1991) Molecular themes in oncogenesis. Cell 64: 235–248.

    Article  PubMed  CAS  Google Scholar 

  5. Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1999) Genetic instabilities in human cancers. Nature 396: 643–649.

    Article  CAS  Google Scholar 

  6. Cooper, D. N., Krawczak, M., and Antonarakis, S. E. (1998) The nature and mechanisms of human gene mutation. In: The Genetic Basis of Human Cancer ( Vogelstein, B. and Kinzler, K.W., eds.), McGraw-Hill, New York, pp. 65–94.

    Google Scholar 

  7. Renan, M. J. (1993) How many mutations are required for tumori-genesis? Implications from human cancer data. Mol. Carcinogenesis 7: 139–146.

    Article  CAS  Google Scholar 

  8. Cairns, J. (1975) Mutation, selection and the natural history of cancer. Nature 255: 197–200.

    Article  PubMed  CAS  Google Scholar 

  9. Crow, J.F. (1997) The high spontaneous mutation rate: is it a health risk? Proc. Natl. Acad. Sci. USA 94: 8380–8386.

    Article  PubMed  CAS  Google Scholar 

  10. Loeb, K. R. and Loeb, L. A. (2000) Significance of multiple mutations in cancer. Carcinogenesis 21: 379–385.

    Article  PubMed  CAS  Google Scholar 

  11. Sugarbaker, J. P., Gunderson, L. L., and Wittes, R. E. (1985) Colorectal cancer. In: Cancer: Principles and Practice of Oncology (De Vita, V. T., Hellman, S., and Rosenberg, S. A., eds,), J.B. Lippincott, Philadelphia, pp. 800–815.

    Google Scholar 

  12. Cohen, A. M., Minsky, B. D., and Schilsky, R. L. (1997) Cancer of the colon. In: Cancer: Principles and Practice of Oncology, 5th ed. ( De Vita, V. T., Hellman, S., and Rosenberg, S. A., eds.), J.B. Lippincott, Philadelphia, pp. 1144–1197.

    Google Scholar 

  13. Fearon, E. R. and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell 61: 757–767.

    Article  Google Scholar 

  14. Kinzler, K. W. and Vogelstein, B. (1995) Colorectal Tumors. In: The Metabolic and Molecular Bases of Inherited Disease, 7th ed. ( Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, pp. 643–663.

    Google Scholar 

  15. Stoler, D. L., Chen, N., Basik, M., Kahlenberg, M. S., RodriguezBigas, M. A., Petrelli, N. J., et al. (1999) The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl. Acad. Sci. USA 96: 15121–15126.

    Article  PubMed  CAS  Google Scholar 

  16. Cairns, J. (1998) Mutation and cancer: The antecedents to our studies of adaptive mutation. Genetics 148: 1433–1440.

    PubMed  CAS  Google Scholar 

  17. Ruddon, R. W. (1995) Cancer Biology, 3rd ed. Oxford University Press, New York.

    Google Scholar 

  18. Fisher, J. C. and Holloman, J. H. (1951) A hypothesis for the origin of cancer foci. Cancer 4: 916–918.

    Article  PubMed  CAS  Google Scholar 

  19. Fisher, J. C. (1958) Multiple mutation theory of carcinogenesis. Nature 181: 651–652.

    Article  PubMed  CAS  Google Scholar 

  20. Strong, L. C. (1949) The induction of mutations by a carcinogen. Br. J. Cancer 3: 97–108.

    Article  PubMed  CAS  Google Scholar 

  21. Berenblum, I. and Shubik, P. (1949) An experimental study of the initiating stage of carcinogenesis, and a re-examination of the somatic cell mutation theory of cancer. Br. J. Cancer 3: 109–118.

    Article  PubMed  CAS  Google Scholar 

  22. Nowell, P. C. and Hungerford, D. A. (1960) Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. 25: 85–109.

    PubMed  CAS  Google Scholar 

  23. Rowley, J. D. (1973) A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 243: 290–293.

    Article  PubMed  CAS  Google Scholar 

  24. Solomon, E., Borrow, J., and Goddard, A. D. (1990) Chromosome aberrations and cancer. Science 254: 1153–1160.

    Article  Google Scholar 

  25. Sen, S. (2000) Aneuploidy and cancer. Curr. Opin. Oncol. 12: 82–88.

    Article  PubMed  CAS  Google Scholar 

  26. Kallioniemi, A., Kallioniemi, O.-P., Piper, J., Tanner, M., Stoke, T., et al. (1994) Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc. Natl. Acad. Sci. USA 91:2 t 56–2160.

    Google Scholar 

  27. Korn, W. M., Yasutake, T., Kuo, W. L., Warren, R. S., Collins, C., Tornita, M., et al. (1999) Chromosome arm 20q gains and other genomic alterations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Genes Chromosomes Cancer 25: 82–90.

    Article  PubMed  CAS  Google Scholar 

  28. De Angelis, P. M., Clausen, O. P., Schjolberg, A., and Stokke, T. (1999) Chromosomal gains and losses in primary colorectal carcinomas detected by CGH and their associations with tumour DNA ploidy, genotypes and phenotypes. Br. J. Cancer 80: 526–535.

    Article  PubMed  Google Scholar 

  29. Ried, T., Knutzen, R., Steinbeck, R., Biegen, H., Schrock, E., Heselmeyer, K., et al. (1996) Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer 15: 234–245.

    Article  PubMed  CAS  Google Scholar 

  30. Iwabuchi, H., Sakamoto, M., Sakunaga, H., Ma, Y.-Y., Carcangiu, M. L., Pinkel, D., et al. (1995) Genetic analysis of benign, low-grade, and high grade ovarian tumors. Cancer Res. 55: 6172–6180.

    PubMed  CAS  Google Scholar 

  31. Park, M. (1995) Oncogenes: Genetic abnormalities of cell growth. In: The Metabolic and Molecular Bases of Human Disease, 7th ed. ( Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, pp. 589–611.

    Google Scholar 

  32. Hussain, S. P. and Harris, C. C. (1998) Molecular epidemiology of human cancer: Contribution of mutation spectra studies of tumor suppressor genes. Cancer Res. 58: 4023–4037.

    PubMed  CAS  Google Scholar 

  33. Armitage, P. and Doll, R. (1957) A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br. J. Cancer 11: 161–169.

    Article  PubMed  CAS  Google Scholar 

  34. Knudson, A. G. (1971) Mutation and cancer: a statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68:820–823. Knudson, A. G. (1986) Genetics of human cancer. Ann. Rev. Genetics 20: 231–251.

    Article  Google Scholar 

  35. Kinzler, K. W. and Vogelstein, B. (1998) Colorectal tumors. In: The Genetic Basis of Human Cancer ( Vogelstein, B. and Kinzler, K. W., eds.). McGraw-Hill, New York, pp. 565–587.

    Google Scholar 

  36. Cheng, K. C. and Loeb, L. A. (1993) Genomic instability and tumor progression: mechanistic considerations. Adv. Cancer Res. 60: 121–156.

    Article  PubMed  CAS  Google Scholar 

  37. Loeb, L. A. (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51: 3075–3079.

    PubMed  CAS  Google Scholar 

  38. Jackson, A. L. and Loeb, L. A. (1998) The mutation rate and cancer. Genetics 148: 1483–1490.

    PubMed  CAS  Google Scholar 

  39. Perucho, M. (1996) Cancer of the microsatellite mutator phenotype. Biol. Chem. 377: 675–684.

    PubMed  CAS  Google Scholar 

  40. Orr-Weaver, T. L. and Weinberg, R. A. (1998) A checkpoint on the road to cancer. Nature 392: 223–224.

    Article  PubMed  CAS  Google Scholar 

  41. Christians, F. C., Newcomb, T. G., and Loeb, L. A. (1995) Potential sources of multiple mutations in human cancers. Preventative Med. 24: 329–332.

    Article  CAS  Google Scholar 

  42. Friedberg, E. C. (1985) DNA Repair. W.H. Freeman, New York. Ames, B. N., Shigenagan, M. K., and Gold, L. S. (1993) DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ. Health Perspect. Suppl. 101: 35–44.

    Google Scholar 

  43. Lindahl, T. (1993) Instability and decay of the primary structure of DNA. Nature 362: 709–715.

    Article  PubMed  CAS  Google Scholar 

  44. Cooper, D. N. and Youssoufian, H. (1988) The CpG dinucleotide and human genetic disease. Human Genet. 78: 151–155.

    Article  CAS  Google Scholar 

  45. Rideout, W. M., Coetzee, G. A., Olumi, A. F., and Jones, P. A. (1990) 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249: 1288–1290.

    Google Scholar 

  46. Jones, P. A., Buckley, J. D., Henderson, B. E., Ross, R. K., and Pike, M. C. (1991) From gene to carcinogen: a rapidly evolving field in molecular epidemiology. Cancer Res. 51: 3617–3620.

    PubMed  CAS  Google Scholar 

  47. Vogelstein, B., Fearon, E. R., Hamilton, S. R., Kern, S. E., Preisinger, A. C., Leppert, M., et al. (1988) Genetic alterations during colorectal tumor development. N. Engl. J. Med. 319: 525–532.

    Article  PubMed  CAS  Google Scholar 

  48. Ried, T., Knutzen, R., Steinbeck, R., Biegen, H., Schrock, E., Heselmeyer, K., et al. (1996) Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer 15: 234–245.

    Article  PubMed  CAS  Google Scholar 

  49. Iwabuchi, H., Sakamoto, M., Sakunaga, H., Ma, Y.-Y., Carcangiu, M. L., Pinkel, D., et al. (1995) Genetic analysis of benign, low-grade, and high grade ovarian tumors. Cancer Res. 55: 6172–6180.

    Google Scholar 

  50. Wong, N., Lai, P., Pang, E., Fung, L.-F., Sheng, Z., Wong, V., et al. (2000) Genomic aberrations in human hepatocellular carcinomas of differing etiologies. Clin. Cancer Res. 6: 4000–4009.

    PubMed  CAS  Google Scholar 

  51. Goyette, M. C., Cho, K., Fasching, C. L., Levy, D. B., Kinzler, K. W., Paraskeva, C., et al. (1992) Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer. Mol. Cell. Biol. 12: 1387–1395.

    PubMed  CAS  Google Scholar 

  52. Prehn, R. T. (1994) Cancers beget mutations versus mutations beget cancers. Cancer Res. 54: 5296–5300.

    PubMed  CAS  Google Scholar 

  53. Duesberg, P., Rausch, C., Rasnick, D., and Hchlmann, R. (1998) Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proc. Natl. Acad. Sci. USA 95: 13692–13697.

    Article  PubMed  CAS  Google Scholar 

  54. Loeb, L. A. (1994) Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res. 54: 5059–5063.

    PubMed  CAS  Google Scholar 

  55. Strauss, B. S. (1998) Hypermutability in carcinogenesis. Genetics 48: 1619–1626.

    Google Scholar 

  56. Ames, B. N., Durston, W., Yamasaki, E., and Lee, F. (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. USA 70: 2281–2285.

    Article  PubMed  CAS  Google Scholar 

  57. Greenblatt, M. S., Bennett, W.P., Hollstein, M., and Harris, C. C. (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54: 4855–4878.

    PubMed  CAS  Google Scholar 

  58. Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991 ì p53 mutations in human cancers. Science 253: 49–53.

    Google Scholar 

  59. Hollstein, M., Shomer, B., Greenblatt, M., Soussi, T., Hovig, E., Montesano, R., et al. (1996) Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res. 24: 141–146.

    Article  PubMed  CAS  Google Scholar 

  60. Tomlinson, I. P. M., Novelli, M. R., and Bodmer, W. F. (1996) The mutation rate and cancer. Proc. Natl. Acad. Sci. USA 93: 14800–14803.

    Article  PubMed  CAS  Google Scholar 

  61. Boesen, J. J. B., Niericker, M. J., Dieteren, N., and Simons, J. W. I. M. (1994) How variable is a spontaneous mutation rate in cultured mammalian cells? Mutation Res. 307: 121–129.

    Article  PubMed  CAS  Google Scholar 

  62. Monnat, R. J., Jr. (1989) Molecular analysis of spontaneous hypoxanthine phosphoribosyltransferase mutations in thioguanine-resistant HL-60 human leukemia cells. Cancer Res. 49: 81–87.

    PubMed  CAS  Google Scholar 

  63. Eldridge, S. R. and Gould, M. N. (1992) Comparison of spontaneous mutagenesis in early-passage human mammary cells from normal and malignant tissues. Int. J. Cancer 50: 321–324.

    Article  PubMed  CAS  Google Scholar 

  64. Elmore, E., Kakunaga, T., and Barrett, J. C. (1983) Comparison of spontaneous mutation rates of normal and chemically transformed human skin fibroblasts. Cancer Res. 43: 1650–1655.

    PubMed  CAS  Google Scholar 

  65. Wittenkeller, J. L., Storer, B., Bittner, G., and Schiller, J. H. (1997) Comparison of spontaneous and induced mutation rates in an immortalized human bronchial epithelial cell line and its tumorigenic derivative. Oncology 54: 335–341.

    Article  PubMed  CAS  Google Scholar 

  66. Nalbontoglu, J., Phear, G., and Meuth, M. (1987) DNA sequence analysis of spontaneous mutations at the aprt locus of hamster cells. Mol. Cell Biol. 7: 1445–1449.

    Google Scholar 

  67. Richards, B., Zhang, H., Phear, G., and Meuth, M. (1997) Conditional mutator phenotypes in hMSH2-deficient tumor cells. Science 277: 1523–1526.

    Article  PubMed  CAS  Google Scholar 

  68. Loeb., L. A. (1997) Transient expression of a mutator phenotype in cancer cells. Science 277: 1449–1450.

    Article  Google Scholar 

  69. Seshadri, R., Kutlaca, R. J., Trainor, K., Matthews, C., and Morely, A. A. (1987) Mutation rate of normal and malignant lymphocytes. Cancer Res. 47: 407–409.

    PubMed  CAS  Google Scholar 

  70. Eshleman, J. R., Lang, E. Z., Bowerfield, G. K., Parsons, R., Vogelstein, B., Willson, J. K. V., et al. (1995) Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene 10:33–37.

    Google Scholar 

  71. Bhattacharyya, N. P., Skandalis, A., Ganesh, A., Groden, J., and Meuth, M. (1994) Mutator phenotypes in human colorectal carcinoma cell lines. Proc. Natl. Acad. Sci. USA 91: 6319–6323.

