Skip to main content

The Molecular Basis of Lung Carcinogenesis

  • Chapter

Abstract

Lung cancer is the leading cause of cancer deaths in the Western world. According to the World Health Organization (WHO), lung cancer kills about 1 million people worldwide each year. in the United States in 1997, lung cancer accounted for 13% of new cancer cases, and 32% of cancer deaths in males and 17% of cancer deaths in females (1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parker, S. L., Tong, T., Bolden, S., and Wingo, P. A. (1997) Cancer statistics, 1997. CA: Cancer J. Clin. 47: 5–27.

    Article  CAS  Google Scholar 

  2. Williams, C. L. (1997) Basic science of small cell lung cancer. Chest Surg. Clin. North Am. 7: 1–19.

    CAS  Google Scholar 

  3. Vuitch, F., Sekido, Y., Fong, K., Mackay, B., Minna, J. D., and Gazdar, A. F. (1997) Neuroendocrine tumors of the lung. Pathology and molecular biology. Chest Surg. Clin. North Am. 7: 21–47.

    CAS  Google Scholar 

  4. Penno, M. B., August, J. T., Baylin, S. B., Mabry, M., Linnoila, R. I., Lee, V. S., et al. (1994) Expression of CD44 in human lung tumors. Cancer Res. 54: 1381–1387.

    PubMed  CAS  Google Scholar 

  5. Loeb, L. A. (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51: 3075–3079.

    PubMed  CAS  Google Scholar 

  6. Loeb, L. A. (1994) Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res. 54: 5059–5063.

    PubMed  CAS  Google Scholar 

  7. Barlogie, B., Drewinko, B., Schumann, J., Gohde, W., Dosik, G., Latreille, J., et al. (1980) Cellular DNA content as a marker of neoplasia in man. Am. J. Med. 69: 195–203.

    Article  PubMed  CAS  Google Scholar 

  8. Barlogie, B., Raber, M. N., Schumann, J., Johnson, T. S., Drewinko, B., Swartzendruber, D. E., et al. (1983) Flow cytometry in clinical cancer research. Cancer Res. 43: 3982–3997.

    Google Scholar 

  9. Zimmerman, P. V., Hawson, G. A., Bint, M. H., and Parsons, P. G. (1987) Ploidy as a prognostic determinant in surgically treated lung cancer. Lancet 2: 530–533.

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt, R. A., Rusch, V. W., and Piantadosi, S. (1992) A flow cytometric study of non-small cell lung cancer classified as T1NO. Cancer 69: 78–85.

    Article  PubMed  CAS  Google Scholar 

  11. Smith, A. L., Hung, J., Walker, L., Rogers, T. E., Vuitch, F., Lee, E., et al. (1996) Extensive areas of aneuploidy are present in the respiratory epithelium of lung cancer patients. Br. J. Cancer 73: 203–209.

    Article  PubMed  CAS  Google Scholar 

  12. Levin, N. A., Brzoska, P., Gupta, N., Minna, J. D., Gray, J. W., and Christman, M. F. (1994) Identif-50cation of frequent novel genetic alterations in small cell lung carcinoma. Cancer Res. 54: 5086–5091.

    PubMed  CAS  Google Scholar 

  13. Levin, N. A., Brzoska, P. M., Warnock, M. L., Gray, J. W., and Christman, M. F. (1995) Identification of novel regions of altered DNA copy number in small cell lung tumors. Genes Chromosomes Cancer 13: 175–185.

    Article  PubMed  CAS  Google Scholar 

  14. Schwendel, A., Langreck, H., Reichel, M., Schröck, E., Ried, T., Dietel, M., et al. (1997) Primary small-cell lung carcinomas and their metastases are characterized by a recurrent pattern of genetic alterations. Int. J. Cancer 74: 86–93.

    Article  PubMed  CAS  Google Scholar 

  15. Petersen, I., Langreck, H., Wolf, G., Schwendel, A., Psille, R., Vogt, P., et al. (1997) Small-cell lung cancer is characterized by a high incidence of deletions on chromosomes 3p, 4q, 5q, 10q, 13q and 17p. Br. J. Cancer 75: 79–86.

    Article  PubMed  CAS  Google Scholar 

  16. Petersen, I., Bujard, M., Petersen, S., Wolf, G., Goeze, A., Schwendel, A., et al. (1997) Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res. 57: 2331–2335.

    PubMed  CAS  Google Scholar 

  17. Richardson, G. E. and Johnson, B. E. (1993) The biology of lung cancer. Semin. Oncol. 20: 105–127.

    PubMed  CAS  Google Scholar 

  18. Greenblatt, M. S., Bennett, W. P., Hollstein, M., and Harris, C. C. (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54: 4855–4878.

    PubMed  CAS  Google Scholar 

  19. Slebos, R. J., Hruban, R. H., Dalesio, O., Mooi, W. J., Offerhaus, G. J., and Rodenhuis, S. (1991) Relationship between K-ras oncogene activation and smoking in adenocarcinoma of the human lung. J. Natl. Cancer Inst. 83: 1024–1027.

    Article  PubMed  CAS  Google Scholar 

  20. Slebos, R. J., Kibbelaar, R. E., Dalesio, O., Kooistra, A., Stam, J., Meijer, C. J. L. M., et al. (1990) K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 323: 561–565.

    Article  PubMed  CAS  Google Scholar 

  21. Slebos, R. J. and Rodenhuis, S. (1992) The ras gene family in human non-small-cell lung cancer. Monographs J. Natl. Cancer Inst. Monograph 13: 23–29.

    Google Scholar 

  22. Sugio, K., Ishida, T., Yokoyama, H., Inoue, T., Sugimachi, K., and Sasazuki, T. (1992) ras gene mutations as a prognostic marker in adenocarcinoma of the human lung without lymph node metastasis. Cancer Res. 52: 2903–2906.

    Google Scholar 

  23. Mitsudomi, T., Steinberg, S. M., Oie, H. K., Mulshine, J. L., Phelps, R., Viallet, J., et al. (1991). ras gene mutations in non-small cell lung cancers are associated with shortened survival irrespective of treatment intent. Cancer Res. 51: 4999–5002.

    Google Scholar 

  24. Rosell, R., Li, S., Skacel, Z., Mate, J. L., Maestre, J., Canela, M., et al. (1993) Prognostic impact of mutated K-ras gene in surgically resected non-small cell lung cancer patients. Oncogene 8: 2407–2412.

    PubMed  CAS  Google Scholar 

  25. Siegfried, J. M., Gillespie, A. T., Mera, R., Casey, T. J., Keohavong, P., Testa, J. R., et al. (1997) Prognostic value of specific KRAS mutations in lung adenocarcinomas. Cancer Epidemiol. Biomark. Prey. 6: 841–847.

    CAS  Google Scholar 

  26. Tsai, C.-M., Chang, K.-T., Perng, R.-P., Mitsudomi, T., Chen, M.-H., Kadoyama, C., et al. (1993) Correlation of intrinsic chemoresistance of non-small-cell lung cancer cell lines with HER-2/neu gene expression but not with ras gene mutations. J. Natl. Cancer Inst. 85: 897–901.

    Article  PubMed  CAS  Google Scholar 

  27. Rodenhuis, S., Boerrigter, L., Top, B., Slebos, R. J., Mooi, W. J., van’t Veer, L., et al. (1997) Mutational activation of the K-ras oncogene and the effect of chemotherapy in advanced adenocarcinoma of the lung: A prospective study. J. Clin. Oncol. 15: 285–291.

    PubMed  CAS  Google Scholar 

  28. Pfeifer, A. M., Mark, G. D., Malan-Shibley, L., Graziano, S., Amstad, P., and Harris, C. C. (1989) Cooperation of c-raf-1 and cmyc protooncogenes in the neoplastic transformation of simian virus 40 large tumor antigen-immortalized human bronchial epithelial cells. Proc. Natl. Acad. Sci. USA 86:10, 075–10, 079.

    Google Scholar 

  29. Cooper, C. A., Carby, F. A., Bubb, V. J., Lamb, D., Kerr, K. M., and Wyllie, A. H. (1997) The pattern of K-ras mutation in pulmonary adenocarcinoma defines a new pathway of tumour development in the human lung. J. Pathol. 181: 401–404.

    Article  PubMed  CAS  Google Scholar 

  30. Tsuchiya, E., Furuta, R., Wada, N., Nakagawa, K., Ishikawa, Y., Kawabuchi, B., et al. (1995) High K-ras mutation rates in gobletcell-type adenocarcinomas of the lungs. J. Cancer Res. Clin. Oncol. 121: 577–581.

    Article  PubMed  CAS  Google Scholar 

  31. Ryberg, D., Tefre, T., Skaug, V., Stangeland, L., Ovrebo, S., Naalsund, A., et al. (1992) Allele diversity of the H-ras-1 variable number of tandem repeats in Norwegian lung cancer patients. Environ. Health Perspect. 98: 187–189.