    Article  PubMed  CAS  Google Scholar 

  72. Glaab, W. E. and Tindall, K. R. (1997) Mutation rate at the hprt locus in human cancer cell lines with specific mismatch repair-gene defects. Carcinogenesis 18: 1–8.

    Article  PubMed  CAS  Google Scholar 

  73. Tlsty, T. D., Margolin, B. H., and Lum, K. (1989) Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by Luria-Delbruck fluctuation analysis. Proc. Natl. Acad. Sci. USA 86: 9441–9445.

    Article  PubMed  CAS  Google Scholar 

  74. Tlsty, T. D. (1990) Normal diploid human and rodent cells lack a detectable frequency of gene amplification. Proc. Natl. Acad. Sci. USA 87: 3132–3136.

    Article  PubMed  CAS  Google Scholar 

  75. Wright, J. A., Smith, H. S., Watt, F. M., Hancock, M. C., Hudson, D. L., and Stark, G. R. (1990) DNA amplification is rare in normal human cells. Proc. Natl. Acad. Sci. USA 87: 1791–1795.

    Article  PubMed  CAS  Google Scholar 

  76. Eshleman, J. R. and Markowitz, S. D. (1996) Mismatch repair defects in human carcinogenesis. Human Mol. Genet. 5: 1489–1494.

    CAS  Google Scholar 

  77. Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1997) Genetic instability in colorectal cancers. Nature 386: 623–627.

    Article  PubMed  CAS  Google Scholar 

  78. Lindor, N. M., Jalal, S. M., van de Walker, T. J., Cunningham, J. M., Dahl, R. J., and Thibodeau, S. N. (1998) Search for chromosome instability in lymphocytes with germ-line mutations in DNA mismatch repair genes. Cancer Genet. Cytogenet. 104: 48–51.

    Article  PubMed  CAS  Google Scholar 

  79. Eshleman, J. R., Casey, G., Kochera, M. E., Sedwick, W. D., Swinler, S. E., Veigl, M. L., et al. (1998) Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53. Oncogene 17: 719–725.

    Article  PubMed  CAS  Google Scholar 

  80. Cahill, D. P., Lengauer, C., Yu, J., Riggins, G. J., Willson, J. K. V., Markowitz, S. D., et al. (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392: 300–303.

    Article  PubMed  CAS  Google Scholar 

  81. Baker, S. J., Fearon, E. R., Nigro, J. M., Hamilton, S. R., Preisinger, A. C., Jessup, J. M., et al. (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244: 217–221.

    Article  PubMed  CAS  Google Scholar 

  82. Bos, J. L. (1989) Ras oncogenes in human cancer: a review. Cancer Res. 49: 4682–4689.

    PubMed  CAS  Google Scholar 

  83. Dalla Favera, R., Bregni, M., Erikson, J., Patterson, D., Gallo, R. C., and Croce, C. M. (1982) Assignment of the human c-myc oncogene to the region of chromosome 8 which is translocated in Burkitt lymphoma cells. Proc. Natl. Acad. Sci. USA 79: 7824–7827.

    Article  Google Scholar 

  84. Dalla Favcra, R., Martinotti, S., Gallo, R. C., Erikson, J., and Croce, C. M. (1983) Translocation and rearrangements of the c-myc oncogene in human differentiated B cell lymphomas. Science 219: 963–967.

    Article  Google Scholar 

  85. Rosenberg, S. M., Thulin, C., and Harris, R. S. (1998) Transient and heritable mutators in adaptive evolution in the lab and in nature. Genetics 148: 1559–1566.

    PubMed  CAS  Google Scholar 

  86. Akiyama, Y., Iwanaga, R., Saitoh, K., Shiba, K., Ushio, K., Ikeda, E., et al. (1997) Transforming growth factor 13 type II receptor gene mutations in adenomas from hereditary nonpolyposis colorectal cancer. Gastroenterology 112: 33–39.

    Article  PubMed  CAS  Google Scholar 

  87. Jacoby, R. F., Marshall, D. J., Kailas, S., Schlack, S., Harms, B., and Love, R. (1995) Genetic instability associated with adenoma to carcinoma progression in hereditary nonpolyposis colon cancer. Gastroenterology 109: 73–82.

    Article  PubMed  CAS  Google Scholar 

  88. Konishi, M., Kikuchi-Yanoshita, R., Tanaka, K., Muraoka, M., Onda, A., Okumura, Y., et al. (1996) Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology 111: 307–317.

    Article  PubMed  CAS  Google Scholar 

  89. Aaltonen, L. A., Peltomaki, P., Mecklin, J.-P., Jarvinen, H., Jass, J. R., Green, J. S., et al. (1994) Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 54: 1645–1648.

    PubMed  CAS  Google Scholar 

  90. Aaltonen, L. A., Peltomaki, P., Leach, F. S., Sistonen, P., Pylkkanen, L., Mecklin, J.-P., et al. (1993) Clues to the pathogenesis of familial colorectal cancer. Science 260: 812–816.

    Article  PubMed  CAS  Google Scholar 

  91. Jackson, A. L., Chen, R., and Loeb, L. A. (1998) Induction of microsatellite instability by oxidative DNA damage. Proc. Natl. Acad. Sci. USA 95: 12468–12473.

    Article  PubMed  CAS  Google Scholar 

  92. Beckman, K. B. and Ames, B. N. (1997) Oxidative decay of DNA. J. Biol. Chem. 272: 19633–19636.

    Article  PubMed  CAS  Google Scholar 

  93. Feig, D. I., Reid, T. M., and Loeb, L. A. (1994) Reactive oxygen specific in tumorigenesis. Cancer Res. 54: I890s-1894s.

    Google Scholar 

  94. Cerutti, P. A. (1985) Prooxidant states and tumor promotion. Science 227: 375–381.

    Article  PubMed  CAS  Google Scholar 

  95. Baba, S. (1997) Recent advances in molecular genetics of colorectal cancer. World J. Surg. 21: 678–687.

    Article  PubMed  CAS  Google Scholar 

  96. Spitz, M. R. and Bondy, M. L. (1993) Genetic susceptibility to cancer. Cancer 72: 991–995.

    Article  PubMed  CAS  Google Scholar 

  97. Kastan, M. B. and Kuerbitz, S. J. (1993) Control of G1 arrest after DNA damage. Environ. Health Perspect. Suppl. 101: 55–58.

    CAS  Google Scholar 

  98. Coleman, W. B. and Tsongalis, G. J. (1995) Multiple mechanisms account for genomic instability and molecular mutation in neoplastic transformation. Clin. Chem. 41: 644–657.

    PubMed  CAS  Google Scholar 

  99. Sancar, A. and Sancar, G. B. (1988) DNA repair enzymes. Ann. Rev. Biochem. 57: 29–67.

    Article  PubMed  CAS  Google Scholar 

  100. Kaufmann, W. K. (1989) Pathways of human cell postreplication repair. Carcinogenesis 10: 1–11.

    Article  PubMed  CAS  Google Scholar 

  101. Weeda, G., Hoeijmakers, J. H. J., and Bootsma, D. (1993) Genes controlling nucleotide excision repair in eukaryotic cells. BioEssays 15: 249–258.

    Article  PubMed  CAS  Google Scholar 

  102. Jiricny, J. (1998) Eukaryotic mismatch repair: an update. Mutation Res. 409: 107–121.

    Article  Google Scholar 

  103. Jiricny, J. (1998) Replication errors: Cha(lle)nging the genome. EMBO J. 17: 6427–6436.

    Article  PubMed  CAS  Google Scholar 

  104. Schmutte, C. and Fishel, R. (1999) Genomic instability: first step to carcinogenesis. Anticancer Res. 19: 4665–4696.

    PubMed  CAS  Google Scholar 

  105. Jiricny, J. (2000) Mediating mismatch repair. Nature Genet. 24: 6–8.

    Article  PubMed  CAS  Google Scholar 

  106. Fishel, R., Lescoe, M. K., Rao, M. R. S., Copeland, N. G., Jenkins, N. A., Garber, J., et al. (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038.

    Article  PubMed  CAS  Google Scholar 

  107. Cleaver, J. E. and Kraemer, K. H. (1995) Xeroderma pigmentosum and Cockayne syndrome. In: The Metabolic and Molecular Bases oflnheritedDisease, 7th ed. ( Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, pp. 4393–4419.

    Google Scholar 

  108. Bootsma, D., Kraemer, K. H., Cleaver, J. E., and Hoeijmakers, J. H. J. (1998) Nucleotide excision repair syndromes: Xeroderma pigmentosa, Cockayne syndrome, and trichothiodystrophy. In: The Genetic Basis of Human Cancer ( Vogelstein, B. and Kinzler, K. W., eds.), McGraw-Hill, New York, pp. 245–274.

    Google Scholar 

  109. Boder, E. (1985) Ataxia-telangiectasia: An overview. In: Ataxiatelangiectasia: Genetics, Neuropathology, and Immunology of a Degenerative Disease of Childhood ( Gatti, R. A. and Swift, M., eds.), Alan R. Liss, New York, pp. 1–63.

    Google Scholar 

  110. Gatti, R. A. (1998) Ataxia-telangiectasia. In: The Genetic Basis of Human Cancer ( Vogelstein, B. and Kinzler, K. W., eds.), McGraw-Hill, New York, pp. 275–300.

    Google Scholar 

  111. Swift, M., Morrell, D., Massey, R. B., and Chase, C. L. (1991) Incidence of cancer in 161 families affected by ataxia-telangiectasia. N. Engl. J. Med. 325: 1831–1836.

    Article  PubMed  CAS  Google Scholar 

  112. Auerbach, A. D., Buchwald, M., and Joenje, H. (1998) Fanconi anemia. In: The Genetic Basis of Human Cancer ( Vogelstein, B. and Kinzler, K. W., eds.), McGraw-Hill, New York, pp. 317–332.

    Google Scholar 

  113. German, J. and Passarge, E. (1989) Bloom’ s syndrome. XII. Report from the Registry for 1987. Clin. Genetics 35: 57–69.

    Article  CAS  Google Scholar 

  114. German, J. and Ellis, N. A. (1998) Bloom syndrome. In: The Genetic Basis of Human Cancer ( Vogelstein, B. and Kinzler, K. W., eds.), McGraw-Hill, New York, pp. 301–315.

    Google Scholar 

  115. Chaganti, R. S. K., Schonberg, S., and German, J. (1974) A many-fold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc. Natl. Acad. Sci. USA 71: 4508–4512.

    Article  PubMed  CAS  Google Scholar 

  116. Langlois, R. G., Bigbee, W. L., Jensen, R. H., and German, J. (1989) Evidence for increased in vivo mutation and somatic recombination in Bloom’s syndrome. Proc. Natl. Acad. Sci. USA 86: 670–674.

    Article  PubMed  CAS  Google Scholar 

  117. Gatti, R. A. (1991) Localizing the genes for ataxia telangiectasia: A human model for inherited cancer susceptibility. Adv. Cancer Res. 56: 77–104.

    Article  PubMed  CAS  Google Scholar 

  118. Digweed, M. (1993) Human genetic instability syndromes: Single gene defects with increased risk of cancer. Toxicol. Lett. 67: 659–681.

    Article  Google Scholar 

  119. Ellis, N. A., Groden, J., Ye, T.-Z., Straughen, J., Lennon, D. J., Ciocci, S., et al. (1995) The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83: 655–666.

    Article  PubMed  CAS  Google Scholar 

  120. Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., et al. (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753.

    Article  PubMed  CAS  Google Scholar 

  121. Trichopoulos, D., Petridou, E., Lipworth, L., and Adami, H.-O. (1995) Epidemiology of cancer. In: The Metabolic and Molecular Bases of Human Disease, 7th ed. ( Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, pp. 231–257.

    Google Scholar 

  122. Boland, C.R. (1998) Hereditary nonpolyposis colorectal cancer. In: The Genetic Basis of Human Cancer ( Vogelstein, B. and Kinzler, K. W., eds.), McGraw-Hill, New York, pp. 333–346.

    Google Scholar 

  123. Vasen, H. F. A., Offerhaus, G. J. A., den Hartog Jager, F. C. A., Menko, F. H., Nagengast, F. M., Griffioen, G., et al. (1990) The tumour spectrum in hereditary non-polyposis colorectal cancer: A study of 24 kindreds in the Netherlands. Int. J. Cancer 46: 31–34.

    Article  PubMed  CAS  Google Scholar 

  124. Mecklin, J.-P. and Jarvinen, H. J. (1991) Tumor spectrum in cancer family syndrome (hereditary nonpolyposis colorectal cancer). Cancer 68: 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  125. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D., and Perucho, M. (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363: 558–561.

    Article  PubMed  CAS  Google Scholar 

  126. Thibodeau, S. N., Bren, G., and Schaid, D. (1993) Microsatellite instability in cancer of the proximal colon. Science 260: 816–819.

    Article  PubMed  CAS  Google Scholar 

  127. Parsons, R., Li, G.-M., Longley, M., Modrich, P., Liu, B., Berk, T., et al. (1995) Mismatch repair deficiency in phenotypically normal human cells. Science 268: 738–740.

    Article  PubMed  CAS  Google Scholar 

  128. Fishel, R., Lescoe, M. K., Rao, M. R. S., Copeland, N. G., Jenkins, N. A., Garber, J., et al. (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038.

    Article  PubMed  CAS  Google Scholar 

  129. Leach, F. S., Nicolaides, N. C., Papadopoulos, N., Liu, B., Jen, J., Sistonen, P., et al. (1993) Mutations of a mutShomolog in hereditary nonpolyposis colorectal cancer. Cell 75: 1215–1225.

    Article  PubMed  CAS  Google Scholar 

  130. Bronner, C. E., Baker, S. M., Morrison, P. T., Warren, G., Smith, L. G., Lescoe, M. K., et al. (1994) Mutation in the DNA mismatch repair gene homologue hMLHI is associated with hereditary nonpolyposis colon cancer. Nature 368: 258–261.

    Article  PubMed  CAS  Google Scholar 

  131. Papadopoulos, N., Nicolaides, N. C., Wei, Y.-F., Ruben, S. M., Carter, K. C., Rosen, C. A., et al. (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263: 1625–1629.

    Article  PubMed  CAS  Google Scholar 

  132. Nicolaides, N. C., Papadopoulos, N., Liu, B., Wel, Y.-F., Carter, K. C., Ruben, S. M., et al. (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371: 75–80.

    Article  PubMed  CAS  Google Scholar 

  133. Schwartz, R. A. and Torre, D. P. (1995) The Muir-Tone syndrome: a 25 year retrospect. J. Am. Acad. Dermatol. 33: 90–104.

    Article  PubMed  CAS  Google Scholar 

  134. Cohen, P. R., Kohn, S. R., andKurzrock, S. R. (1991) Association of sebaceous gland tumors and internal malignancy: the Muir-Torre syndrome. Am. J. Med. 90: 606–613.

    PubMed  CAS  Google Scholar 

  135. Honchel, R., Hailing, K. C., Schaid, D. J., Pittelkow, M., and Thibodeau, S. N. (1994) Microsatellite instability in Muir-Torre syndrome. Cancer Res. 54: 1159–1163.

    PubMed  CAS  Google Scholar 

  136. Turcot, J., Despres, J.-P., and St. Pierre, F. (1959) Malignant tumors of the central nervous system associated with familial polyposis of the colon: report of two cases. Dis. Colon Rectum 2: 465–468.

    Google Scholar 

  137. Hamilton, S. R., Liu, B., Parsons, R. E., Papadopoulos, N., Jen, J., Powell, S. M., et al. (1995) The molecular basis of Turcot’s syndrome. N. Engl. J. Med. 332: 839–847.

    Article  PubMed  CAS  Google Scholar 

  138. Yunis, J. J. (1983) The chromosomal basis of human neoplasia. Science 221: 227–236.

    Article  PubMed  CAS  Google Scholar 

  139. Croce, C. M. (1986) Chromosome translocations and human cancer. Cancer Res. 46: 6019–6023.

    PubMed  CAS  Google Scholar 

  140. Mitelman, F. (1994) Catalog of Chromosome Aberrations in Cancer, 5th ed. Wiley-Liss Publishers, New York.

    Google Scholar 

  141. Le Beau, M.M. (1997) Molecular biology of cancer: Cytogenetics. In: Cancer: Principles and Practice of Oncology, 5th ed. ( DeVita, V. T. Jr., Hellman, S., and Rosenberg, S. A., eds.), Lippincott-Raven, Philadelphia, pp. 103–119.

    Google Scholar 

  142. Meltzer, P. S. and Trent, J. M. (1998) Chromosome rearrangements in human solid tumors. In: The Genetic Basis of Human Cancer ( Vogelstein, B., and Kinzler, K. W., eds.), McGraw-Hill, New York, pp. 143–160.

    Google Scholar 

  143. Thrash-Bingham, C. A., Greenberg, R. E., Howard, S., Bruzel, A., Bremer, M., Go11, A., et al. (1995) Comprehensive allelotyping of human renal cell carcinomas using microsatellite DNA probes. Proc. Natl. Acad. Sci. USA 92: 2854–2858.

    Article  PubMed  CAS  Google Scholar 

  144. Baker, S. J., Peisinger, A. C., Jessup, J. M., Paraskeva, C., Markowitz, S., Willson, J. K. V., et al. (1990) p53 gene mutations and 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 50: 7717–7722.

    Google Scholar 

  145. Carter, S. L., Negrini, M., Baffa, R., Gillum, D. R., Rosenberg, A. L., Schwartz, G. F., et al. (1994) Loss of heterozygosity at 11g22-q23 in breast cancer. Cancer Res. 54: 6270–6274.

    PubMed  CAS  Google Scholar 

  146. Ross, J. S. (1996) DNA ploidy and cell cycle analysis in cancer diagnosis and prognosis. Oncology 10: 867–82.

    PubMed  CAS  Google Scholar 

  147. Cowlen, M. S. (1997) Nucleic acid hybridization and amplification in situ: principles and applications in molecular pathology. In: Molecular Diagnostics: For the Clinical Laboratorian ( Coleman, W. B. and Tsongalis, G. J., eds.), Humana Press, Totowa NJ, pp. 163–191.

    Google Scholar 

  148. Vogelstein, B., Fearon, E. R., Kern, S. E., Hamilton, S. R., Prei-singer. A. C., Nakamura, Y., et al. (1989) Allelotype of colorectal carcinomas. Science 244: 207–211.

    Article  PubMed  CAS  Google Scholar 

  149. Aldaz, C. M., Chen, T., Sahin, A., Cunningham, J., and Bondy, M. (1995) Comparative allelotype of in situ and invasive human breast cancer: high frequency of microsatellite instability in lobular breast carcinomas. Cancer Res. 55: 3976–3981.

    PubMed  CAS  Google Scholar 

  150. Kawanishi, M., Kohno, T., Otsuka, T., Adachi, J., Sone, S., Noguchi, M., et al. (1997) Allelotype and replication error phenotype of small cell lung carcinoma. Carcinogenesis 18: 2057–2062.

    Article  PubMed  CAS  Google Scholar 

  151. Boige, V., Laurent-Puig, P., Fouchet, P., Flejou, J. F., Monges, G., Bedossa, P., et al. (1997) Concerted nonsyntenic allelic losses in hyperploid hepatocellular carcinoma as determined by a high-resolution allelotype. Cancer Res. 57: 1986–1990.

    PubMed  CAS  Google Scholar 

  152. Seymour, A. B., Hruban, R. H., Redston, M., Caldas, C., Powell, S. M., Kinzler, K. W., et al. (1994) Allelotype of pancreatic adenocarcinoma. Cancer Res. 54: 2761–2764.

    PubMed  CAS  Google Scholar 

  153. Radford, D. M., Fair, K. L., Phillips, N. J., Ritter, J. H., Steinbrueck, T., Holt, M. S., et al. (1995) Allelotyping of ductal carcinoma in situ of the breast: deletion of loci on 8p, 13q, 16q, 17p and 17q. Cancer Res. 55: 3399–3405.

    PubMed  CAS  Google Scholar 

  154. Ghadimi, B. M., Sackett, D. L., Difilippantonio, M. J., Schrock, E., Neumann, T., Jauho, A., et al. (2000) Centrosome amplification and instability occurs exclusively in aneuploid, but not diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosomes Cancer 27: 183–190.

    Article  PubMed  CAS  Google Scholar 

  155. Harwood, J., Tachibana, A., Davis, R., Bhattacharyya, N. P., and Meuth, M. (1993) High rate of multilocus deletion in a human tumor cell line. Human Mol. Genet. 2: 165–171.

    Article  CAS  Google Scholar 

  156. Phear, G., Bhattacharyya, N. P., and Meuth, M. (1996) Loss of heterozygosity and base substitution at the APRT locus in mismatch-repair-proficient and -deficient colorectal carcinoma cell lines. Mol. Cell. Biol. 16: 6516–6523.

    PubMed  CAS  Google Scholar 

  157. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R. W. (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51: 6304–6311.

    PubMed  CAS  Google Scholar 

  158. Filatov, L., Golubovskaya, V., Hurt, J. C., Byrd, L. L., Phillips, J. M., and Kaufmann, W. K. (1998) Chromosomal instability is correlated with telomere erosion and inactivation of G2 checkpoint function in human fibroblasts expressing human papillomavirus type 16 E6 oncoprotein. Oncogene 16: 1825–1838.

    Article  PubMed  CAS  Google Scholar 

  159. Honma, M., Momose, M., Tanabe, H., Sakamoto, H., Yu, Y., Little, J. B., et al. (2000) Requirement of wild-type p53 protein for maintenance of chromosomal integrity. Mol. Carcinogenesis 28: 203–214.

    Article  CAS  Google Scholar 

  160. Tarapore, P. and Fukasawa, K. (2000) p53 mutation and mitotic infidelity. Cancer Invest. 18: 148–155.

    Google Scholar 

  161. Rabinovitch, P. S., Dziadon, S., Brentnall, T. A., Emond, M. J., Crispin, D. A., Haggitt, R. C., et al. (1999) Pancolonic chromosoma] instability precedes dysplasia and cancer in ulcerative colitis. Cancer Res. 59: 5148–5153.

    PubMed  CAS  Google Scholar 

  162. Hruban, R. H., Wilentz, R. E., and Kern, S. E. (2000) Genetic progression in the pancreatic ducts. Am. J. Pathol. 156: 1821–1825.

    Article  PubMed  CAS  Google Scholar 

  163. Doxsey, S. (1998) The centrosome: a tiny organelle with big potential. Nature Genet. 20: 104–106.

    Article  PubMed  CAS  Google Scholar 

  164. Pihan, G. A., Purohit, A., Wallace, J., Knecht, H., Woda, B. Quesenberry, P., et al. (1998) Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58: 3974–3985.

    PubMed  CAS  Google Scholar 

  165. Zhou, H., Kuang, J., Zhong, L., Kuo, W. L., Gray, J. W., Sahin, A., et al. (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet. 20: 189–193.

    Article  PubMed  CAS  Google Scholar 

  166. Bischoff, J. R., Anderson, L., Zhu, Y., Mossie, K., Ng, L., Souza, B., et al. (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 17: 3052–3065.

    Article  PubMed  CAS  Google Scholar 

  167. Wolf, G., Elez, R., Doermer, A., Holtrich, U., Ackermann, H., Stutte, H. J., et al. (1997) Prognostic significance of polo-like kinase (PLK) expression in non-small cell lung cancer. Oncogene 14: 543–549.

    Article  PubMed  CAS  Google Scholar 

  168. Tanaka, T., Kimura, M., Matsunaga, K., Fukada, D., Mori, H., Okano, Y. (1999) Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res. 59: 2041–2044.

    PubMed  CAS  Google Scholar 

  169. Carroll, P. E., Okuda, M., Horn, H. F., Biddinger, P., Stambrook, P. J., Gleich, L. L., et al. (1999) Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18: 1935–1944.

    Article  PubMed  CAS  Google Scholar 

  170. Tutt, A., Gabriel, A., Bertwistle, D., Connor, F., Paterson, H., Peacock, J., et al. (1999) Absence of BRCA2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr. Biol. 9: 1107–1110.

    Article  PubMed  CAS  Google Scholar 

  171. Hartwell, L. H. (1992) Defects in cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71: 543–546.

    Article  PubMed  CAS  Google Scholar 

  172. Hartwell, L. H. and Kastan, M. B. (1994) Cell cycle control and cancer. Science 266: 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  173. Hartwell, L. H. and Weinert, T. A. (1989) Checkpoints: Controls that ensure the order of cell cycle events. Science 246: 629–634.

    Article  PubMed  CAS  Google Scholar 

  174. Cahill, D. P., da Costa, L. T., Carson-Walter, E. B., Kinzler, K. W., Vogelstein, B., and Lengauer, C. (1999) Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 58: 181–187.

    Article  PubMed  CAS  Google Scholar 

  175. Li, Y. and Benezra, R. (1996) Identification of a human mitotic checkpoint gene: hsMAD2. Science 274: 246–248.

    Article  PubMed  CAS  Google Scholar 

  176. Jaffrey, R. G., Pritchard, S. C., Clark, C., Murray, G. I., Cassidy, J., Kerr, K. M., et al. (2000) Genomic instability at the BUBI locus in colorectal cancer, but not in non-small cell lung cancer. Cancer Res. 60: 4349–4352.

    PubMed  CAS  Google Scholar 

  177. Myrie, K. A., Percy, M. J., Azmin, J. N., Neeley, C. K., and Petty, E. M. (2000) Mutation and expression analysis of human BUB 1 and BUB 1 B in aneuploid breast cancer cell lines. Cancer Lett. 152: 193–199.

    Article  PubMed  CAS  Google Scholar 

  178. Sato, M., Sekido, Y., Horio, Y., Takahashi, M., Saito, H., Minna, J. D., et al. (2000) Infrequent mutation of the hBUB 1 and hBUBR1 genes in human lung cancer. Japn. J. Cancer Res. 91: 504–509.

    Article  CAS  Google Scholar 

  179. Yamaguchi, K., Okami, K., Hibi, K., Wehage, S. L., Jen, J., and Sidransky, D. (1999) Mutation analysis of hBUBI in aneuploid HNSCC and lung cancer cell lines. Cancer Lett. 139: 183–187.

    Article  PubMed  CAS  Google Scholar 

  180. Imai, Y., Shiratori, Y., Kato, N., Inoue, T., and Omata, M. (1999) Mutational inactivation of mitotic checkpoint genes, hsMAD2 and hBUBI, is rare in sporadic digestive tract cancers. Japn. J. Cancer Res. 90: 837–840.

    Article  CAS  Google Scholar 

  181. Gualberto, A., Aldape, K., Kozakiewicz, K., and Tlsty, T. D. (1998) An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint function. Proc. Natl. Acad. Sci. USA 95: 5166–5171.

    Article  PubMed  CAS  Google Scholar 

  182. Shigeta, T., Takagi, M., Delia, D., Chessa, L., Iwata, S., Kanke, Y., et al. (1999) Defective control of apoptosis and mitotic spindle checkpoint in heterozygous carriers of ATM mutations. Cancer Res. 59: 2602–2607.

    PubMed  CAS  Google Scholar 

  183. Canman, C., Lim, D. S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., et al. (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679.

    Article  PubMed  CAS  Google Scholar 

  184. Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C. W., Chessa, L., et al. (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281: 1674–1677.

    Article  PubMed  CAS  Google Scholar 

  185. Zhang, H., Tombline, G., and Weber, B. L. (1998) BRCA1, BRCA2, and DNA damage response: collision or collusion? Cell 92: 433–436.

    Article  PubMed  CAS  Google Scholar 

  186. Tlsty, T. D., White, A., and Sanchez, J. (1992) Suppression of gene amplification in human cell hybrids. Science 255: 1425–1427.

    Article  PubMed  CAS  Google Scholar 

  187. Hamlin, J. L., Leu, T.-H., Vaughn, J. P., Ma, C., and Dikwel, P. A. (1991) Amplification of DNA sequences in mammalian cells. Prog. Nucleic Acid Res. 41: 203–239.

    Article  CAS  Google Scholar 

  188. Tlsty, T. D., Briot, A., Gualberto, A., Hall, I., Hess, S., Hixon, M., et al. (1995) Genomic instability and cancer. Mutation Res. 337: 1–7.

    Article  PubMed  CAS  Google Scholar 

  189. Cooper, G.N. (1995) Oncogenes, 2nd ed. Jones and Bartlett, Boston.

    Google Scholar 

  190. Livingstone, L. R., White, A., Sprouse, J., Livanos, E., Jacks, T., and Tlsty, T. D. (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70: 923–935.

    Article  PubMed  CAS  Google Scholar 

  191. Yin, Y., Tainsky, M. A., Bischoff, F. Z., Strong, L. C., and Wahl, G. M. (1992) Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70: 937948.