    Article  PubMed  CAS  Google Scholar 

  32. Graziano, S. L., Pfeifer, A. M., Testa, J. R., Mark, G. E., Johnson, B. E., Hallinan, E. J., et al. (1991) Involvement of the RAF 1 locus, at band 3p25, in the 3p deletion of small-cell lung cancer. Genes Chromosomes Cancer 3: 283–293.

    Article  PubMed  CAS  Google Scholar 

  33. Miwa, W., Yasuda, J., Yashima, K., Makino, R., and Sekiya, T. (1994) Absence of activating mutations of the RAF 1 protooncogene in human lung cancer. Biol. Chem. Hoppe-Seyler 375: 705–709.

    Article  PubMed  CAS  Google Scholar 

  34. Przygodzki, R. M., Finkelstein, S. D., Langer, J. C., Swalsky, P. A., Fishback, N., Bakker, A., et al. (1996) Analysis of p53, K-ras-2, and C-raf-1 in pulmonary neuroendocrine tumors. Correlation with histological subtype and clinical outcome. Am. J. Pathol. 148: 1531–1541.

    Google Scholar 

  35. Barisal, A., Ramirez, R. D., and Minna, J. D. (1997) Mutation analysis of the coding sequences of MEK-1 and MEK-2 genes in human lung cancer cell lines. Oncogene 14: 1231–1234.

    Article  CAS  Google Scholar 

  36. Teng, D. H.-F., Perry, W. L., Hogan, J. K., Baumgard, M., Bell, R., Berry, S., et al. (1997) Human mitogen-activated protein kinase kinase 4 as a candidate tumor suppressor. Cancer Res. 57: 4177–4182.

    PubMed  CAS  Google Scholar 

  37. Grandori, C. and Eisenman, R. N. (1997) Myc target genes. Trends Biochem. Sci. 22: 177–181.

    Article  PubMed  CAS  Google Scholar 

  38. Nau, M. M., Brooks, B. J., Battey, J., Sausville, E., Gazdar, A. F., Kirsch, I. R., et al. (1985) L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature 318: 69–73.

    Article  PubMed  CAS  Google Scholar 

  39. Krystal, G., Birrer, M., Way, J., Nau, M., Sausville, E., Thompson, C., et al. (1988) Multiple mechanisms for transcriptional regulation of the myc gene family in small-cell lung cancer. Mol. Cell. Biol. 8: 3373–3381.

    PubMed  CAS  Google Scholar 

  40. Johnson, B. E., Russell, E., Simmons, A. M., Phelps, R., Steinberg, S. M., Ihde, D. C., et al. (1996) MYC family DNA amplification in 126 tumor cell lines from patients with small cell lung cancer. J. Cell Biochem. Suppl. 24: 210–217.

    Article  PubMed  CAS  Google Scholar 

  41. Sekido, Y., Takahashi, T., Mäkelä, T. P., Obata, Y., Ueda, R., Hida, T., et al. (1992) Complex intrachromosomal rearrangement in the process of amplification of the L-myc gene in small-cell lung cancer. Mol. Cell. Biol. 12: 1747–1754.

    PubMed  CAS  Google Scholar 

  42. Makela, T. P., Hellsten, E., Vesa, J., Hirvonen, H., Palotic, A., Peltonen, L., et al. (1995) The rearranged L-myc fusion gene (RLF) encodes a Zn-15 related zinc finger protein. Oncogene 11: 2699–2704.

    PubMed  CAS  Google Scholar 

  43. Ou, X., Campau, S., Slusher, R., Jasti, R. K., Mabry, M., and Kalemkerian, G. P. (1996). Mechanism of all-trans-retinoic acid-mediated L-myc gene regulation in small cell lung cancer. Oncogene 13: 1893–1899.

    PubMed  CAS  Google Scholar 

  44. Spandidos, D. A., Zakinthinos, S., Petraki, C., Sotsiou, F., Yiagnisis, M., Dimopoulos, A. M., et al. (1990) Expression of ras p21 and myc p62oncoproteins in small cell and non small cell carcinomas of the lung. Anticancer Res. 10: 1105–1114.

    PubMed  CAS  Google Scholar 

  45. Fong, K. M., Kida, Y., Zimmerman, P. V., and Smith, P. J. (1996) MYCL genotypes and loss of heterozygosity in non-small-cell lung cancer. Br. J. Cancer 74: 1975–1978.

    Article  PubMed  CAS  Google Scholar 

  46. Volm, M., Drings, P., Wodrich, W., and van-Kaick, G. (1993) Expression of oncoproteins in primary human non-small cell lung cancer and incidence of metastases. Clin. Exp. Metastasis 11: 325–329.

    Article  PubMed  CAS  Google Scholar 

  47. Wodrich, W. and Volm, M. (1993) Overexpression of oncoproteins in non-small cell lung carcinomas of smokers. Carcinogenesis 14: 1121–1124.

    Article  PubMed  CAS  Google Scholar 

  48. Szabo, E., Riffe, M. E., Steinberg, S. M., Birrer, M. J., and Linnoila, R. I. (1996) Altered cJUN expression: an early event in human lung carcinogenesis. Cancer Res. 56: 305–315.

    PubMed  CAS  Google Scholar 

  49. Levin, W. J., Press, M. F., Gaynor, R. B., Sukhatme, V. P., Boone. T. C., Reissmann, P. T., et al. (1995) Expression patterns of immediate early transcription factors in human non-small cell lung cancer. The Lung Cancer Study Group. Oncogene 11: 1261–1269.

    PubMed  CAS  Google Scholar 

  50. Alroy, I. and Yarden, Y. (1997) The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 410: 83–86.

    Article  PubMed  CAS  Google Scholar 

  51. Rachwal, W. J., Bongiorno, P. F., Orringer, M. B., Whyte, R. I., Ethier, S. P., and Beer, D. G. (1995) Expression and activation of erbB-2 and epidermal growth factor receptor in lung adenocarcinomas. Br. J. Cancer 72: 56–64.

    Article  PubMed  CAS  Google Scholar 

  52. Schneider, P. M., Hung, M.-C., Chiocca, S. M., Manning, J., Zhao, X., Fang, K., et al. (1989) Differential expression of the c-erbB-2 gene in human small cell and non-small cell lung cancer. Cancer Res. 49: 4968–4971.

    PubMed  CAS  Google Scholar 

  53. Shi, D., He, G., Cao, S., Pan, W., Zhang, H. Z., Yu, D., et al. (1992) Overexpression of the c-erbB-2/neu-encoded p185 protein in primary lung cancer. Mol. Carcinogenesis 5: 213–218.

    Article  CAS  Google Scholar 

  54. Weiner, D. B., Nordberg, J., Robinson, R., Nowell, P. C., Gazdar, A., Greene, M. I., et al. (1990) Expression of the neu gene-encoded protein (PI85“ell) in human non-small cell carcinomas of the lung. Cancer Res. 50: 421–425.

    PubMed  CAS  Google Scholar 

  55. Noguchi, M., Murakami, M., Bennett, W., Lupu, R., Hui, F., Jr., Harris, C. C., et al. (1993) Biological consequences of overexpression of a transfected c-erbB-2 gene in immortalized human bronchial epithelial cells. Cancer Res. 53: 2035–2043.

    PubMed  CAS  Google Scholar 

  56. Kern, J.A., Torney, L., Weiner, D., Gazdar, A., Shepard, H. M., and Fendly, B. (1993) Inhibition of human lung cancer cell line growth by an anti-p185HER2 antibody. Am. J. Resp. Cell Mot. Biol. 9: 448–454.

    Article  CAS  Google Scholar 

  57. Tateishi, M., Ishida, T., Mitsudomi, T., Kaneko, S., and Sugimachi, K. (1991) Prognostic value of c-erbB-2 protein expression in human lung adenocarcinoma and squamous cell carcinoma. Eur. J. Cancer 27: 1372–1375.

    Article  PubMed  CAS  Google Scholar 

  58. Kern, J. A., Slebos, R. J., Top, B., Rodenhuis, S., Lager, D., Robinson, R. A., et al. (1994) C-erbB-2 expression and codon 12 K-ras mutations both predict shortened survival for patients with pulmonary adenocarcinomas. J. Clin. Invest. 93: 516–520.

    Article  PubMed  CAS  Google Scholar 

  59. Pfeiffer, P., Clausen, P. P., Andersen, K., and Rose, C. (1996) Lack of prognostic significance of epidermal growth factor receptor and the oncoprotein p 185HER-2 in patients with systemically untreated non-small-cell lung cancer: an immunohistochemical study on cryosections. Br. J. Cancer 74: 86–91.

    Article  PubMed  CAS  Google Scholar 

  60. Yu, D., Wang, S. S., Dulski, K. M., Tsai, C. M., Nicol son, G. L., and Hung, M. C. (1994) c-erbB-2/neu overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties. Cancer Res. 54: 3260–3266.