    Google Scholar 

  192. Oren, M. (1994) Relationship ofp53 to the control ofapoptotic cell death. Semin. Cancer Biol. 5: 221–227.

    PubMed  CAS  Google Scholar 

  193. Nowell, P. C. and Hungerford, D. A. (1960) A minute chromosome in chronic granulocytic leukemia. Science 132: 1497.

    Google Scholar 

  194. Dubeau, L. (1998) Ovarian cancer. In: The Genetic Basis of Human Cancer ( Vogelstein, B. and Kinzler, K. W., eds.), McGraw-Hill, New York, pp. 615–620.

    Google Scholar 

  195. Nishisho, L., Nakamura, Y., Miyoshi, Y., Miki, Y., Ando, H., Horii, A., et al. (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253: 665–669.

    Article  PubMed  CAS  Google Scholar 

  196. Groden, J., Thliveris, A., Samowitz, W., Carlson, M., Gelbert, L., Albertson, H., et al. (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66: 589–600.

    Article  PubMed  CAS  Google Scholar 

  197. Kinzler, K. W., Nilbert, M. C., Su, L. K., Vogelstein, B., Bryan, T. M., Levy, D. B., et al. (1991) Identification of a chromosome 5q21 gene that is mutated in colorectal cancers. Science 251: 1366–1370.

    Article  PubMed  CAS  Google Scholar 

  198. Fearon, E. R., Cho, K. R., Nigro, J. M., Kern, S. E., Simons, J. W., Ruppert, J. M., et al. (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247: 49–56.

    Article  PubMed  CAS  Google Scholar 

  199. Sutherland, G. R. and Richards, R. I. (1995) Simple tandem DNA repeats and human genetic disease. Proc. Natl. Acad. Sci. USA 92: 3636–3641.

    Article  PubMed  CAS  Google Scholar 

  200. Ramel, C. (1997) Mini-and microsatellites. Environ. Health. Perspect. 105: 781–789.

    PubMed  CAS  Google Scholar 

  201. Peinado, M. A., Malkhosyan, S., Velazquez, A., and Perucho, M. (1992) Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. Proc. Natl. Acad. Sci. USA 89: 10065–10069.

    Article  PubMed  CAS  Google Scholar 

  202. Fujiwara, T., Stolker, J. M., Watanabe, T., Rashid, A., Longo, P., Eshleman, J. R., et al. (1998) Accumulated clonal genetic alterations in familial and sporadic colorectal carcinomas with widespread instability in microsatellite sequences. Am. J. Pathol. 153: 1063–1078.

    Article  PubMed  CAS  Google Scholar 

  203. Frazier, M. L., Sinicrope, F. A., Amos, C. I., Cleary, K. R., Lynch, P. M., Levin, B., et al. (1999) Loci for efficient detection of microsatellite instability in hereditary non-polyposis colorectal cancer. Oncol. Rep. 6: 497–505.

    PubMed  CAS  Google Scholar 

  204. Calistri, D., Presciuttini, S., Buonsanti, G., Radice, P., Gazzoli, I., Pensotti, V., et al. (2000) Microsatellite instability in colorectal-cancer patients with suspected genetic predisposition. Int. J. Cancer 89: 87–91.

    Article  PubMed  CAS  Google Scholar 

  205. Lothe, R. A., Peltomaki, P., Meling, G. I., Aaltonen, L. A., Nystrom-Lahti, M., Pylkkanen, L., et al. (1993) Genomic instability in colorectal cancer: Relationship to clinicopathological variables and family history. Cancer Res. 53: 5849–5852.

    PubMed  CAS  Google Scholar 

  206. Ikeda, M., Orimo, H., Moriyama, H., Nakajima, E., Matsubara, N., Mibu, R., et al. (1998) Close correlation between mutations ofE2F4 and hMSH3 genes in colorectal cancers with microsatellite instability. Cancer Res. 58: 594–598.

    PubMed  CAS  Google Scholar 

  207. Thibodeau, S. N., French, A. J., Cunningham, J. M., Tester, D., Burgart, L. J., Roche, P. C., et al. (1998) Microsatellite instability in colorectal cancer: Different mutator phenotypes and the principle involvement of hMLHI. Cancer Res. 58: 1713–1718.

    Google Scholar 

  208. Simms, L. A., Zou, T.-T., Young, J., Shi, Y.-Q., Lei, J., Appel, R., et al. (1997) Apparent protection from instability of repeat sequences in cancer-related genes in replication error positive gastrointestinal cancers. Oncogene 14: 2613–2618.

    Article  PubMed  CAS  Google Scholar 

  209. Young, J., Leggett, B., Gustafson, C., Ward, M., Searle, J., Thomas, L., et al. (1993) Genomic instability occurs in colorectal carcinomas but not in adenomas. Human Mutation 2: 351–354.

    Article  PubMed  CAS  Google Scholar 

  210. Peltomaki, P., Lothe, R. A., Aaltonen, L. A., Pylkkanen, L., Nystrom-Lahti, M., Seruca, R., et al. (1993) Microsatellite instability is associated with tumors that characterize the hereditary nonpolyposis colorectal cancer syndrome. Cancer Res. 53: 5853–5855.

    PubMed  CAS  Google Scholar 

  211. Ouyang, H., Shiwaku, H. O., Hagiwara, H., Miura, K., Abe, T., Kato, Y., et al. (1997) The insulin-like growth factor II receptor gene is mutated in genetically unstable cancers of the endometrium, stomach, and colorectum. Cancer Res. 57: 1851–1854.

    PubMed  CAS  Google Scholar 

  212. Dietmaier, W., Wallinger, S., Bocker, T., Kullmann, F., Fishel, R., and Ruschoff, J. (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res. 57: 4749–4756.

    PubMed  CAS  Google Scholar 

  213. Hoang, J.-M., Cottu, P. H., Thuille, B., Salmon, R. J., Thomas, G., and Hamelin, R. (1997) BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res. 57: 300–303.

    PubMed  CAS  Google Scholar 

  214. Bocker, T., Schlegel, J., Kullmann, F., Stumm, G., Zirngibil, H., Epplen, J., et al. (1996) Genomic instability in colorectal carcinomas: comparison of different evaluation methods and their biological significance. J. Pathol. 179: 15–19.

    Article  PubMed  CAS  Google Scholar 

  215. Canzian, F., Salovaara, R., Hemminki, A., Kristo, P., Chadwick, R. B., Aaltonen, L. A., et al. (1996) Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Res. 56: 3331–3337.

    PubMed  CAS  Google Scholar 

  216. Iacopetta, B. J., Welch, J., Soong, R., House, A. K., Zhou, X.-P., and Hamelin, R. (1998) Mutation of the transforming growth factor-(3 type II receptor gene in right-sided colorectal cancer: relationship to clinicopathological features and genetic alterations. J. Pathol. 184: 390–395.

    Article  PubMed  CAS  Google Scholar 

  217. Liu, B., Farrington, S. M., Petersen, G. M., Hamilton, S. R., Parsons, R., Papadopolous, N., et al. (1995) Genetic instability occurs in the majority of young patients with colorectal cancer. Nature Med. 1: 348–352.

    Article  PubMed  CAS  Google Scholar 

  218. Zhou, X.-P., Hoang, J.-M., Li, Y.-J., Seruca, R., Carneiro, F., Sobrinho-Simoes, M., et al. (1998) Determination of the replication error phenotype in human tumors without the requirement for matching normal DNA by analysis of mononucleotide repeat microsatellites. Genes Chromosomes Cancer 21: 101–107.

    Article  PubMed  CAS  Google Scholar 

  219. Kondo, Y., Kanai, Y., Sakamoto, M., Mizokami, M., Ueda, R., and Hirohashi, S. (1999) Microsatellite instability associated with hepatocarcinogenesis. J. Hepatol. 31: 529–536.

    Article  PubMed  CAS  Google Scholar 

  220. Orimo, H., Nakajima, E., Ikejima, M., Emi, M., and Shimada, T. (1999) Frameshift mutations and a length polymorphism in the hMSH3 gene and spectrum of microsatellite instability in sporadic colon cancer. Japn. J. Cancer Res. 90: 1310–1315.

    Article  CAS  Google Scholar 

  221. Krajinovic, M., Richer, C., Gorska-Flipot, I., Gaboury, L., Novakovic, I., Labuda, D., et al. (1998) Genomic loci susceptible to replication errors in cancer cells. Br. J. Cancer 78: 981–985.

    Article  PubMed  CAS  Google Scholar 

  222. Ghimenti, C., Tannergard, P., Wahlberg, S., Liu, T., Giulianotti, P. G., Mosca, F., et al. (1999) Microsatellite instability and mismatch repair gene inactivation in sporadic pancreatic and colon tumours. Br. J. Cancer 80: 11–16.

    Article  PubMed  CAS  Google Scholar 

  223. Komura, K., Masuda, H., and Esumi, M. (1999) Two types of sporadic multiple colorectal cancers with and without HNPCC-like genetic instability. Hepato-Gastroenterology 46: 3115–3120.

    PubMed  CAS  Google Scholar 

  224. Potocnik, U., Glavac, D., Golouh, R., and Ravnik-Glavac, M. (2000) Evaluation of microsatellite markers markers for efficient assessment of high microsatellite instabile colorectal tumors. Pflugers Arch Eur. J. Physiol. 439: R47 - R49.

    Article  CAS  Google Scholar 

  225. Cravo. M., Lage, P., Albuquerque, C., Chaves, P., Claro, I., Gomes, T., et al. (11999) BAT-26 identifies sporadic colorectal cancers with mutatar phenotype: a correlative study with clinico-pathological features and mutations in mismatch repair genes. J. Pathol. 188: 252–257.

    Google Scholar 

  226. Johannsdottir, J. T., Jonasson, J. G., Bergthorsson, J. T., Amundadottir, L. T., Magnusson, J., Egilsson, V., et al. (2000) The effect of mismatch repair deficiency on tumourigenesis: microsatellite instability affecting genes containing short repeated sequences. Int. J Oncol. 16: 133–139.

    PubMed  CAS  Google Scholar 

  227. Stone, J. G., Tomlinson, I. P. M., and Houlston, R. S. (2000) Optimising methods for determining RER status in colorectal cancers. Cancer Lett. 149: 15–20.

    Article  PubMed  CAS  Google Scholar 

  228. Chao, A., Gilliland, F., Willman, C., Joste, N., Chew I.-M., Stone, N., et al. (2000) Patient and tumor characteristics of colon cancers with microsatellite instability: A population-based study. Cancer Epidemiol. Biomarkers Preven. 9: 539–544.

    CAS  Google Scholar 

  229. Salahshor, S., Kressner, U., Pahlman, L., Glimelius, B., Lindmark, G., and Lindblom, A. (1999) Colorectal cancer with and without microsatellite instability involves different genes. Genes Chromosomes Cancer 26: 247–252.

    Article  PubMed  CAS  Google Scholar 

  230. Bapat. B. V., Madlensky, L., Temple, L. K. F., Hiruki, T., Redston, M., Baron, D. L., et al. (1999) Family history characteristics, tumor microsatellite instability and germline MS H2 and MLH 1 mutations in hereditary colorectal cancer. Human Genet. 104: 167–176.

    Article  Google Scholar 

  231. Fleisher, A. S., Esteller, M., Harpaz, N., Leytin, A., Rashid, A., Xu, Y., et al. (2000) Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH 1. Cancer Res. 60: 4864–4868.

    PubMed  CAS  Google Scholar 

  232. Benachenhou, N., Guiral, S., Gorska-Flipot, I., Michalski, R., Labuda, D., and Sinnett, D. (1998) Allelic losses and DNA methylation at DNA mismatch repair loci in sporadic colorectal cancer. Carci.nogenesis 19: 1925–1929.

    Article  CAS  Google Scholar 

  233. Halting, K. C., French, A. J., McDonnell, S. K., Burgart, L. J., Schaid, D. J., Peterson, B. J., et al. (1999) Microsatellite instability and 8p allelic imbalance in stage B2 and C colorectal cancers. J. Natl. Cancer Inst. 91: 1295–1303.

    Article  Google Scholar 

  234. Pedroni, M., Tamassia, M. G., Percesepe, A., Roncucci, L., Benatti, P., Lanza, G., et al. (1999) Microsatellite instability in multiple colorectal tumors. Int. J. Cancer 81: 1–5.

    Article  PubMed  CAS  Google Scholar 

  235. Shitoh, K., Konishi, F., Masubuchi, S., Senba, S., Tsukamoto, T., and Kanazawa, K. (1998) Important microsatellite markers in the investigation of replication errors (RER) in colorectal carcinomas. Japn. J. Clin. Oncol. 28: 538–541.

    Article  CAS  Google Scholar 

  236. Gonzalez-Garcia, I., Moreno, V., Navarro, M., Marti-Rague, J., Marcuello, E., Benasco, C., et al. (2000) Standardized approach for microsatellite instability detection in colorectal cancers. J. Natl. Cancer Inst. 92: 544–549.

    Article  PubMed  CAS  Google Scholar 

  237. Tomita, S., Miyazato, H., Tamai, O., Muto, Y., and Toda, T. (1999) Analyses of microsatellite instability and the transforming growth factor-(3 receptor type II gene mutation in sporadic human gastrointestinal cancer. Cancer Genet. Cytogenet. 115: 23–27.

    Article  PubMed  CAS  Google Scholar 

  238. Cravo, M. L., Fidalgo, P. 0., Lage, P. A., Albuquerque, C. M., Chaves, P. P., Claro, I., et al. (1999) Validation and simplification of the Bethesda guidelines for identifying apparently sporadic forms of colorectal carcinoma with microsatellite instability. Cancer 85: 779–785.

    Article  PubMed  CAS  Google Scholar 

  239. Jass, J. R., Do, K.-A., Simms, L. A., Iino, H., Wynter, C., Pillay, S. P., et al. (1998) Morphology of sporadic colorectal cancer with DNA replication errors. Gut 42: 673–679.

    Article  PubMed  CAS  Google Scholar 

  240. Yao, J., Eu, K. W., Seow-Choen, F., Vijayan, V., and Cheah, P. Y. (1999) Microsatellite instability and aneuploidy rate in young colorectal-cancer patients do not differ significantly from those in older patients. Int. J. Cancer 80: 667–670.

    Article  PubMed  CAS  Google Scholar 

  241. Calin, G. A., Gafa, R., Tibiletti, M. G., Herlea, V., Becheanu, G., Cavazzini, L., et al. (2000) Genetic progression in microsatellite instability high (MSI-H) colon cancers correlates with clinico-pathological parameters: a study of the TGFpRII, bax, hMSH3, hMSH6, IGFIIR and blm genes. Int. J. Cancer 89: 230–235.

    Article  PubMed  CAS  Google Scholar 

  242. Georgiades, 1. B., Curtis, L. J., Morris, R. M., Bird, C. C., and Wyllie, A. H. (1999) Heterogeneity studies identify a subset of sporadic colorectal cancers without evidence for chromosomal or microsatellite instability. Oncogene 18: 7933–7940.

    Google Scholar 

  243. Horii, A., Han, H.-J., Shimada, M., Yanagisawa, A., Kato, Y., Ohta, H., et al. (1994) Frequent replication errors at microsatellite loci in tumors of patients with multiple primary cancers. Cancer Res. 54: 3373–3375.

    PubMed  CAS  Google Scholar 

  244. Mirabelli-Primdahl, L., Gryfe, R., Kim, H., Millar, A., Luceri, C., Dale, D., et al. (1999) (3-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective ofmutatorpathway. Cancer Res. 59: 3346–3351.

    Google Scholar 

  245. Ottini, L., Patti, D., Falchetti, M., D’Amico, C., Amorosi, A., Saieva, C., et al. (1997) Microsatellite instability in gastric cancer is associated with tumor location and family history in a high-risk population from Tuscany. Cancer Res. 57: 4523–4529.

    PubMed  CAS  Google Scholar 

  246. Akiyama, Y., Nagasaki, H., Nihei, Z., Iwama, T., Nomizu, T., Utsunomiya, J., et al. (1996) Frequent microsatellite instabilities and analyses of the related genes in familial gastric cancers. Japn. J. Cancer Res. 87: 595–601.

    Article  CAS  Google Scholar 

  247. Nakashima, H., Honda, M., Inoue, H., Shibuta, K., Arinaga, S., Era, S., et al. (1995) Microsatellite instability in multiple gastric cancers. Int. J. Cancer 64: 239–242.

    Article  PubMed  CAS  Google Scholar 

  248. Paulson, T. G., Wright, F. A., Parker, B. A., Russack, V., and Wahl, G. M. (1996) Microsatellite instability correlates with reduced survival and poor disease prognosis in breast cancer. Cancer Res. 56: 4021–4026.

    PubMed  CAS  Google Scholar 

  249. Contegiacomo, A., Palmirotta, R., De Marchis, L., Pizzi, C., Mastranzo, P., Delrio, P., et al. (1995) Microsatellite instability and pathological aspects of breast cancer. Int. J. Cancer 64: 264–268.

    Article  PubMed  CAS  Google Scholar 

  250. De Marchis, L., Contegiacomo, A., D’Amico, C., Palmirotta, R., Pizzi, C., Ottini, L., et al. (1997) Microsatellite instability is correlated with lymph node-positive breast cancer. Clin. Cancer Res. 3: 241–248.

    PubMed  Google Scholar 

  251. Caldes, T., Perez-Segura, P., Tosar, A., de la Hoya, M, and Diaz-Rubio, E. (2000) Low frequency of microsatellite instability in sporadic breast cancer. Int. J. Oncol. 16: 1235–1242.

    PubMed  CAS  Google Scholar 

  252. Imyanitov, E. N., Togo, A. V., Suspitsin, E. N., Grigoriev, M. Y., Pozharisski, K. M., Turkevich, E. A., et al. (2000) Evidence for microsatellite instability in bilateral breast carcinomas. Cancer Lett. 154: 9–17.

    Article  PubMed  CAS  Google Scholar 

  253. Richard, S. M., Bailliet, G., Paez, G. L., Bianchi, M. S., Peltomaki, P., and Bianchi, N. O. (2000) Nuclear and mitochondria] genome instability in human breast cancer. Cancer Res. 60: 4231–4237.

    PubMed  CAS  Google Scholar 

  254. T., and Boyd, J. (1993) Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 53: 5100–5103.

    Google Scholar 

  255. Katabuchi, H., van Rees, B., Lambers, A. R., Ronnett, B. M., Blazes, M. S., Leach, F. S., et al. (I 995) Mutations in DNA mismatch repair genes are not responsible for microsatellite instability in most sporadic endometrial carcinomas. Cancer Res. 55: 5556–5560.

    Google Scholar 

  256. Myeroff, L. L., Parsons, R., Kim, S.-J., Hedrick, L., Cho, K. R., Orth, K., et al. (1995) A transforming growth factor (3 receptor type I1 gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res. 55: 5545–5547.

    PubMed  CAS  Google Scholar 

  257. Parc, Y. R., Halling, K. C., Burgart, L. J., McDonnell, S. K., Schaid, D. J., Thibodeau, S. N., et al. (2000) Microsatellite instability and hMLH1/hMSH2 expression in young endometrial carcinoma patients: associations with family history and histopathology. Int. J. Cancer 86: 60–66.

    Article  PubMed  CAS  Google Scholar 

  258. Gurin, C. C., Federici, M. G., Kang, L., and Boyd, J. (1999) Causes and consequences of microsatellite instability in endometrial carcinoma. Cancer Res. 59: 462–466.

    PubMed  CAS  Google Scholar 

  259. Koul, A., Nilbert, M., and Borg, A. (1999) A somatic BRCA2 mutation in RER+ endometrial carcinomas that specifically deletes the amino-terminal transactivation domain. Genes Chromosomes Cancer 24:207–212.

    Google Scholar 

  260. Simpkins, S. B., Bocker, T., Swisher, E. M., Mutch, D. G., Gersell, D. J., Kovatich, A. J., et al. (1999) MLH 1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Human Mol. Genet. 8: 661–666.

    Article  CAS  Google Scholar 

  261. Sood, A. K., Skilling, J. S., and Buller, R. E. (1997) Ovarian cancer genomic instability correlates with p53 frameshift mutations. Cancer Res. 57: 1047–1049.

    PubMed  CAS  Google Scholar 

  262. Ogasawara, S., Maesawa, C., Tamura, G., and Satodate, R. (1995) Frequent microsatellite alterations on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res. 55: 891–894.

    PubMed  CAS  Google Scholar 

  263. Salvucci, M., Lemoine, A., Saffroy, R., Azoulay, D., Lepere, B., Gaillard, S., et al. (1999) Microsatellite instability in European hepatocellular carcinoma. Oncogene 18: 181–187.

    Article  PubMed  CAS  Google Scholar 

  264. Pifarre, A., Rosell, R., Monzo, M., De Anta, J. M., Moreno, I., Sanchez, J. J., et al. (1997) Prognostic value of replication errors on chromosomes 2p and 3p in non-small-cell lung cancer. Br. J. Cancer75: 184–189.

    Google Scholar 

  265. Shridhar, V., Siegfried, J., Hunt, J., del Mar Alonso, M., and Smith, D. I. (1994) Genetic instability of microsatellite sequences in many non-small cell lung carcinomas. Cancer Res. 54: 2084–2087.

    PubMed  CAS  Google Scholar 

  266. Rosell, R., Pifarre, A., Monzo, M., Astudillo, J., Lopez-Cabrerizo, M. P., Calvo, R., et al. (1997) Reduced survival in patients with stage-I non-small-cell lung cancer associated with DNA replication errors. Int. J. Cancer 74: 330–334.

    Article  PubMed  CAS  Google Scholar 

  267. Benachenhou, N., Guiral, S., Gorska-Flipot, I., Labuda, D., and Sinnett, D. (1998) High resolution deletion mapping reveals frequent allelic losses at the DNA mismatch repair loci hMLH1 and hMSH3 in non-small cell lung cancer. Int. J. Cancer 77: 173–180.

    Article  PubMed  CAS  Google Scholar 

  268. Chang, J.-W., Chen, Y.-C., Chen, C.-Y., Chen, J.-T., Chen, S.-K., and Wang, Y.-C. (2000) Correlation of genetic instability with mismatch repair protein expression and p53 mutations in non-small cell lung cancer. Clin. Cancer Res. 6: 1639–1646.

    PubMed  CAS  Google Scholar 

  269. Kim, C. H., Yoo, C.-G., Han, S. K., Shim, Y.-S., and Kim, Y. W. (1998) Genetic instability of microsatellite sequences in non-small cell lung cancers. Lung Cancer 21: 21–25.

    Article  PubMed  CAS  Google Scholar 

  270. Uchida, T., Wada, C., Wang, C., Ishida, H., Egawa, S., Yokoyama, E., et al. (1995) Microsatellite instability in prostate cancer. Oncogene 10: 1019–1022.

    PubMed  CAS  Google Scholar 

  271. Gao, X., Wu, N., Grignon, D., Zacharek, A., Liu, H., Salkowski, A., et al. (1994) High frequency of mutator phenotype in human prostatic adenocarcinoma. Oncogene 9: 2999–3003.

    PubMed  CAS  Google Scholar 

  272. Dahiya, R., Lee, C., McCarville, J., Hu, W., Kaur, G., and Deng, G. (1997) High frequency of genetic instability of microsatellites in human prostatic adenocarcinoma. Int. J. Cancer 72: 762–767.

    Article  PubMed  CAS  Google Scholar 

  273. Egawa, S., Uchida, T., Suyama, K., Wang, C., Ohori, M., Irie, S., et al. (1995) Genomic instability of microsatellite repeats in prostate cancer: relationship to clinicopathological variables. Cancer Res. 55: 2418–2421.

    PubMed  CAS  Google Scholar 

  274. Miet, S. M. D., Neyra, M., Jaques, R., Dubernard, P. M., Revol, A. A. P., and Marcais, C. M. N. (1999) RER+ phenotype in prastate intra-epithelial neoplasia associated with human prostate-carcinoma development. Int. J. Cancer 82: 635–639.

    Article  PubMed  CAS  Google Scholar 

  275. Fuji, H. and Shimada, T. (1989) Isolation and characterization of cDNA clones derived from the divergently transcribed gene in the region upstream from the dihydrofolate reductase gene. J. Biol. Chem. 264: 10057–10064.

    Google Scholar 

  276. Palombo, F., Gallihari, P., lacerino, I., Lettieri, T., Hughes, M., D’Arrigo, A., et al. (1995) GTBP, a 160-kilodalton protein essential for mismatch binding activity in human cells. Science 268: 1912–1914.

    Article  PubMed  CAS  Google Scholar 

  277. Papadopoulos, N., Nicolaides, N. C., Liu, B., Parsons, R., Lengauer, C., Palombo, F., et al. (1995) Mutations of GTBP in genetically unstable cells. Science 268: 1915–1917.

    Article  PubMed  CAS  Google Scholar 

  278. Lipkin, S. M., Wang, V., Jacoby, R., Banerjee-Basu, S., Baxevanis, A. D., Lynch, H. T., et al. (2000) MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nature Genet. 24: 27–35.

    Article  PubMed  CAS  Google Scholar 

  279. Planck, M., Koul, A., Fernebro, E., Borg, A., Kristoffersson, U., Olsson, H., et al. (1999) hMLH1, hMSH2 and hMSH6 mutations in hereditary non-polyposis colorectal cancer families from southern Sweden. Int. J. Cancer. 83: 197–202.

    Google Scholar 

  280. Loukola, A., Vikki, S., Singh, J., Launonen, V., and Aaltonen, L. A. (2000) Germline and somatic mutation analysis of MLH3 in MSI-positive colorectal cancer. Am. J. Pathol. 157: 347–352.

    Article  PubMed  CAS  Google Scholar 

  281. Planck, M., Wenngren, E., Borg, A., Olsson, H., and Nilbert, M. (2000) Somatic frameshift alterations in mononucleotide repeat-containing genes in different tumor types from an HNPCC family with germline MSH2 mutation. Genes Chromosomes Cancer 29: 33–39.

    Article  PubMed  CAS  Google Scholar 

  282. Liu, B., Nicolaides, N. C., Markowitz, S., Willson, J. K. V., Parsons, R. E., Jen, J., et al. (1995) Mismatch repair defects in sporadic colorectal cancers with microsatellite instability. Nature Genet. 9: 48–55.

    Article  PubMed  CAS  Google Scholar 

  283. Moslein, G., Tester, D. J., Lindor, N. M., Honchel, R., Cunningham, J. M., French, A. J., et al. (1996) Microsatellite instability and mutation analysis of hMSH2 and hMLH1 in patients with sporadic, familial and hereditary colorectal cancer. Human Mol. Genet. 5: 1245–1252.

    Article  CAS  Google Scholar 

  284. Coleman, W. B. and Tsongalis, G. J. (1999) The role of genomic instability in human carcinogenesis. Anticancer Res. 19: 4645–4664.

    PubMed  CAS  Google Scholar 

  285. Arzimanoglou, I. I., Gilbert, F., and Barber, H. R. K. (1998) Microsatellite instability in human solid tumors. Cancer 82: 1808–1820.

    Article  PubMed  CAS  Google Scholar 

  286. Lothe, R. A. (1997) Microsatellite instability in human solid tumors. Mol. Med. Today 3: 61–68.

    Article  PubMed  CAS  Google Scholar 

  287. Sclotterer, C. and Tautz, D. (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20: 211–215.

    Article  Google Scholar 

  288. Thomas, D. C., Umar, A., and Kunkel, T. A. (1996) Microsatellite instability and mismatch repair defects in cancer cells. Mutation Res. 350: 201–205.

    Article  PubMed  Google Scholar 

  289. Lovett, S. T. and Feschenko, V. (1996) Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate. Proc. Natl. Acad. Sci. USA 93: 7120–7124.

    Article  PubMed  CAS  Google Scholar 

  290. Kahn, S. M., Klein, M. G., Jiang, W., Xing, W. Q., Xu, D. B., Perucho, M., et al. (1995) Design of a selectable reporter for the detection of mutations in mammalian simple repeat sequences. Carcinogenesis 16: 1223–1228.

    Article  PubMed  CAS  Google Scholar 

  291. Farber, R., Petes, T., Dominska, M., Hudgens, S., and Liskay, R. (1994) Instability of simple repeat sequence repeats in a mammalian cell line. Human Mol. Genet. 3: 253–256.

    Article  CAS  Google Scholar 

  292. Boyer, J. C. and Farber, R. A. (1998) Mutation rate of a microsatellite sequence in normal human fibroblasts. Cancer Res. 58: 3946–3949.

    PubMed  CAS  Google Scholar 

  293. Hanford, M. G., Rushton, B. C., Gowen, L. C., and Farber, R. A. (1998) Microsatellite mutation rates in cancer cell lines deficient or proficient in mismatch repair. Oncogene 16: 2389–2393.