    Google Scholar 

  61. Tsai, C. M., Yu, D., Chang, K. T., Wu, L. H., Perng, R. P., Ibrahim, N. K., et al. C. (1995) Enhanced chemoresistance by elevation of p185neu levels in HER-2/neu-transfected human lung cancer cells. J. Nati. Cancer Inst. 87: 682–684.

    Google Scholar 

  62. Tsai, C.-M., Chang, K.-T., Wu, L.-H., Chen, J.-Y., Gazdar, A. F., Mitsudomi, T., et al. (1996) Correlations between intrinsic chemoresistance and HER-2/neu gene expression, p53 gene mutations, and cell proliferation characteristics in non-small cell lung cancer cell lines. Cancer Res. 56: 206–209.

    PubMed  CAS  Google Scholar 

  63. Tateishi, M., Ishida, T., Mitsudomi, T., Kaneko, S., and Sugimachi, K. (1990) Immunohistochemical evidence of autocrine growth factors in adenocarcinoma of the human lung. Cancer Res. 50: 7077–7080.

    PubMed  CAS  Google Scholar 

  64. Rusch, V., Baselga, J., Cordon-Cardo, C., Orazem, J., Zaman, M., Hoda, S., et al. (1993) Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res. 53: 2379–2385.

    PubMed  CAS  Google Scholar 

  65. Damstrup, L., Rygaard, K., Spang-Thomsen, M., and Poulsen, H. S. (1992) Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines. Cancer Res. 52: 3089–3093.

    PubMed  CAS  Google Scholar 

  66. Miettinen, P. J., Berger, J. E., Meneses, J., Phung, Y., Pedersen, R. A., Werb, Z., et al. (1995) Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 376: 337–341.

    Article  PubMed  CAS  Google Scholar 

  67. Miettinen, P. J., Warburton, D., Bu, D., Zhao, J. S., Berger, J. E., Minoo, P., et al. (1997). Impaired lung branching morphogenesis in the absence of functional EGF receptor. Dey. Biol. 186: 224–236.

    Article  CAS  Google Scholar 

  68. Singh Kaw, P., Zarnegar, R., and Siegfried, J. M. (1995). Stimulatory effects of hepatocyte growth factor on normal and neoplastic human bronchial epithelial cells. Am. J. Physiol. 268:L1012-L 1020.

    Google Scholar 

  69. Yanagita, K., Matsumoto, K., Sekiguchi, K., Ishibashi, H., Niho, Y., and Nakamura, T. (1993) Hepatocyte growth factor may act as a pulmotrophic factor on lung regeneration after acute lung injury. J. Biol. Chem. 268:21, 212–21, 217.

    Google Scholar 

  70. Rygaard, K., Nakamura, T., and Spang-Thomsen, M. (1993) Expression of the proto-oncogenes c-met and c-kit and their ligands, hepatocyte growth factor/scatter factor and stem cell factor, in SCLC cell lines and xenografts. Br. J Cancer 67: 37–46.

    Google Scholar 

  71. Harvey, P., Warn, A., Newman, P., Perry, L. J., Ball, R. Y., and Warn, R. M. (1 996) Immunoreactivity for hepatocyte growth factor/scatter factor and its receptor, met, in human lung carcinomas and malignant mesotheliomas. J Pathol. 180: 389–394.

    Google Scholar 

  72. Olivero, M., Rizzo, M., Madeddu, R., Casadio, C., Pennacchietti, S., Nicotra, M. R., et al. (1 996) Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br. J. Cancer 74: 1862–1868.

    Google Scholar 

  73. Ichimura, E., Maeshima, A., Nakajima, T., and Nakamura, T. (1996) Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn. J. Cancer Res. 87: 1063–1069.

    Article  PubMed  CAS  Google Scholar 

  74. Siegfried, J. M., Weissfeld, L. A., Singh-Kaw, P., Weyant, R. J., Testa, J. R., and Landreneau, R. J. (1997) Association of immunoreactive hepatocyte growth factor with poor survival in resectable non-small cell lung cancer. Cancer Res. 57: 433–439.

    PubMed  CAS  Google Scholar 

  75. Schmidt, L., Duh, F.-M., Chen, F., Kishida, T., Glenn, G., Choyke, P., et al. (1997) Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Genet. 16: 68–73.

    Article  PubMed  CAS  Google Scholar 

  76. Quinn, K. A., Treston, A. M., Unsworth, E. J., Miller, M. J., Vos, M., Grimley, C., et al. (1996) Insulin-like growth factor expression in human cancer cell lines. J. Biol. Chem. 271:11, 477–11, 483.

    Google Scholar 

  77. Sekido, Y., Takahashi, T., Ueda, R., Takahashi, M., Suzuki, H., Nishida, K., et al. (1993) Recombinant human stem cell factor mediates chemotaxis of small-cell lung cancer cell lines aberrantly expressing the c-kit protooncogene. Cancer Res. 53: 1709–1714.

    PubMed  CAS  Google Scholar 

  78. Krystal, G. W., Hines, S. J., and Organ, C. P. (1996) Autocrine growth of small cell lung cancer mediated by coexpression of c-kit and stem cell factor. Cancer Res. 56: 370–376.

    PubMed  CAS  Google Scholar 

  79. Antoniades, H. N., Galanopoulos, T., Neville-Golden, J., and O’Hara, C. J. (1992) Malignant epithelial cells in primary human lung carcinomas coexpress in vivo platelet-derived growth factor (PDGF) and PDGF receptor mRNAs and their protein products. Proc. Nati. Acad. Sci. USA 89: 3942–3946.

    Article  CAS  Google Scholar 

  80. Viallet, J. and Sausville, E. A. (1996) Involvement of signal transduction pathways in lung cancer biology. J. Cell. Biochem. Suppl. 24: 228–236.

    Article  PubMed  CAS  Google Scholar 

  81. Fathi, Z., Way, J. W., Corjay, M. H., Viallet, J., Sausville, E. A., and Battey, J. F. (1996) Bombesin receptor structure and expression in human lung carcinoma cell lines. J. Cell. Biochem. Suppi. 24: 237–246.

    Article  CAS  Google Scholar 

  82. Sethi, T., Langdon, S., Smyth, J., and Rozengurt, E. (1992) Growth of small cell lung cancer cells: stimulation by multiple neuropeptides and inhibition by broad spectrum antagonists in vitro and in vivo. Cancer Res. 52: 2737s - 2742s.

    PubMed  CAS  Google Scholar 

  83. Sharif, T. R., Luo, W., and Sharif, M. (1997) Functional expression of bombesin receptor in most adult and pediatric human glioblastoma cell lines; role in mitogenesis and in stimulating the mitogenactivated protein kinase pathway. Mol. Cell. Endocrinol. 130: 119–130.

    Article  PubMed  CAS  Google Scholar 

  84. Cuttitta, F., Carney, D. N., Mulshine, J., Moody, T. W., Fedorko, J., Fischler, A., et al. (1985) Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316: 823–826.

    Article  PubMed  CAS  Google Scholar 

  85. Halmos, G. and Schally, A. V. (1997) Reduction in receptors for bombesin and epidermal growth factor in xenografts of human small-cell lung cancer after treatment with bombesin antagonist RC-3095. Proc. Nati. Acad. Sci. USA 94: 956–960.

    Article  CAS  Google Scholar 

  86. Kelley, M. J., Linnoila, R. I., Avis, I. L., Georgiadis, M. S., Cuttitta, F., Mulshine, J. L., et al. (1 997) Antitumor activity of a monoclonal antibody directed against gastrin-releasing peptide in patients with small cell lung cancer. Chest 112: 256–261.

    Google Scholar 

  87. Spurzem, J. R., Rennard, S. I., and Romberger, D. J. (1997) Bombesin-like peptides and airway repair: A recapitulation of lung development? Am. J. Respir. Cell Mol. Biol. 16: 209–211.

    Article  PubMed  CAS  Google Scholar 

  88. Yang, E. and Korsmeyer, S. J. (1996) Molecular thanatopsis: A discourse on the BCL2 family and cell death. Blood 88: 386–401.

    PubMed  CAS  Google Scholar 

  89. Ohmori, T., Podack, E. R., Nishio, K., Takahashi, M., Miyahara, Y., Takeda, Y., et al. (1993) Apoptosis of lung cancer cells caused by some anti-cancer agents (MMC, CPT-I 1, ADM) is inhibited by bel-2. Biochem. Biophys. Res. Commun. 192: 30–36.

    Article  PubMed  CAS  Google Scholar 

  90. Ziegler, A., Luedke, G. H., Fabbro, D., Altmann, K. H., Stahel, R. A., and Zangemeister Wittke, U. (1997) Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the Bel-2 coding sequence. J. Nati. Cancerinst. 89: 1027–1036.