    Article  PubMed  CAS  Google Scholar 

  294. Mironov, N., Jansen, L. A. M., Zhu, W.-B., Aguelon, A.-M., Reguer, G., and Yamasaki, H. (1999) A novel sensitive method to detect frameshift mutations in exonic repeat sequences of cancer-related genes. Carcinogenesis 20: 2189–2192.

    Article  PubMed  CAS  Google Scholar 

  295. Umar, A., Koi, M., Risinger, J. I., Glaab, W. E., Tindall, K. R., Kolodner, R. D., et al. (1997) Correction of hypermutability, Nmethyl-N’ -nitro-N-nitrosoguanidine resistance, and defective mismatch repair by introducing chromosome 2 into human tumor cells with mutations in MSH2 and MSH6. Cancer Res. 57: 3949–3955.

    PubMed  CAS  Google Scholar 

  296. da Costa, L. T., Lui, B., El-Deiry, W. S., Hamilton, S. R., Kinzler, K. W., Vogelstein, B., et al. (1995) Polymerase S variants in RER colorectal tumors. Nature Genet. 9: 10–11.

    Article  PubMed  CAS  Google Scholar 

  297. Ku, J.-L., Yoon, K.-A., Kim, D.-Y., and Park, J.-G. (1999) Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines. Eur. J. Cancer 35: 1724–1729.

    Article  PubMed  CAS  Google Scholar 

  298. Verma, L., Kane, M. F., Brassett, C., Schmeits, J., Evans, G.R., Kolodner, R. D., et al. (1999) mononucleotide microsatellite instability and germline MSH6 mutation analysis in early onset colorectal cancer. J. Med. Genet. 36: 678–682.

    Google Scholar 

  299. Parc, Y. R., Hailing, K. C., Wang, L., Christensen, E. R., Cunningham, J. M., French, A. J., et al. (2000) hMSH6 alterations in patients with microsatellite instability-low colorectal cancer. Cancer Res. 60: 2225–2231.

    Google Scholar 

  300. Koi, M., Umar, A., Chauhan, D. P., Cherian, S. P., Carethers, J. M., Kunkel, T. A., et al. (1994) Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N’-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLHI mutation. Cancer Res. 54: 4308–4312.

    Google Scholar 

  301. Umar, A., Risinger, J. I., Glaab, W. E., Tindall, K. R., Barrett, J. C., and Kunkel, T. A. (1998) Functional overlap in mismatch repair by human MSH3 and MSH6. Genetics 148: 1637–1646.

    PubMed  CAS  Google Scholar 

  302. Risinger, J. I., Umar, A., Barrett, J. C., Kunkel, T. A. (1995) A hPMS2 mutant cell line is defective in strand-specific mismatch repair. J. Biol. Chem. 270: 18183–18186.

    Article  PubMed  CAS  Google Scholar 

  303. Risinger, J. I., Umar, A., Glaab, W. E., Tindall, K. R., Kunkel, T. A., arid Barrett, J. C. (1998) Single gene complementation of the hPMS2 defect in HEC-1-A endometrial carcinoma cells. Cancer Res. 58: 2978–2981.

    PubMed  CAS  Google Scholar 

  304. Letticri, T., Marra, G., Aquilina, G., Gignami, M., Crompton, N. E. A., Palombo, F., et al. (1999) Effect of hMSH6 cDNA expression on the phenotype of mismatch repair-deficit colon cancer line HCT15. Carcinogenesis 20: 373–382.

    Article  Google Scholar 

  305. Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1997) DNA methylation and genetic instability in colorectal cancer cells. Proc. Natl. Acad. Sci. USA 94: 2545–2550.

    Article  PubMed  CAS  Google Scholar 

  306. Ahuja, N., Mohan, A. L., Li, Q., Stolker, J. M., Herman, J. G., Hamilton, S. R., et al. (1997) Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res. 57: 3370–3374.

    PubMed  CAS  Google Scholar 

  307. Kane, M. F., Loda, M., Gaida, G. M., Lipman, J., Mishra, R., Goldman, H., et al. (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57: 808–811.

    PubMed  CAS  Google Scholar 

  308. Cunningham, J. M., Christensen, E. R., Tester, D. J., Kim, C.-Y., Roche, P. C., Burgart, L. J., et al. (1998) Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 58: 3455–3460.

    PubMed  CAS  Google Scholar 

  309. Herman, J. G., Umar, A., Polyak, K., Graff, J. R., Ahuja, N., Issa, J.-P. J., et al. (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA 95: 6870–6875.

    Article  PubMed  CAS  Google Scholar 

  310. Deng, G., Chen, A., Hong, J., Chae, H. S., and Kim, Y. S. (1999) Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res. 59: 2029–2033.

    PubMed  CAS  Google Scholar 

  311. Wheeler, J. M. D., Loukola, A., Aaltonen, L. A., McC Mortensen, N. J., and Bodmer, W. F. (2000) The role of hypermethylation of the hMLH1 promoter region in HNPCC versus MSI+ sporadic colorectal cancers. J. Med. Genet. 37: 588–592.

    Article  PubMed  CAS  Google Scholar 

  312. Kuismanen, S., Holmberg, M. T., Salovaara, R., Schweizer, P., Aaltonen, L. A., de la Chapelle, A., et al. (1999) Epigenetic phenotypes distinguish microsatellite-stable and -unstable colorectal cancers. Proc. Natl. Acad. Sci. USA 96: 12661–12666.

    Article  PubMed  CAS  Google Scholar 

  313. Kang, G. H., Shim, Y. H., and Ro, J. Y. (1999) Correlation of methylation of the hMLH1 promoter with lack of expression of hMLH1 in sporadic gastric carcinomas with replication error. Lab. Invest. 79: 903–909.

    PubMed  CAS  Google Scholar 

  314. Bevilacqua, R. A. U. and Simpson, A. J. G. (2000) Methylation of the hMLH 1 promotor but no hMLH1 mutations in sporadic gastric carcinomas with high level microsatellite instability. Int. J. Cancer 87: 200–203.

    Article  PubMed  CAS  Google Scholar 

  315. Endoh, Y., Tamura, G., Ajioka, Y., Watanabe, H., and Motoyama, T. (2000) Frequent hypermethylation of the hMLHI gene promoter in differentiated-type tumors of the stomach with the gastric foveolar phenotype. Am. J Pathol. 157: 717–722.

    Article  PubMed  CAS  Google Scholar 

  316. Wu, M.-S., Lee, C.-W., Shun, C.-T., Wang, H.-P., Lee, W.-J., Chang, M.-C., et al. (2000) Distinct clinicopathologic and genetic profiles in sporadic gastric cancer with different mutator phenotypes. Genes Chromosomes Cancer 27: 403–411.

    Article  PubMed  CAS  Google Scholar 

  317. Leung, S. Y., Yuen, S. T., Chung, L. P., Chu, K. M., Chan, A. S. Y., and Ho, J. C. I. (1999) hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res. 59: 159–164.

    Google Scholar 

  318. Fleisher, A. S., Esteller, M., Wang, S., Tamura, G., Suzuki, H., Yin, J., et al. (1999) Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res. 59: 10901095.

    Google Scholar 

  319. Honchel, R., Hailing, K. C., and Thibodeau, S. N. (1995) Genomic instability in neoplasia. Semin. Cell Biol. 6: 45–52.

    Article  PubMed  CAS  Google Scholar 

  320. Peltomaki, P. (1997) DNA mismatch repair gene mutations man cancer. Environ. Health Perspect. 105: 775–780.

    PubMed  CAS  Google Scholar 

  321. Parsons, R., Myeroff, L. L., Liu, B., Willson, J. K. V., Markowitz, S. D., Kinzler, K. W., et al. (1995) Microsatellite instability and mutations of the transforming growth factor ß type II receptor gene in colorectal cancer. Cancer Res. 55: 5548–5550.

    PubMed  CAS  Google Scholar 

  322. Parsons, R., Li, G.-M., Longley, M. J., Fang, W., Papadopoulos, N., Jen, J., et al. (1993) Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75: 1227–1236.

    Article  PubMed  CAS  Google Scholar 

  323. Mao, L., Lee, D. J., Tockman, M. S., Erozan, Y. S., Askin, F., and Sidransky, D. (1994) Microsatellite alterations as clonal markers for the detection of human cancer. Proc. Natl. Acad. Sci. USA 91: 9871–9875.

    Article  PubMed  CAS  Google Scholar 

  324. Risinger, J. I., Umar, A., Boyd, J., Berchuck, A., Kunkel, T. A., and Barrett, J. C. (1996) Mutation of MSH3 in endometrial cancer and evidence for its functional role in heteroduplex repair. Nature Genet. 14: 102–105.

    Article  PubMed  CAS  Google Scholar 

  325. Oki, E., Oda, S., Maehara, Y., and Sugimachi, K. (1999) Mutated gene-specific phenotypes of dinucleotide repeat instability in human colorectal carcinoma cell lines deficient in DNA mismatch repair. Oncogene 18: 2143–2147.

    Article  PubMed  CAS  Google Scholar 

  326. Bocker, T., Diermann, J., Friedl, W., Gebert, J., Holinski-Feder, E., Kamer-Hanusch, J., et al. (1997) Microsatellite instability analysis: a multicenter study for reliability and quality control. Cancer Res. 57: 4739–4743.

    PubMed  CAS  Google Scholar 

  327. Boland, C. R., Thibodeau, S. N., Hamilton, S. R., Sidransky, D., Eshleman, J. R., Burt, R. W., et al. (1998) A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58: 5248–5257.

    PubMed  CAS  Google Scholar 

  328. Siah, S. P., Quinn, D. M., Bennett, G. D., Casey, G., Flower, R. L., Suthers, G., et al. (2000) Microsatellite instability markers in breast cancer: a review and study showing MSI was not detected at BAT25 and BAT26 microsatellite markers in early-onset breast cancer. Breast Cancer Res. Treat. 60: 135–142.

    Article  PubMed  CAS  Google Scholar 

  329. Lin, H., Wang, X.-F., Ng-Eaton, E., Weinberg, R. A., and Lodish, H. F. (1992) Expression cloning of the TGF-(3 type II receptor, a functional transmembrane serine/threonine kinase. Cell 68: 775–785.

    Article  PubMed  CAS  Google Scholar 

  330. Markowitz, S., Wang, J., Myeroff, L., Parsons, R., Sun, L., Lutterbaugh, J., et al. (1995) Inactivation of the type II TGF-13 receptor in colon cancer cells with microsatellite instability. Science 268: 1336–1338.

    Article  PubMed  CAS  Google Scholar 

  331. Yamamoto, H., Sawai, H., Weber, T. K., Rodriguez-Bigas, and Perucho, M. (1998) Somatic frameshift mutations in DNA mismatch repair and proapoptosis genes in hereditary nonpolyposis colorectal cancer. Cancer Res. 58: 997–1003.

    CAS  Google Scholar 

  332. Duval, A., Gayet, J., Zhou, X.-P., Iacopetta, B., Thomas, G., and Hamelin, R. (1999) Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res. 59: 4213–4215.

    PubMed  CAS  Google Scholar 

  333. Semba, S., Ouyang, H., Han, S. Y., Kato, Y., and Horii, A. (2000) Analysis of candidate target genes for mutation in microsatellite instability-positive cancers of the colorectum, stomach, and endometrium. Int. J. Oncol. 16: 731–737.

    PubMed  CAS  Google Scholar 

  334. Percesepe, A., Pedroni, M., Sala, E., Menigatti, M., Borghi, F., Losi, L., et al. (2000) Genomic instability and target gene mutations in colon cancers with different degrees of allelic shifts. Genes Chromosomes Cancer 27: 424–429.

    Article  PubMed  CAS  Google Scholar 

  335. Oliveria, C., Seruca, R., Seixas, M., and Sobrinho-Simoes, M. (1998) The clinicopathologic features of gastric carcinomas with microsatellite instability may be mediated by mutations in different “target genes”: A study of the TGF(3RII, IGFIIR, and BAX genes. Am. J. Pathol. 153: 1211–1219.

    Article  Google Scholar 

  336. Wu, M.-S., Lee, C.-W., Shun, C.-T., Wang, H.-P., Lee, W.-J., Sheu, J.-C., et al. (1998) Clinicopathological significance of altered loci of replication error and microsatellite instability-associated mutations in gastric cancer. Cancer Res. 58: 1494–1497.

    PubMed  CAS  Google Scholar 

  337. Wang, Y., Shinmura, K., Guo, R. J., Isogaki, J., Wang, D. Y., Kino, I., et al. (1998) Mutational analyses of multiple target genes in histologically heterogenous gastric cancer with microsatellite instability. Japn. J. Cancer Res. 89: 1284–1291.

    Article  CAS  Google Scholar 

  338. Kim, J. J., Back, M. J., Kim, L., Kim, N. G., Lee, Y. C., Song, S. Y., et al. (1999) Accumulated frameshift mutations at coding nucleotide repeats during the progression of gastric carcinoma with microsatellite instability. Lab. Invest. 79: 1113–1120.

    PubMed  CAS  Google Scholar 

  339. Shinmura, K., Tani, M., Isogaki, J., Wang, Y., Sugimura, H., and Yokota, J. (1998) RER phenotype and its associated mutations in familial gastric cancer. Carcinogenesis 19: 247–251.

    Article  PubMed  CAS  Google Scholar 

  340. Duval, A., Iacopetta, B., Ranzani, G. N., Lothe, R. A., Thomas, G., and Hamelin, R. (1999) Variable mutation frequencies in coding repeats of TCF-4 and other target genes in colon, gastric, and endometrial carcinoma showing microsatellite instability. Oncogene 18: 6806–6809.

    Article  PubMed  CAS  Google Scholar 

  341. Guo, R.-J., Wang, Y., Kaneko, E., Wang, D.-Y., Arai, H., Hanai, H., et al. (1998) Analyses of mutation and loss of heterozygosity of coding sequences of the entire transforming growth factor beta type II receptor gene in sporadic human gastric cancer. Carcinogenesis 19: 1539–1544.

    Article  PubMed  CAS  Google Scholar 

  342. Inoue, K., Kohno, T., Takakura, S., Hayashi, Y., Mizoguchi, H., and Yokota, J. (2000) Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines. Leukemia Res. 24: 255–262.

    Article  CAS  Google Scholar 

  343. Leung, S. Y., Chan, T. L., Chung, L. P., Chan, A. S. Y., Fan, Y. W., Hung, K. N., et al. (1998) Microsatellite instability and mutation of DNA mismatch repair genes in gliomas. Am. J. Pathol. 153: 1181–1188.

    Article  PubMed  CAS  Google Scholar 

  344. Massague, J. (1990) The transforming growth factor-beta family. Ann. Rev. Cell Biol. 6: 597–641.

    Article  PubMed  CAS  Google Scholar 

  345. Massague, J., Blain, S. W., and Lo, R. S. (2000) TGF13 signaling in growth control, cancer, and heritable disorders. Cell 103: 295–309.

    Article  PubMed  CAS  Google Scholar 

  346. Moses, H., Yang, E., and Pietenpol, J. (1990) TGF-(3 stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63: 245–247.

    Article  PubMed  CAS  Google Scholar 

  347. Wang, J., Sun, L., Myeroff, L., Wang, X., Gentry, L. E., Yang, J., et al. (1995) Demonstration that mutation of the type II transforming growth factor (3 receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J. Biol. Chem. 270: 22044–22049.

    Article  PubMed  CAS  Google Scholar 

  348. Grady, W. M., Rajput, A., Myeroff, L., Liu, D. F., Kwon, K., Willis, J., et al. (1998) Mutation of the type II transforming growth factor-13 receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res. 58: 3101–3104.

    PubMed  CAS  Google Scholar 

  349. Huang, J., Papadopoulos, N., McKinley, A., Farrington, S. M., Curtis, L. J., Wyllie, A. H., et al. (1996)APCmutations in colorectal tumors with mismatch repair deficiency. Proc. Natl. Acad. Sci. USA 93: 9049–9054.

    Google Scholar 

  350. Yamamoto, H., Sawai, H., and Perucho, M. (1997) Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res. 57: 4420–4426.

    PubMed  CAS  Google Scholar 

  351. Malkhosyan, S., Rampino, N., Yamamoto, H., and Perucho, M. (1996) Frameshift mutator mutations. Nature 382: 499–500.

    Article  PubMed  CAS  Google Scholar 

  352. Yamamoto, H., Itoh, F., Fukushima, H., Adachi, Y., Itoh, H., Hinoda, Y., et al. (1999) Frequent Bax frameshift mutations in gastric cancer with high but not low microsatellite instability. J. Exp. Clin. Cancer Res. 18: 103–106.

    PubMed  Google Scholar 

  353. Yoshitaka, T., Matsubara, N., Ikeda, M., Tanino, M., Hanafusa, H., Tanaka, N., et al. (1996) Mutations of E2F-4 trinucleotide repeats in colorectal cancer with microsatellite instability. Biochem. Biophys. Res. Commun. 227: 553–557.

    Article  PubMed  CAS  Google Scholar 

  354. Souza, R. F., Yin, J., Smolinski, K. N., Zou, T.-T., Wang, S., Shi, Y.-Q., et al. (1997) Frequent mutation of the E2F-4 cell cycle gene in primary human gastrointestinal tumors. Cancer Res. 57: 2350–2353.

    PubMed  CAS  Google Scholar 

  355. Calin, G., Herlea, V., Barbanti-Brodano, G., andNegrini, M. (1998) The coding region of the Bloom syndrome BLM gene and of the CBL proto-oncogene is mutated in genetically unstable sporadic gastrointestinal tumors. Cancer Res. 58: 3777–3781.

    PubMed  CAS  Google Scholar 

  356. Capozzi, E., Della Puppa, L., Fornasarig, M., Pedroni, M., Boiocchi, M., and Viel, A. (1999) Evaluation of the replication error phenotype in relation to molecular and clinicopathological features in hereditary and early onset colorectal cancer. Eur. J. Cancer 35: 289–295.

    Article  PubMed  CAS  Google Scholar 

  357. Schneider, A., Borgnat, S., Lang, H., Regine, O., Lindner, V., Kassem, M., et al. (2000) Evaluation of microsatellite analysis in urine sediment for diagnosis of bladder cancer. Cancer Res. 60: 4617–4622.

    PubMed  CAS  Google Scholar 

  358. Gonzalez-Zulueta, M., Ruppert, J. M., Tokino, K., Tsai, Y. C., Spruck, C. H., Miyao, N., et al. (1993) Microsatellite instability in bladder cancer. Cancer Res. 53: 5620–5623.

    PubMed  CAS  Google Scholar 

  359. Orlow, I., Lianes, P., Lacombe, L., Dalbagni, G., Reuter, V. E., and Cordon-Cardo, C. (1994) Chromosome 9 allelic losses and microsatellite alterations in human bladder tumors. Cancer Res. 54: 2848–2851.

    PubMed  CAS  Google Scholar 

  360. Li, M., Zhang, Z.-F., Reuter, V. E., and Cordon-Cardo, C. (1996) Chromosome 3 allelic losses and microsatellite alterations in transitional cell carcinoma of the urinary bladder. Am. J. Pathol. 149: 229–235.

    PubMed  CAS  Google Scholar 

  361. Christensen, M., Jensen, M. A., Wolf, H., and Orntoft, T. F. (1998) Pronounced microsatellite instability in transitional cell carcinomas from young patients with bladder cancer. Int. J. Cancer 79: 396–401.

    Article  PubMed  CAS  Google Scholar 

  362. Bonnal, C., Ravery, V., Toublanc, M., Bertrand, G., Boccon-Gibod, L., Henin, D., et al. (2000) Absence of microsatellite instability in transitional cell carcinoma of the bladder. Urology 55: 287–291.

    Article  PubMed  CAS  Google Scholar 

  363. Schmitt, F. C., Soares, R., Gobbi, H., Milanezzi, F., Santos-Silva, F., Cirres, L., et al. (1999) Microsatellite instability in medullary breast carcinomas. Int. J. Cancer 82: 644–647.

    Article  PubMed  CAS  Google Scholar 

  364. Toyama, T., Iwase, H., Iwata, H., Hara, Y., Omoto, Y., Suchi, M., et al. (1996) Microsatellite instability in in situ and invasive sporadic breast cancers of Japanese women. Cancer Lett. 108: 205–209.

    Article  PubMed  CAS  Google Scholar 

  365. Jonsson, M., Johannsson, O., and Borg, A. (1995) Infrequent occurrence of microsatellite instability in sporadic and familial breast cancer. Eur. J Cancer 31A: 2330–2334.

    Article  Google Scholar 

  366. Han, H.-J., Yanagisawa, A., Kato, Y., Park, J.-G., and Nakamura, Y. (1993) Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer. Cancer Res. 53: 5087–5089.

    PubMed  CAS  Google Scholar 

  367. Yee, C. J., Roodi, N., Verrier, C. S., and Parl, F. F. (1994) Microsatellite instability and loss of heterozygosity in breast cancer. Cancer Res. 54: 1641–1644.

    PubMed  CAS  Google Scholar 

  368. Shaw, J. A., Walsh, T., Chappell, S. A., Carey, N., Johnson, K., and Walker, R. A. (1996) Microsatellite instability in early sporadic breast cancer. Br. J. Cancer 73: 1393–1397.

    Article  PubMed  CAS  Google Scholar 

  369. Wooster, R., Cleton-Jansen, A.-M., Collins, N., Mangion, J., Cornelis, R. S., Cooper, C. S., et al. (1994) Instability of short tandem repeats (microsatellites) in human cancers. Nature Genet. 6: 152–156.

    Article  PubMed  CAS  Google Scholar 

  370. Minobe, K., Bando, K., Fukino, K., Soma, S., Kasumi, F., Sakamoto, G., et al. (1999) Somatic mutation of the PTEN/MMAC1 gene in breast cancers with microsatellite instability. Cancer Lett. 144: 9–16.

    Article  PubMed  CAS  Google Scholar 

  371. Karnik, P., Plummer, S., Myles, J., Tubbs, R., Crowe, J., and Williams, B. R. G. (1995) Microsatellite instability at a single locus (D11S988) on chromosome 11p15.5 as a late event in mammary tumorigenesis. Human Mol. Genet. 4: 1889–1894.

    Article  CAS  Google Scholar 

  372. Anbazhagan, R., Fujii, H., and Gabrielson, E. (1999) Microsatellite instablity is uncommon in breast cancer. Clin. Cancer Res. 5: 839–844.

    PubMed  CAS  Google Scholar 

  373. Benachenhou, N., Guiral, S., Gorska-Flipot, I., Labuda, D., and Sinnett, D. (1999) Frequent loss of heterozygosity at the DNA mismatch-repair loci hMLH1 and hMSH3 in sporadic breast cancer. Br. J. Cancer 79: 1012–1017.

    Article  PubMed  CAS  Google Scholar 

  374. Wheeler, J. M. D., Beck, N. E., Kim, H. C., Tomlinson, 1. P. M., Mortensen, N. J. M., and Bodmer, W.F. (1999) Mechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: The predominant role of hMLH1. Proc. Natl. Acad. Sci. USA 96: 10296–10301.

    Article  PubMed  CAS  Google Scholar 

  375. Watatani, M., Yoshida, T., Kuroda, K., Ieda, S., and Yasutomi, M. (1996) Allelic loss of chromosome 17p, mutation of the p53 gene, and microsatellite instability in right-and left-sided colorectal cancer. Cancer 77: 1688–1693.

    PubMed  CAS  Google Scholar 

  376. Ilyas, M., Tomlinson, I. P. M., Novelli, M. R., Hanby, A., Bodmer, W. F., and Talbot, I. C. (1996) Clinico-pathological features and p53 expression in left-sided sporadic colorectal cancers with and without microsatellite instability. J. Pathol. 179: 370–375.

    Article  PubMed  CAS  Google Scholar 

  377. Risio, M., Reato, G., di Celle, P. F., Fizzotti, M., Rossini, F. P., and Foa, R. (1996) Microsatellite instability is associated with the histological features of the tumor in nonfamilial colorectal cancer. Cancer Res. 56: 5470–5474.

    PubMed  CAS  Google Scholar 

  378. Orimo, H., Ikejima, M., Nakajima, E., Emi, M., and Shimada, T. (1998) A novel missense mutation and frameshift mutations in the type It receptor of transforming growth factor-(3 gene in sporadic colon cancer with microsatellite instability. Mutation Res. 382: 115–120.

    Article  PubMed  CAS  Google Scholar 

  379. Iino, H., Simms, L., Young, J., Arnold, J., Winship, I. M., Webb, S. I., et al. (2000) DNA microsatellite instability and mismatch repair protein loss in adenomas presenting in hereditary non-polyposis colorectal cancer. Gut 47: 37–42.

    Article  PubMed  CAS  Google Scholar 

  380. Samowitz, W. S. and Slattery, M. L. (1997) Microsatellite instability in colorectal adenomas. Gastroenterology I12: 1515–1519.

    Article  Google Scholar 

  381. Caduff, R. F., Johnston, C. M., Svoboda-Newman, S. M., Poy, E. L., Merajver, S. D., and Frank, T. S. (1996) Clinical and pathological significance of microsatellite instability in sporadic endometrial carcinoma. Am. J. Pathol. 148: 1671–1678.

    PubMed  CAS  Google Scholar 

  382. Mironov, N. M., Aguelon, A.-M., Hollams, E., Lozano, J.-C., and Yamasaki, H. (1995) Microsatellite alterations in human and rat esophageal tumors at selective loci. Mol. Carcinogenesis 13: 1–5.

    Article  CAS  Google Scholar 

  383. Meltzer, S. J., Yin, J., Manin, B., Rhyu, M.-G., Cottrell, J., Hudson, E., et al. (1994) Microsatellite instability occurs frequently and in both diploid and aneuploid cell populations of Barrett’s-associated esophageal adenocarcinomas. Cancer Res. 54: 3379–3382.

    PubMed  CAS  Google Scholar 

  384. Kagawa, Y., Yoshida, K., Hirai, T., Toge, T., Yokozaki, H., Yasui, W., et al. (2000) Microsatellite instability in squamous cell carcinomas and dysplasias of the esophagus. Anticancer Res. 20: 213–217.

    PubMed  CAS  Google Scholar 

  385. Seruca, R., Santos, N. R., David, L., Constancia, M., Barroca, H., Carneiro, F., et al. (1995) Sporadic gastric carcinomas with microsatellite instability display a particular clinicopathologic profile. Int. J. Cancer 64: 32–36.

    Article  PubMed  CAS  Google Scholar 

  386. Hailing, K. C., Harper, J., Moskaluk, C. A., Thibodeau, S. N., Petroni, G. R., Yustein, A. S., et al. (1999) Origin of microsatellite instability in gastric cancer. Am. J. Pathol. 155: 205–211.

    Article  Google Scholar 

  387. Rhyu, M.-G., Park, W.-S., and Meltzer, S. J. (1994) Microsatellite instability occurs frequently in human gastric carcinoma. Oncogene 9: 29–32.

    PubMed  CAS  Google Scholar 

  388. Wu, M.-S., Sheu, J.-C., Shun, C.-T., Lee, W.-J., Wang, J.-T., Wang, T.-H., et al. (1997) Infrequent hMSH2 mutation in sporadic gastric adenocarcinoma with microsatellite instability. Cancer Lett. 112: 161–166.

    Article  PubMed  CAS  Google Scholar 

  389. Dos Santos, N. R., Seruca, R., Constancia, M., Seixas, M., and Sobrinho-Simoes, M. (1996) Microsatellite instability at multiple loci in gastric carcinoma: clinicopathologic implications and prognosis. Gastroenterology 110: 38–44.

    Article  PubMed  Google Scholar 

  390. Semba, S., Yokozaki, H., Yamamoto, S., Yasui, W., and Tahara, E. (1996) Microsatellite instability in precancerous lesions and adenocarcinomas of the stomach. Cancer 77: 1620–1627.

    PubMed  CAS  Google Scholar 

  391. Kim, H. S., Woo, D. K., Bae, S. I., Kim, Y. I., and Kim, W. H. (2000) Microsatellite instability in the adenoma-carcinoma sequence of the stomach. Lab. Invest. 80: 57–64.

    Article  PubMed  CAS  Google Scholar 

  392. Suzuki, H., Itoh, F., Yoyota, M., Kikuchi, T., Kakiuchi, H., H inoda, Y., et al. (1999) Distinct methylation pattern and microsatellite instability in sporadic gastric cancer. Int. J. Cancer 83: 309–313.