    Article  CAS  Google Scholar 

  91. Jiang, S. X., Kameya, T., Sato, Y., Yanase, N., Yoshimura, H., and Kodama, T. (1996) Bel-2 protein expression in lung cancer and close correlation with neuroendocrine differentiation. Am. J. Pathol. 148: 837–846.

    PubMed  CAS  Google Scholar 

  92. Pezzella, F., Turley, H., Kuzu, I., Tungekar, M. F., Dunnill, M. S., Pierce, C. B., et al. (1993) bel-2 protein in non-small-cell lung carcinoma. N. Engl. J Med. 329: 690–694.

    Google Scholar 

  93. Higashiyama, M., Doi, O., Kodama, K., Yokouchi, H., Nakamori, S., and Tateishi, R. (1 997) bel-2 oncoprotein in surgically resected non-small cell lung cancer: possibly favorable prognostic factor in association with low incidence of distant metastasis. J. Surg. Oncol. 64: 48–54.

    Google Scholar 

  94. Apolinario, R. M., van der Valk, P., de Jong, J. S., Deville, W., van Ark-Otte, J., Dingemans, A. M., et al. (1997). Prognostic value of the expression of p53, bel-2, and bax oncoproteins, and neovascularization in patients with radically resected non-smallcell lung cancer. J. Clin. Oncol. 15: 2456–2466.

    PubMed  CAS  Google Scholar 

  95. Fontanini, G., Vignati, S., Bigini, D., Mussi, A., Lucchi, M., Angeletti, C. A., et al. (1995) Bel-2 protein: a prognostic factor inversely correlated to p53 in non-small-cell lung cancer. Br. J. Cancer 71: 1003–1007.

    Article  PubMed  CAS  Google Scholar 

  96. Kitagawa, Y., Wong, F., Lo, P., Elliott, M., Verburgt, L. M., Hogg, J. C., et al. (1996) Overexpression of Bcl-2 and mutations in p53 and K-ras in resected human non-small cell lung cancers. Am. J. Resp. Cell Mol. Biol. 15: 45–54.

    Article  CAS  Google Scholar 

  97. Jiang, S. X., Sato, Y., Kuwao, S., and Kameya, T. (1995) Expression of bcl-2 oncogene protein is prevalent in small cell lung carcinomas. J. Pathol. 177: 135–138.

    Article  PubMed  CAS  Google Scholar 

  98. Kaiser, U., Schilli, M., Haag, U., Neumann, K., Kreipe, H., Kogan, E., et al. (1996) Expression of bcl-2-protein in small cell lung cancer. Lung Cancer 15: 31–40.

    Article  PubMed  CAS  Google Scholar 

  99. Cheng, E. H., Kirsch, D. G., Clem, R. J., Ravi, R., Kastan, M. B., Bedi, A., et al. (1997). Conversion of Bc1–2 to a Bax-like death effector by caspases. Science 278: 1966–1968.

    Article  PubMed  CAS  Google Scholar 

  100. Yin, C., Knudson, C. M., Korsmeyer, S. J., and Van Dyke, T. (1997) Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385: 637–640.

    Article  PubMed  CAS  Google Scholar 

  101. Brambilla, E., Negoescu, A., Gazzeri, S., Lantuejoul, S., Moro, D., Brambilla, C., et al. (1996) Apoptosis-related factors p53, Bc12, and Bax in neuroendocrine lung tumors. Am. J. Pathol. 149: 1941–1952.

    PubMed  CAS  Google Scholar 

  102. Whang-Peng, J., Kao-Shan, C. S., Lee, E. C., Bunn, P. A., Carney, D. N. Gazdar, A. F., et al. (1982) Specific chromosome defect associated with human small-cell lung cancer; deletion 3p(14–23) Science 215: 181–182.

    Article  PubMed  CAS  Google Scholar 

  103. Virmani, A. K., Fong, K. M., Kodagoda, D., McIntire, D., Hung, J., Tonk, V., et al. (1998) Allelotyping demonstrates common and distinct patterns of chromosomal loss in human lung cancer types. Gene Chromosomes Cancer 21: 308–319.

    Article  CAS  Google Scholar 

  104. Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Google Scholar 

  105. Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W., et al. (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88–91.

    Article  PubMed  CAS  Google Scholar 

  106. Lavigueur, A., Maltby, V., Mock, D., Rossant, J., Pawson, T., and Bernstein, A. (1989) High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol. Cell. Biol. 9: 3982–3991.

    PubMed  CAS  Google Scholar 

  107. Takahashi, T., Carbone, D., Takahashi, T., Nau, M. M., Hida, T., Linnoila, I., et al. (1992) Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions. Cancer Res. 52: 2340–2343.

    PubMed  CAS  Google Scholar 

  108. Adachi, J., Ookawa, K., Shiseki, M., Okazaki, T., Tsuchida, S., Morishita, K., et al. (1996) Induction of apoptosis but not GI arrest by expression of the wild-type p53 gene in small cell lung carcinoma. Cell Growth Differ. 7: 879–886.

    PubMed  CAS  Google Scholar 

  109. Casey, G., Lopez, M. E., Ramos, J. C., Plummer, S. J., Arboleda, M. J., Shaughnessy, M., et al. (1996) DNA sequence analysis of exons 2 through 11 and immunohistochemical staining are required to detect all known p53 alterations in human malignancies. Oncogene 13: 197l - 1981.

    Google Scholar 

  110. Eerola, A.-K., Törmänen, U., Rainio, P., Sormunen, R., Bloigu, R., Vähäkangas, K., et al. (1997) Apoptosis in operated small cell lung carcinoma is inversely related to tumour necrosis and p53 immunoreactivity. J. Pathol. 181: 172–177.

    Article  PubMed  CAS  Google Scholar 

  111. Nishio, M., Koshikawa, T., Kuroishi, T., Suyama, M., Uchida, K., Takagi, Y., et al. (1996) Prognostic significance of abnormal p53 accumulation in primary, resected non-small-cell lung cancers. J. Clin. Oncol. 14: 497–502.

    PubMed  CAS  Google Scholar 

  112. Konishi, T., Lin, Z., Fujino, S., Kato, H., and Mori, A. (1997) Association of p53 protein expression in stage I lung adenocarcinoma with reference to cytological subtypes. Human Pathol. 28: 544–548.

    Article  CAS  Google Scholar 

  113. Ishida, H., Irie, K., Itoh, T., Furukawa, T., and Tokunaga, O. (1997) The prognostic significance of p53 and bcl-2 expression in lung adenocarcinoma and its correlation with Ki-67 growth fraction. Cancer 80: 1034–1045.

    Article  PubMed  CAS  Google Scholar 

  114. Graziano, S. L. (1997) Non-small cell lung cancer: clinical value of new biological predictors. Lung Cancer 17: S37 - S58.

    Article  PubMed  Google Scholar 

  115. Schlichtholz, B., Trédaniel, J., Lubin, R., Zalcman, G., Hirsch, A., and Soussi, T. (1994) Analyses ofp53 antibodies in sera of patients with lung carcinoma define immunodominant regions in the p53 protein. Br. J. Cancer 69: 809–816.

    Article  PubMed  CAS  Google Scholar 

  116. Winter, S. F., Minna, J. D., Johnson, B. E., Takahashi, T., Gazdar, A. F., and Carbone, D. P. (1992) Development of antibodies against p53 in lung cancer patients appears to be dependent on the type of p53 mutation. Cancer Res. 52: 4168–4174.

    PubMed  CAS  Google Scholar 

  117. Lubin, R., Zalcman, G., Bouchet, L., Tredanel, J., Legros, Y., Cazals, D., et al. (1995) Serum p53 antibodies as early markers of lung cancer. Nature Med. 1: 701–702.

    Article  PubMed  CAS  Google Scholar 

  118. Rosenfeld, M. R., Malats, N., Schramm, L., Graus, F., Cardenal, F., Vinolas, N., et al. (1997) Serum anti-p53 antibodies and prognosis of patients with small-cell lung cancer. J. Natl. Cancer Inst. 89: 381–385.

    Article  PubMed  CAS  Google Scholar 

  119. Rahman, A. and Ziment, I. (1983) Tracheobronchial papillomatosis with malignant transformation. Arch. Int. Med. 143: 577–578.

    Article  CAS  Google Scholar 

  120. Byrne, J. C., Tsao, M. S., Fraser, R. S., and Howley, P. M. (1987) Human papillomavirus-11 DNA in a patient with chronic laryngotracheobronchial papillomatosis and metastatic squamouscell carcinoma of the lung. N. Engl. J. Med. 317: 873–878.

    Article  PubMed  CAS  Google Scholar 

  121. Bejui-Thivolet, F., Chardonnet, Y., and Patricot, L. M. (1990) Human papillomavirus type 11 DNA in papillary squamous cell lung carcinoma. Virch. Arch. A Pathol. Anat. Histopathol. 417: 457–461.

    Article  CAS  Google Scholar 

  122. Carey, F. A., Salter, D. M., Kerr, K. M., and Lamb, D. (1990) An investigation into the role of human papillomavirus in endobronchial papillary squamous tumours. Resp. Med. 84: 445–447.

    Article  CAS  Google Scholar 

  123. Kulski, J. K., Demeter, T., Mutavdzic, S., Sterrett, G. F., Mitchell, K. M., and Pixley, E. C. (1990) Survey of histologic specimens of human cancer for human papillomavirus types 6/11 /16/18 by filter in situ hybridization. Am. J. Clin. Pathol. 94: 566–570.

    PubMed  CAS  Google Scholar 

  124. Yousem, S. A., Ohori, N. P., and Sonmez-Alpan, E. (1992) Occurrence of human papillomavirus DNA in primary lung neoplasms. Cancer 69: 693–697.

    Article  PubMed  CAS  Google Scholar 

  125. Fong, K. M., Schonrock, J., Frazer, I. M., Zimmerman, P. V., and Smith, P. J. (1995) Human papillomavirus not found in squamous and large cell lung carcinomas by polymerase chain reaction. Cancer 75: 2400–2401.

    Article  PubMed  CAS  Google Scholar 

  126. Szabo, I., Sepp, R., Nakamoto, K., Maeda, M., Sakamoto, H., and Uda, H. (1994) Human papillomavirus not found in squamous and large cell lung carcinomas by polymerase chain reaction. Cancer 73: 2740–2744.

    Article  PubMed  CAS  Google Scholar 

  127. Bohlmeyer, T., Le, T. N., Shroyer, A. L., Markham, N., and Shroyer, K. R. (1998) Detection of human papillomavirus in squamous cell carcinomas of the lung by polymerase chain reaction. Am. J. Resp. Cell. Mol. Biol. 18: 265–269.

    Article  CAS  Google Scholar 

  128. Welt, A., Hummel, M., Niedobitek, G., and Stein, H. (1997) Human papillomavirus infection is not associated with bronchial carcinoma: evaluation by in situ hybridization and the polymerase chain reaction. J. Pathol. 181: 276–280.

    Article  PubMed  CAS  Google Scholar 

  129. Soini, Y., Nuorva, K., Kamel, D., Pollanen, R., Vahakangas, K., Lehto, V. P., et al. (1996) Presence of human papillomavirus DNA and abnormal p53 protein accumulation in lung carcinoma. Thorax 51: 887–893.

    Article  PubMed  CAS  Google Scholar 

  130. Fujiwara, T., Cai, D. W., Georges, R. N., Mukhopadhyay, T., Grimm, E. A., and Roth, J. A. (1994) Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J. Natl. Cancer Inst. 86: 1458–1462.

    Article  PubMed  CAS  Google Scholar 

  131. Roth, J. A., Nguyen, D., Lawrence, D. D., Kemp, B. L., Carrasco, C. H., Ferson, D. Z., et al. (1996) Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nature Med. 2: 985–991.

    Article  PubMed  CAS  Google Scholar 

  132. Shimizu, T., Miwa, W., Nakamori, S., Ishikawa, O., Konishi, Y., and Sekiya, T. (1996) Absence of a mutation of the p21 /WAF 1 gene in human lung and pancreatic cancers. Jpn. J. Cancer Res. 87: 275–278.

    Article  PubMed  CAS  Google Scholar 

  133. Marchetti, A., Doglioni, C., Barbareschi, M., Buttitta, F., Pellegrini, S., Bertacca, G., et ai. (1996) p21 RNA and protein expression in non-small cell lung carcinomas: evidence of p53-independent expression and association with tumoral differentiation. Oncogene 12: 1319–1324.

    Google Scholar 

  134. Sjalander, A., Birgander, R., Rannug, A., Alexandrie, A. K., Tornling, G., and Beckman, G. (1996) Association between the p21 codon 31 AI (arg) allele and lung cancer. Human Heredity 46: 221–225.

    Article  PubMed  CAS  Google Scholar 

  135. Shieh, S. Y., Ikeda, M., Taya, Y., and Prives, C. (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334.

    Article  PubMed  CAS  Google Scholar 

  136. Higashiyama, M., Doi, O., Kodama, K., Yokouchi, H., Kasugai, T., Ishiguro, S., et al. (1997) MDM2 gene amplification and expression in non-small-cell lung cancer: immunohistochemical expression of its protein is a favourable prognostic marker in patients without p53 protein accumulation. Br. J. Cancer 75: 1302–1308.

    Article  PubMed  CAS  Google Scholar 

  137. Kaghad, M., Bonnet, H., Yang, A., Creancier, L., Biscan, J.-C., Valent, A., et al. (1997) Monoallelically expressed gene related to p53 at 1 p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819.

    Article  PubMed  CAS  Google Scholar 

  138. Jost, C. A., Marin, M. C., and Kaelin, W. G. (1997) p73 is a human p53-related protein that can induce apoptosis. Nature 389: 191–194.

    Google Scholar 

  139. Peeper, D. S., Upton, T. M., Ladha, M. H., Neuman, E., Zalvide, J., Bernards, R., et al. (1997) Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386: 177–181.

    Article  PubMed  CAS  Google Scholar 

  140. White, R. J., Trouche, D., Martin, K., Jackson, S. P., and Kouzarides, T. (1996) Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 382: 88–90.

    Article  PubMed  CAS  Google Scholar 

  141. Yamasaki, L., Jacks, T., Bronson, R., Goillot, E., Harlow, E., and Dyson, N. J. (1996) Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85: 537–548.

    Article  PubMed  CAS  Google Scholar 

  142. Harbour, J. W., Lai, S. L., Whang-Peng, J., Gazdar, A. F., Minna, J. D., and Kaye, F. J. (1988) Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 241: 353–357.

    Article  PubMed  CAS  Google Scholar 

  143. Horowitz, J. M., Park, S. H., Bogenmann, E., Cheng, J. C., Yandell, D. W., Kaye, F. J., et al. (1990) Frequent inactivation of the retino-blastoma anti-oncogene is restricted to a subset of human tumor cells. Proc. Natl. Acad. Sci. USA 87: 2775–2779.

    Article  PubMed  CAS  Google Scholar 

  144. Reissmann, P. T., Koga, H., Takahashi, R., Figlin, R. A., Holmes, E. C., Piantadosi, S., et al. (1993) Inactivation of the retinoblastoma susceptibility gene in non-small-cell lung cancer. The Lung Cancer Study Group. Oncogene 8: 1913–1919.

    PubMed  CAS  Google Scholar 

  145. Cagle, P. T., El-Naggar, A. K., Xu, H.-J., Hu, S.-X., and Benedict, W. F. (1997) Differential retinoblastoma protein expression in neuroendocrine tumors of the lung. Potential diagnostic implications. Am. J. Pathol. 150: 393–400.

    PubMed  CAS  Google Scholar 

  146. Dosaka-Akita, H., Hu, S.-X., Fujino, M., Harada, M., Kinoshita, I., Xu, H.-J., et al. (1997) Altered retinoblastoma protein expression in nonsmall cell lung cancer: its synergistic effects with altered ras and p53 protein status on prognosis. Cancer 79: 1329–1337.

    Article  PubMed  CAS  Google Scholar 

  147. Mori, N., Yokota, J., Akiyama, T., Sameshima, Y., Okamoto, A., Mizoguchi, H., et al. (1990) Variable mutations of the RB gene in small-cell lung carcinoma. Oncogene 5: 1713–1717.

    PubMed  CAS  Google Scholar 

  148. Kaye, F. J., Kratzke, R. A., Gerster, J. L., and Horowitz, J. M. (1990) A single amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding. Proc. Natl. Acad. Sci. USA 87: 6922–6926.

    Article  PubMed  CAS  Google Scholar 

  149. Xu, H. J., Quinlan, D. C., Davidson, A. G., Hu, S. X., Summers, C. L., Li, J., et al. (1994) Altered retinoblastoma protein expression and prognosis in early-stage non-small-cell lung carcinoma. J. Natl. Cancer Inst. 86: 695–699.

    Article  PubMed  CAS  Google Scholar 

  150. Shimizu, E., Coxon, A., Otterson, G. A., Steinberg, S. M., Kratzke, R. A., Kim, Y. W., et al. (1994) RB protein status and clinical correlation from 171 cell lines representing lung cancer, extrapulmonary small cell carcinoma, and mesothelioma. Oncogene 9: 2441–2448.

    PubMed  CAS  Google Scholar 

  151. Kratzke, R. A., Greatens, T. M., Rubins, J. B., Maddaus, M. A., Niewoehner, D. E., Niehans, G. A., et al. (1996) Rb and p l6INK4a expression in resected non-small cell lung tumors. Cancer Res. 56: 3415–3420.

    PubMed  CAS  Google Scholar 

  152. Tamura, K., Zhang, X., Murakami, Y., Hirohashi, S., Xu, H. J., Hu, S. X., et al. (1997) Deletion of three distinct regions on chromosome 13q in human non-small-cell lung cancer. Int. J. Cancer 74: 45–49.

    Article  PubMed  CAS  Google Scholar 

  153. Sanders, B. M., Jay, M., Draper, G. J., and Roberts, E. M. (1989) Non-ocular cancer in relatives of retinoblastoma patients. Br. J. Cancer 60: 358–365.

    Article  PubMed  CAS  Google Scholar 

  154. Ookawa, K., Shiseki, M., Takahashi, R., Yoshida, Y., Terada, M., and Yokota, J. (1993) Reconstitution of the RB gene suppresses the growth of small-cell lung carcinoma cells carrying multiple genetic alterations. Oncogene 8: 2175–2181.

    PubMed  CAS  Google Scholar 

  155. Bal di, A., Esposito, V., Deluca, A., Howard, C. M., Mazzarella, G., Baldi, F., et al. (1996) Differential expression of the retinoblastoma gene family members pRb/p105, p107, and pRb2/p130 in lung cancer. Clin. Cancer Res. 2: 1239–1245.

    PubMed  CAS  Google Scholar 

  156. Helin, K., Holm, K., Niebuhr, A., Eiberg, H., Tommerup, N., Hougaard, S., et al. (1997) Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma. Proc. Natl. Acad. Sci. USA 94: 6933–6938.

    Article  PubMed  CAS  Google Scholar 

  157. Schauer, I. E., Siriwardana, S., Langan, T. A., and Sclafani, R. A. (1994) Cyclin D1 overexpression vs. retinoblastoma inactivation: implications for growth control evasion in non-small cell and small cell lung cancer. Proc. Natl. Acad. Sci. USA 91: 7827–7831.

    Article  PubMed  CAS  Google Scholar 

  158. Betticher, D. C., Heighway, J., Hasleton, P. S., Altermatt, H. J., Ryder, W. D., Cerny, T., and Thatcher, N. (1996) Prognostic significance of CCND1 (cyclin Dl) overexpression in primary resected non-small-cell lung cancer. Br. J. Cancer 73: 294–300.

    Article  PubMed  CAS  Google Scholar 

  159. Caputi, M., De Luca, L., Papaccio, G., D’Aponte, A., Cavallotti, I., Scala, P., et al. (1997) Prognostic role of cyclin Dl in non small cell lung cancer: an immunohistochemical analysis. Eur. J. Histochem. 41: 133–138.

    PubMed  CAS  Google Scholar 

  160. Mate, J. L., Ariza, A., Aracil, C., Lopez, D., Isamat, M., Perez Piteira, J., et al. (1996) Cyclin DI overexpression in non-small cell lung carcinoma: correlation with Ki67 labelling index and poor cytoplasmic differentiation. J. Pathol. 180: 395–399.

    Article  PubMed  CAS  Google Scholar 

  161. Betticher, D. C., Heighway, J., Thatcher, N., and Hasleton, P. S. (1997) Abnormal expression of CCND1 and RB1 in resection margin epithelia of lung cancer patients. Br. J. Cancer 75: 1761–1768.

    Article  PubMed  CAS  Google Scholar 

  162. Reifenberger, G., Ichimura, K., Reifenberger, J., Elkahloun, A. G., Meltzer, P. S., and Collins, V. P. (1996) Refined mapping of 12g13-q15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res. 56: 5141–5145.

    PubMed  CAS  Google Scholar 

  163. Merlo, A., Gabrielson, E., Askin, F., and Sidransky, D. (1994) Frequent loss of chromosome 9 in human primary non-small cell lung cancer. Cancer Res. 54: 640–642.

    PubMed  CAS  Google Scholar 

  164. Kishimoto, Y., Sugio, K., Mitsudomi, T., Oyama, T., Virmani, A. K., McIntire, D. D., et al. (1995) Frequent loss of the short arm of chromosome 9 in resected non-small-cell lung cancers from Japanese patients and its association with squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 121: 291–296.

    Article  PubMed  CAS  Google Scholar 

  165. Neville, E. M., Stewart, M., Myskow, M., Donnelly, R. J., and Field, J. K. (1995) Loss of heterozygosity at 9p23 defines a novel locus in non-small cell lung cancer. Oncogene 11: 581–585.

    PubMed  CAS  Google Scholar 

  166. Kim, S. K., Ro, J. Y., Kemp, B. L., Lee, J. S., Kwon, T. J., Fong, K. M., et al. (1997) Identification of three distinct tumor suppressor loci on the short arm of chromosome 9 in small cell lung cancer. Cancer Res. 57: 400–403.

    PubMed  CAS  Google Scholar 

  167. Pollock, P. M., Pearson, J. V., and Hayward, N. K. (1996) Compilation of somatic mutations of the CDKN2 gene in human cancers: non-random distribution of base substitutions. Genes Chromosomes Cancer 15: 77–88.

    Article  PubMed  CAS  Google Scholar 

  168. Hayashi, N., Sugimoto, Y., Tsuchiya, E., Ogawa, M., and Nakamura, Y. (1994) Somatic mutations of the MTS (multiple tumor suppressor) 1/CDK41 (cyclin-dependent kinase-4 inhibitor) gene in human primary non-small cell lung carcinomas. Biochem. Biophys. Res. Commun. 202: 1426–1430.

    Article  PubMed  CAS  Google Scholar 

  169. de Vos, S., Miller, C. W., Takeuchi, S., Gombart, A. F., Cho, S. K., and Koeffler, H. P. (1995) Alterations of CDKN2 (p 1 6) in non-small cell lung cancer. Genes Chromosomes Cancer 14: 164–170.

    Article  PubMed  Google Scholar 

  170. Xiao, S., Li, D., Corson, J. M., Vijg, J., and Fletcher, J. A. (1995) Codeletion of p15 and p16 genes in primary non-small cell lung carcinoma. Cancer Res. 55: 2968–2971.

    PubMed  CAS  Google Scholar 

  171. Washuni, O., Nagatake, M., Osada, H., Ueda, R., Koshikawa, T., Seki, T., et al. (1995) In vivo occurrence of p16 (MTS1) and p15 (MTS2) alterations preferentially in non-small cell lung cancers. Cancer Res. 55: 514–517.

    Google Scholar 

  172. Shimizu, T. and Sekiya, T. (1995) Loss of heterozygosity at 9p21 loci and mutations of the MTSI and MTS2 genes in human lung cancers. Int. J. Cancer 63: 616–620.

    Article  PubMed  CAS  Google Scholar 

  173. Rusin, M. R., Okamoto, A., Chorazy, M., Czyzewski, K., Harasim, J., Spillare, E. A., et al. (1996) Intragenic mutations of the p16(INK4), p15(INK4B) and p18 genes in primary non-small-cell lung cancers. Int. J. Cancer 65: 734–739.

    Article  PubMed  CAS  Google Scholar 

  174. Takeshima, Y., Nishisaka, T., Kawano, R., Kishizuchi, K., Fujii, S., Kitaguchi, S., et al. (1996) p16/CDKN2 gene and p53 gene alterations in Japanese non-smoking female lung adenocarcinoma. Jpn. J. Cancer Res. 87: 134–140.

    Google Scholar 

  175. Marchetti, A., Buttitta, F., Pellegrini, S., Bertacca, G., Chella, A., Carnicelli, V., et al. (1997) Alterations of P16 (MTS1) in node-positive non-small cell lung carcinomas. J. Pathol. 181: 178–182.

    Article  PubMed  CAS  Google Scholar 

  176. Wiest, J. S., Franklin, W. A., Otstot, J. T., Forbey, K., VarellaGarcia, M., Rao, K., et al. (1997) Identification of a novel region of homozygous deletion on chromosome 9p in squamous cell carcinoma of the lung: the location of a putative tumor suppressor gene. Cancer Res. 57: 1–6.

    PubMed  CAS  Google Scholar 

  177. Merle, A., Herman, J. G., Mao, L., Lee, D. J., Gabrielson, E., Burger, P. C. et al. (1995) 5’CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/ MTS1 in human cancers. Nature Med. 1: 686–692.

    Google Scholar 

  178. Otterson, G. A., Khleif, S. N., Chen, W., Coxon, A. B., and Kaye, F. J. (1995) CDKN2 gene silencing in lung cancer by DNA hypermethylation and kinetics of p l6INK4 protein induction by 5aza 2’ deoxycytidine. Oncogene 11: 1211–1216.

    PubMed  CAS  Google Scholar 

  179. Shapiro, G. I., Edwards, C. D., Kobzik, L., Godleski, J., Richards, W., Sugarbaker, D. J., et al. (1995) Reciprocal Rb inactivation and pl 61NK4 expression in primary lung cancers and cell lines. Cancer Res. 55: 505–509.

    PubMed  CAS  Google Scholar 

  180. Okamoto, A., Hussain, S. P., Hagiwara, K., Spillare, E. A., Rusin, M. R., Demetrick, D. J., ct al. (1995) Mutations in the v161NK4/MTSv CDKN2 pI 5INK4B/MTS2 and p18 genes in primary and metastatic lung cancer. Cancer Res. 55: 1448–1451.

    PubMed  CAS  Google Scholar 

  181. Kinoshita, I., Dosaka-Akita, H., Mishina, T., Akie, K., Nishi, M., Hiroumi, H., et al. (1996) Altered p16INK4 and retinoblastoma protein status in non-small cell lung cancer: Potential synergistic effect with altered p53 protein on proliferative activity. Cancer Res. 56: 5557–5562.

    PubMed  CAS  Google Scholar 

  182. Taga, S., Osaki, T., Ohgami, A., Imoto, II., Yoshimatsu, T., Yoshino, I., et al. (1997) Prognostic value of the immunohistochemical detection of pl6°NK4 expression in nonsmall cell lung carcinoma. Cancer 80: 389–395.

    Article  PubMed  CAS  Google Scholar 

  183. Okamoto, A., Demetrick, D. J., Spillare, E. A., Hagiwara, K., Hussain, S. P., Bennett, W. P., et al. (1994) Mutations and altered expression of p16(ink4) in human cancer. Proc. Natl. Acad. Sci. USA 91:11, 045–11, 049.

    Google Scholar 

  184. Otterson, G. A., Kratzkc, R. A., Coxon, A., Kim, Y. W., and Kaye, F. J. (1994) Absence of p l6INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene 9: 3375–3378.

    PubMed  CAS  Google Scholar 

  185. Nakagawa, K., Conrad, N. K., Williams, J. P., Johnson, B. E., and Kelley, M. J. (1995) Mechanism of inactivation of CDKN2 and MTS2 in non-small cell lung cancer and association with advanced stage. Oncogene 11: 1843–1851.

    PubMed  CAS  Google Scholar 

  186. Kelley, M. J., Nakagawa, K., Steinberg, S. M., Mulshine, J. L., Kamb, A., and Johnson, B. E. (1995) Differential inactivation of CDKN2 and Rb protein in non-small-cell and small-cell lung cancer cell lines. J. Natl. Cancer Inst. 87: 756–761.

    Article  PubMed  CAS  Google Scholar 

  187. Sakaguchi, M., Fujii, Y., Hirabayashi, H., Yoon, H. E., Komoto, Y., Oue, T., et al. (1996). Inversely correlated expression of p 16 and Rb protein in non-small cell lung cancers: an immunohistochemical study. Int. J Cancer 65: 442–445.

    Article  PubMed  CAS  Google Scholar 

  188. Geraclts J. Fong KM. Zimmermann PV. Maynard R. Minna JD. (1999). Correlation of abnormal RB, p 1 6ink4a, and p53 expression with 3p loss of heterozygosity, other genetic abnormalities, and clinical features in 103 primary non-small cell lung cancers. Clin Cancer Res. 5 (4): 79l - 800

    Google Scholar 

  189. Quelle, D. E., Zindy, F., Ashmun, R. A., and Sherr, C. J. (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993–1000.

    Article  PubMed  CAS  Google Scholar 

  190. Kamijo, T., Zindy, F., Roussel, M. F., Quelle, D. E., Downing, J. R., Ashmun, R. A., et al. (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product pl9naF Cell 91: 649–659.

    Article  PubMed  CAS  Google Scholar 

  191. Hannon, G. J. and Beach, D. (1994)p151NK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371: 257–261.

    Google Scholar 

  192. Miller, C. W., Yeon, C., Aslo, A., Mendoza, S., Aytac, U., and Koeffler, H. P. (1997) The p19(ink4d) cyclin dependent kinase inhibitor gene is altered in osteosarcoma. Oncogene 15: 231–235.

    Article  PubMed  CAS  Google Scholar 

  193. Kawamata, N., Morosetti, R., Miller, C. W., Park, D., Spirin, K. S., Nakamaki, T., et al. (1995) Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kipl in human malignancies. Cancer Res. 55: 2266–2269.

    PubMed  CAS  Google Scholar 

  194. Esposito, V., Baldi, A., De Luca, A., Micheli, P., Mazzarella, G., Baldi, F., et al. (1997) Prognostic value of p53 in non-small cell lung cancer: relationship with proliferating cell nuclear antigen and cigarette smoking. Human Pathol. 28: 233–237.

    Article  CAS  Google Scholar 

  195. Kondo, M., Matsuoka, S., Uchida, K., Osada, H., Nagatake, M., Takagi, K., et al. (1996) Selective maternal-allele loss in human lung cancers of the maternally expressed p57K1P2 gene at 11p15.5. Oncogene 12: 1365–1368.

    PubMed  CAS  Google Scholar 

  196. Naylor, S. L., Johnson, B. E., Minna, J. D., and Sakaguchi, A. Y. (1987) Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer. Nature 329: 451–454.

    Article  PubMed  CAS  Google Scholar 

  197. Kok, K., Osinga, J., Carritt, B., Davis, M. B., van der Hout, A. H., van der Veen, A. Y., et al. (1987) Deletion of a DNA sequence at the chromosomal region 3p21 in all major types of lung cancer. Nature 330: 578–581.

    Article  PubMed  CAS  Google Scholar 

  198. Hibi, K., Takahashi, T., Yamakawa, K., Ueda, R., Sekido, Y., Ariyoshi, Y., et al. (1992) Three distinct regions involved in 3p deletion in human lung cancer. Oncogene 7: 445–449.

    PubMed  CAS  Google Scholar 

  199. Drabkin, H. A., Mendez, M. J., Rabbitts, P. H., Varkony, T., Bergh, J., Schlessinger, J., et al. (1992) Characterization of the submicroscopic deletion in the small-cell lung carcinoma (SCLC) cell line U2020. Genes Chromosomes Cancer 5: 67–74.

    Article  PubMed  CAS  Google Scholar 

  200. Latif, F., Tory, K., Modi, W. S., Graziano, S. L., Gamble, G., Douglas, J., et al. (1992) Molecular characterization of a large homozygous deletion in the small cell lung cancer cell line U2020: A strategy for cloning the putative tumor suppressor gene. Genes Chromosomes Cancer 5: 119–127.

    Article  PubMed  CAS  Google Scholar 

  201. Sozzi, G., Veronese, M. L., Negrini, M., Baffa, R., Cotticelli, M. G., Inoue, H., et al. (1996) The FHIT gene 3p14.2 is abnormal in lung cancer. Cell 85: 17–26.

    Article  PubMed  CAS  Google Scholar 

  202. Fong, K. M., Biesterveld, E. J., Virmani, A., Wistuba, 1., Sekido, Y., Bader, S. A., et al. (1997) FHIT and FRA3B 3p14.2 allele loss are common in lung cancer and preneoplastic bronchial lesions and are associated with cancer-related FHIT eDNA splicing aberrations. Cancer Res. 57: 2256–2267.

    PubMed  CAS  Google Scholar 

  203. Yanagisawa, K., Kondo, M., Osada, H., Uchida, K., Takagi, K., Masuda, A., et al. (1996) Molecular analysis of the FHIT gene at 3p14.2 in lung cancer cell lines. Cancer Res. 56: 5579–5582.

    PubMed  CAS  Google Scholar 

  204. Sozzi, G., Tornielli, S., Tagliabue, E., Sard, L., Pezzella, F., Pastorino, U., et al. (1997) Absense of Fhit protein in primary lung tumors and cell lines with FHIT gene abnormalities. Cancer Res. 57: 5207–5212.

    PubMed  CAS  Google Scholar 

  205. Siprashvili, Z., Sozzi, G., Barnes, L. D., McCune, P., Robinson, A. K., Eryomin, V., et al. (1997) Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc. Natl. Acad. Sci. USA 94:13, 77113, 776.

    Google Scholar 

  206. Sozzi, G., Sard, L., De Gregorio, L., Marchetti, A., Musso, K., Buttitta, F., et al. (1997) Association between cigarette smoking and FHIT gene alterations in lung cancer. Cancer Res. 57: 2121–2123.

    PubMed  CAS  Google Scholar 

  207. Daly, M. C., Xiang, R.-H., Buchhagen, D., Hensel, C. H., Garcia, D. K., Killary, A. M., et al. (1993) A homozygous deletion on chromosome 3 in a small cell lung cancer cell line correlates with a region of tumor suppressor activity. Oncogene 8: 1721–1729.

    PubMed  CAS  Google Scholar 

  208. Kok, K., van den Berg, A., Veldhuis, P. M. J. F., van der Veen, A. Y., Franke, M., Schoenmakers, E. F. P. M., et al. (1994) A homozygous deletion in a small cell lung cancer cell line involving a 3p21 region with a marked instability in yeast artificial chromosomes. Cancer Res. 54: 4183–4187.

    PubMed  CAS  Google Scholar 

  209. Wei, M. H., Latif, F., Bader, S., Kashuba, V., Chen, J. Y., Duh, F. M., et al. (1996) Construction of a 600-kilobase cosmid clone contig and generation of a transcriptional map surrounding the lung cancer tumor suppressor gene (TSG) locus on human chromosome 3p21.3: Progress toward the isolation of a lung cancer TSG. Cancer Res. 56: 1487–1492.

    PubMed  CAS  Google Scholar 

  210. Lerman, M. and Minna, J. (2000)The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium, Cancer Res. 60: 6116–6133.

    Google Scholar 

  211. Dammann, R., Li C., Yoon, J. H., Chin, P. L., Bates, S., and Pfeifer, G. P. (200). Epigenetic in activation of a RAS association domain family protein from the lung tumour suppressor locus 2p21.3, Nat Genet. 25: 315–319

    Google Scholar 

  212. c.Burbee, D., Forgacs, E., Zöchbauer-Milller, S., Shivakuma, L., Fong, K., Gao, B., et al. RASSF1A in th e 3p21.3 homozygous deletion region: epigenetic inactivation in lung and breast cancer, Cancer Res. 61

    Google Scholar 

  213. Yamakawa, K., Takahashi, T., Horio, Y., Murata, Y., Takahashi, E., Hibi, K., et al. (1993) Frequent homozygous deletions in lung cancer cell lines detected by a DNA marker located at 3p21.3-p22. Oncogene 8: 327–330.

    PubMed  CAS  Google Scholar 

  214. Papadopoulos, N., Nicolaides, N. C., Wei, Y. F., Ruben, S. M., Carter, K. C., Rosen, C. A., et al. (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263: 1625–1629.

    Article  PubMed  CAS  Google Scholar 

  215. Sekido, Y., Bader, S., Latif, F., Gnarra, J. R., Gazdar, A. F., Linehan, W. M., et al. (1994) Molecular analysis of the von Hippel-Lindau disease tumor suppressor gene in human lung cancer cell lines. Oncogene 9: 1599–1604.

    PubMed  CAS  Google Scholar 

  216. Gebert, J. F., Moghal, N., Frangioni, J. V., Sugarbaker, D. J., and Neel, B. G. (1991). High frequency of retinoic acid receptor beta abnormalities in human lung cancer. Oncogene 6: 1859–1868.

    PubMed  CAS  Google Scholar 

  217. Nervi, C., Vollberg, T. M., George, M. D., Zelent, A., Chambon, P., and Jetten, A. M. (1991) Expression of nuclear retinoic acid receptors in normal tracheobronchial cells and in lung carcinoma cells. Exp. Cell Res. 195: 163–170.

    Article  PubMed  CAS  Google Scholar 

  218. Geradts, J., Chen, J. Y., Russell, E. K., Yankaskas, J. R., Nieves, L., and Minna, J. D. (1993) Human lung cancer cell lines exhibit resistance to retinoic acid treatment. Cell Growth Diff. 4: 799–809.

    PubMed  CAS  Google Scholar 

  219. Zhang, X. K., Liu, Y., Lee, M. O., and Pfahl, M. (1994) A specific defect in the retinoic acid response associated with human lung cancer cell lines. Cancer Res. 54: 5663–5669.

    PubMed  CAS  Google Scholar 

  220. Moghal, N. and Neel, B. G. (1995) Evidence for impaired retinoic acid receptor-thyroid hormone receptor AF-2 cofactor activity in human lung cancer. Mol. Cell. Biol. 15: 3945–3959.

    PubMed  CAS  Google Scholar 

  221. Houle, B., Leduc, F., and Bradley, W. E. (1991) Implication of RAR(3 in epidermoid (Squamous) lung cancer. Genes Chromosomes Cancer 3: 358–366.

    Article  PubMed  CAS  Google Scholar 

  222. D’Amico, D., Carbone, D. P., Johnson, B. E., Meltzer, S. J., and Minna, J. D. (1992) Polymorphic sites within the MCC and APC loci reveal very frequent loss of heterozygosity in human small cell lung cancer. Cancer Res. 52: 1996–1999.

    PubMed  Google Scholar 

  223. Ohata, H., Emi, M., Fujiwara, Y., Higashino, K., Nakagawa, K., Futagami, R., et al. (1993) Deletion mapping of the short arm of chromosome 8 in non-small cell lung carcinoma. Genes Chromosomes Cancer 7: 85–88.

    Article  PubMed  CAS  Google Scholar 

  224. Sato, S., Nakamura, Y., and Tsuchiya, E. (1994) Difference of allelotype between squamous cell carcinoma and adenocarcinoma of the lung. Cancer Res. 54: 5652–5655.

    PubMed  CAS  Google Scholar 

  225. Shiseki, M., Kohno, T., Nishikawa, R., Sameshima, Y., Mizoguchi, H., and Yokota, J. (1994) Frequent allelic losses on chromosomes 2q, 18q, and 22q in advanced non-small cell lung carcinoma. Cancer Res. 54: 5643–5648.

    PubMed  CAS  Google Scholar 

  226. Bepler, G. and Garcia-Blanco, M. A. (1994) Three tumor-suppressor regions on chromosome I 1 p identified by high-resolution deletion mapping in human non-small-cell lung cancer. Proc. Natl. Acad. Sci. USA 91: 5513–5517.

    Article  PubMed  CAS  Google Scholar 

  227. lizuka, M., Sugiyama, Y., Shiraishi, M., Jones, C., and Sekiya, T. (1995) Allelic losses in human chromosome 11 in lung cancers. Genes Chromosomes Cancer 13: 40–46.

    Article  CAS  Google Scholar 

  228. Otsuka, T., Kohno, T., Mori, M., Noguchi, M., Hirohashi, S., and Yokota, J. (1996) Deletion mapping of chromosome 2 in human lung carcinoma. Genes Chromosomes Cancer 16: 113–119.

    Article  PubMed  CAS  Google Scholar 

  229. O’Briant, K. C. and Bepler, G. (1997) Delineation of the centromeric and telomeric chromosome segment 11p15.5 lung cancer suppressor regions LOH11A and LOH11B. Genes Chromosomes Cancer 18: 111–114.

    Article  PubMed  Google Scholar 

  230. Sekido, Y., Pass, H. I., Bader, S., Mew, D. J., Christman, M. F., Gazdar, A. F., et al. (1995) Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res. 55: 1227–1231.

    PubMed  CAS  Google Scholar 

  231. Cooper, C. A., Bubb, V. J., Smithson, N., Carter, R. L., Gledhill, S., Lamb, D., et al. (1996) Loss of heterozygosity at 5821 in non-small cell lung cancer: a frequent event but without evidence of apc mutation. J. Pathol. 180: 33–37.

    Article  PubMed  CAS  Google Scholar 

  232. Hosoe, S., Shigedo, Y., Ueno, K., Tachibana, I., Osaki, T., Tanio, Y., et al. (1994) Detailed deletion mapping of the short arm of chromosome 3 in small cell and non-small cell carcinoma of the lung. Lung Cancer 10: 297–305.

    Article  PubMed  CAS  Google Scholar 

  233. Wieland, I., Böhm, M., and Bogatz, S. (1992) Isolation of DNA sequences deleted in lung cancer by genomic difference cloning. Proc. Natl. Acad. Sci. USA 89: 9705–9709.

    Article  PubMed  CAS  Google Scholar 

  234. Wieland, I., Bohm, M., Arden, K. C., Ammermuller, T., Bogatz, S., Viars, C. S., et al. (1996) Allelic deletion mapping on chromosome 5 in human carcinomas. Oncogene 12: 97–102.

    PubMed  CAS  Google Scholar 

  235. Bepler, G. and Koehler, A. (1995) Multiple chromosomal aberrations and 1 1p allelotyping in lung cancer cell lines. Cancer Genet. Cytogenet. 84: 39–45.

    Article  PubMed  CAS  Google Scholar 

  236. Ludwig, C. U., Raefle, G., Dalquen, P., Stulz, P., Stahel, R., and Obrecht, J. P. (1991) Allelic loss on the short arm of chromosome 11 in non-small-cell lung cancer. Int. J. Cancer 49: 661–665.

    Article  PubMed  CAS  Google Scholar 

  237. Fong, K. M., Zimmerman, P. V., and Smith, P. J. (1994) Correlation of loss of heterozygosity at l 1p with tumour progression and survival in non-small cell lung cancer. Genes Chromosomes Cancer 10: 183–189.

    Article  PubMed  CAS  Google Scholar 

  238. Kohno, T., Morishita, K., Takano, H., Shapiro, D. N., and Yokota, J. (1994) Homozygous deletion