    Article  PubMed  CAS  Google Scholar 

  393. Chung, Y.-J., Song, J.-M., Lee, J.-Y., Jung, Y.-T., Seo, E.-J., Choi, S.-W., et al. (1996) Microsatellite instability-associated mutations associate preferentially with the intestinal type of primary gastric carcinomas in a high-risk population. Cancer Res. 56: 4662–4665.

    PubMed  CAS  Google Scholar 

  394. Chong, J.-M., Fukayama, M., Hayashi, Y., Takizawa, T., Koike, M., Konishi, M., et al. (1994) Microsatellite instability in the progression of gastric carcinoma. Cancer Res. 54: 45954597.

    Google Scholar 

  395. Mironov, N. M., Aguelon, M. A.-M., Potapova, G. 1., Omori, Y., Gorbunov, O. V., Klimenkov, A.A., et al. (1994) Alterations of (CA)„ DNA repeats and tumor suppressor genes in human gastric cancer. Cancer Res. 54: 41–44.

    PubMed  CAS  Google Scholar 

  396. Tamura, G., Sakata, K., Maesawa, C., Suzuki, Y., Terashima, M., Satoh, K., et al. (1995) Microsatellite alterations in adenoma and differentiated adenocarcinoma of the stomach. Cancer Res. 55: 1933–1936.

    PubMed  CAS  Google Scholar 

  397. Shinmura, K., Sugimura, H., Naito, Y., Shields, P. G., and Kino, I. (1995) Frequent co-occurrence of mutator phenotype in synchronous, independent multiple cancers of the stomach. Carcinogenesis 16: 2989–2993.

    Article  PubMed  CAS  Google Scholar 

  398. Shiao, Y.-H., Bovo, D., Guido, M., Capella, C., Cassaro, M., Busatto, G., et al. (1999) Microsatellite instability and/or loss of heterozygosity in young gastric cancer patients in Italy. Int. J. Cancer 82: 59–62.

    Article  PubMed  CAS  Google Scholar 

  399. Izumoto, S., Arita, N., Ohnishi, T., Hiraga, S., Taki, T., Tornita, N., et al. (1997) Microsatellite instability and mutated type II transforming growth factor-ß receptor gene in gliomas. Cancer Lett. 112: 251–256.

    Article  PubMed  CAS  Google Scholar 

  400. Dams, E., Van de Kelft, E. J. Z., Martin, J.-J., Verlooy, J., and Willems, P. J. (1995) Instability of microsatellites in human gliomas. Cancer Res. 55: 1547–1549.

    PubMed  CAS  Google Scholar 

  401. Kanamori, M., Kon, H., Nobukuni, T., Nomura, S., Sugano, K., Mashiyama, S., et al. (2000) Microsatellite instability and the PTEN 1 gene mutation in a subset of early onset gliomas carrying germiline mutation or promoter methylation of the hMLHI gene. Oncogene 19: 1564–1571.

    Article  PubMed  CAS  Google Scholar 

  402. Amariglio, N., Friedman, E., Mor, O., Stiebel, H., Phelan, C., Collins, P., et al. (1995) Analysis of microsatellite repeats in pediatric brain tumors. Cancer Genet. Cytogenet. 84: 56–59.

    Article  PubMed  CAS  Google Scholar 

  403. El-Naggar, A.K., Hurr, K., Huff, V., Clayman, G. L., Luna, M. A., and Batsakis, J. G. (1996) Microsatellite instability in preinvasive and invasive head and neck squamous carcinoma. Am. J. Pathol. 148: 2067–2072.

    PubMed  CAS  Google Scholar 

  404. Mark, Z., Toren, A., Amariglio, N., Schiby, G., Brok-Simoni, F., and Rechavi, G. (1998) Instability of dinucleotide repeats in Hodgkin’s disease. Am. J. Hematol. 57: 148–152.

    Article  PubMed  CAS  Google Scholar 

  405. Ben-Yehuda, D., Krichevsky, S., Caspi, O., Rund, D., Polliack, A., Abeliovich, D., et al. (1996) Microsatellite instability and p53 mutations in therapy-related leukemia suggest mutator phenotype. Blood 88: 4296–4303.

    PubMed  CAS  Google Scholar 

  406. Zhu, Y.-M., Das-Gupta, E. P., and Russell, N. H. (1999) Microsatellite instability and p53 mutations are associated with abnormal expression of the MSH2 gene in adult acute leukemia. Blood 94: 733–740.

    PubMed  CAS  Google Scholar 

  407. Wada, C., Shionoya, S., Fujino, Y., Tokuhiro, H., Akahoshi, T., Uchida, T., et al. (1994) Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogenous leukemia. Blood 83: 3449–3456.

    PubMed  CAS  Google Scholar 

  408. Rimsza, L. M., Kopecky, K. J., Ruschulte, J., Chen, I. M., Slovak, M. L., Karanes, C., et al. (2000) Microsatellite instability is not a defining genetic feature of acute myeloid leukemogenesis in adults: results of a retrospective study of 132 patients and review of the literature. Leukemia 14: 1044–1051.

    Article  PubMed  CAS  Google Scholar 

  409. Volpe, G., Gamberi, B., Pastore, C., Roetto, A., Pautasso, M., Parvis, G., et al. (1996) Analysis of microsatellite instability in chronic lymphoproliferative disorders. Ann. Hematol. 72: 67–71.

    Article  PubMed  CAS  Google Scholar 

  410. MacDonald, G. A., Greenson, J. K., Saito, K., Cherian, S. P., Appelman, H. D., and Boland, C.R. (1998) Microsatellite instability and loss of heterozygosity at DNA mismatch repair gene loci occurs during hepatic carcinogenesis. Hepatology 28: 90–97.

    Article  PubMed  CAS  Google Scholar 

  411. Yamamoto, H., Itoh, F., Fukushima, H., Kaneto, H., Sasaki, S., Ohmura, T., et al. (2000) Infrequent widespread microsatellite instability in hepatocellular carcinomas. Int. J. Oncol. 16: 543–547.

    PubMed  CAS  Google Scholar 

  412. Caligo, M. A., Ghimenti, C., Marchetti, A., Lonobile, A., Buttitta, F., Pellegrini, S., et al. (1998) Microsatellite alterations and p53, TGF(3RII, IGFIIR and BAX mutations in sporadic non-small-cell lung cancer. Int. J. Cancer 78: 606–609.

    Article  PubMed  CAS  Google Scholar 

  413. Kim, W. S., Park, C., Hong, S. K., Park, B. K., Kim, H. S., and Park, K. (2000) Microsatellite instability (MSI) in non-small cell lung cancer (NSCLC) is highly associated with transforming growth factor-(3 type II receptor (TGF-(3Ríí) frameshift mutation. Anticancer Res. 20: 1499–1502.

    PubMed  CAS  Google Scholar 

  414. Miozzo, M., Sozzi, G., Musso, K., Pilotti, S., Incarbone, M., Pastorino, U., et al. (1996) Microsatellite alterations in bronchial and sputum specimens of lung cancer patients. Cancer Res. 56: 2285–2288.

    PubMed  CAS  Google Scholar 

  415. Fong, K. M., Zimmerman, P. V., and Smith, P. J. (1995) Microsatellite instability and other molecular abnormalities in non-small cell lung cancer. Cancer Res. 55: 28–30.

    PubMed  CAS  Google Scholar 

  416. Zhou, X., Kemp, B. L., Khuri, F. R., Liu, D., Lee, J. J., Wu, W., et al. (2000) Prognostic implication of microsatellite alteration profiles in early stage non-small cell lung cancer. Clin. Cancer Res. 6: 559–565.

    PubMed  CAS  Google Scholar 

  417. Gotoh, K., Yatabe, Y., Sugiura, T., Takagi, K., Ogawa, M., Takahashi, T., et al. (1999) Frameshift mutations in TGF(3RII, IGFIIR, BAX, hMSH3 and hMSH6 are absent in lung cancers. Carcinogenesis 20: 499–502.

    Article  PubMed  CAS  Google Scholar 

  418. Merlo, A., Mabry, M., Gabrielson, E., Vollmer, R., Baylin, S. B., and Sidransky, D. (1994) Frequent microsatellite instability in primary small cell lung cancer. Cancer Res. 54: 2098–2101.

    PubMed  CAS  Google Scholar 

  419. Bedi, G. C., Westra, W. H., Farzadegan, H., Pitha, P. M., and Sidransky, D. (1995) Microsatellite instability in primary neoplasms from HIV+ patients. Nature Med. 1: 65–68.

    Article  PubMed  CAS  Google Scholar 

  420. Gamberi, B., Gaidano, G., Parsa, N., Carbone, A., Roncella, S., Knowles, D. M., et al. (1997) Microsatellite instability is rare in B-cell non-Hodgkin’s lymphomas. Blood 89: 975–979.

    PubMed  CAS  Google Scholar 

  421. Martinsson, T., Sjoberg, R.-M., Hedborg, F., and Kogner, P. (1995) Deletion of chromosome 1p loci and microsatellite instability in neuroblastomas analyzed with short-tandem repeat polymorphisms. Cancer Res. 55: 5681–5686.

    PubMed  CAS  Google Scholar 

  422. Hogarty, M. D., White, P. S., Sulman, E. P., and Brodeur, G. M. (1998) Mononucleotide repeat instability is infrequent in neuro-blastoma. Cancer Genet. Cytogenet. 106: 140–143.

    Article  PubMed  CAS  Google Scholar 

  423. Ishwad, C. S., Ferrell, R. E., Rossie, K. M., Appel, B. N., Johnson, J. T., Myers, E. N., et al. (1995) Microsatellite instability in oral cancer. Int. J. Cancer 64: 332–335.

    Article  PubMed  CAS  Google Scholar 

  424. Tangir, J., Loughridge, N. S., Berkowitz, R. S., Muto, M. G., Bell, D. A., Welch, W. R., et al. (1996) Frequent microsatellite instability in epithelial borderline ovarian tumors. Cancer Res. 56: 2501–2505.

    PubMed  CAS  Google Scholar 

  425. Brentnall, T. A., Chen, R., Lee, J. G., Kimmey, M. B., Bronner, M. P., Haggitt, R. C., et al. (1995) Microsatellite instability and K-ras mutations associated with pancreatic adenocarcinoma and pancreatitis. Cancer Res. 55: 4264–4267.

    PubMed  CAS  Google Scholar 

  426. Terrell, R. B., Wille, A. H., Cheville, J. C., Nystuen, A. M., Cohen, M. B., and Sheffield, V. C. (1995) Microsatellite instability in adenocarcinoma of the prostate. Am. J. Pathol. 147: 799–805.

    PubMed  CAS  Google Scholar 

  427. Perinchery, G., Nojima, D., Goharderakhshan, R., Tanaka, Y., Alonzo, J., and Dahiya, R. (2000) Microsatellite instability of di-nucleotide tandem repeat sequences is higher than trinucleotide, tetranucleotide and pentanucleotide repeat sequences in prostate cancer. Int. J. Oncol. 16: 1203–1209.

    PubMed  CAS  Google Scholar 

  428. Entius, M. M., Keller, J. J., Drillenburg, P., Kuypers, K. C., Giardiello, F. M., and Offerhaus, G. J. A. (2000) Microsatellite instability and expression of hMLH-1 and hMSH-2 in sebaceous gland carcinomas as markers for Muir-Torre syndrome. Clin. Cancer Res. 6: 1784–1789.

    PubMed  CAS  Google Scholar 

  429. Visser, M., Bras, J., Sijmons, C., Devilee, P., Wijnaendts, L. C. D., van der Liden, J. C., et al. (1996) Microsatellite instability in childhood rhabdomyosarcoma is locus specific and correlates with fractional allelic loss. Proc. Natl. Acad. Sci. USA 93: 9172–9176.

    Article  PubMed  CAS  Google Scholar 

  430. Murty, V. V. V. S., Li, R.-G., Mathew, S., Reuter, V. E., Bronson, D. L., Bosl, G. J., et al. (1994) Replication error-type genetic instability at 1q42–43 in human male germ cell tumors. Cancer Res. 54: 3983–3985.

    PubMed  CAS  Google Scholar 

  431. Larson, A. A., Kern, S., Sommers, R. L., Yokota, J., Cavenee, W. K., and Hampton, G. M. (1996) Analysis of replication error (RER+) phenotypes in cervical carcinoma. Cancer Res. 56: 1426–1431.

    PubMed  CAS  Google Scholar 

  432. Risinger, J. I., Umar, A., Boyer, J. C., Evans, A. C., Berchuck, A., Kunkel, T. A., et al. (1995) Microsatellite instability in gynecologic sarcomas and in hMSH2 mutant uterine sarcoma cell lines defective in mismatch repair activity. Cancer Res. 55: 5664–5669.

    PubMed  CAS  Google Scholar 

  433. Ottini, L., Falchetti, M., D’Amico, C., Amorosi, A., Saieva, C., Masala, G., et al. (1998) Mutations at coding mononucleotide repeats in gastric cancer with microsatellite mutator phenotype. Oncogene 16: 2767–2772.

    Article  PubMed  CAS  Google Scholar 

  434. Togo, G., Toda, N., Kanai, F., Kato, N., Shiratori, Y., Kishi, K., et al. (1996) A transforming growth factor ß type II receptor gene mutation common in sporadic cecum cancer with microsatellite instability. Cancer Res. 56: 5620–5623.

    PubMed  CAS  Google Scholar 

  435. Souza, R. F., Lei, J., Yin, J., Appel, R., Zou, T.-T., Zhou, X., et al. (1997) A transforming growth factor 131 receptor type II mutation in ulcerative colitis-associated neoplasms. Gastroenterology 112: 40–45.

    Article  PubMed  CAS  Google Scholar 

  436. Lu, S.-L., Akiyama, Y., Nagasaki, H., Saitoh, K., and Yuasa, Y. (1995) Mutations of the transforming growth factor-(3 type II receptor gene and genomic instability in hereditary nonpolyposis colorectal cancer. Biochem. Biophys. Res. Commun. 216: 452–457.

    Article  PubMed  CAS  Google Scholar 

  437. Ohue, M., Tomita, N., Monden, T., Miyoshi, Y., Ohnishi, T., Izawa, H., et al. (1996) Mutations of the transforming growth factor 0 type II receptor gene and microsatellite instability in gastric cancer. Int. J. Cancer 68: 203–206.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coleman, W.B., Tsongalis, G.J. (2002). The Role of Genomic Instability in the Development of Human Cancer. In: Coleman, W.B., Tsongalis, G.J. (eds) The Molecular Basis of Human Cancer. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-125-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-125-1_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-107-3

  • Online ISBN: 978-1-59259-125-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics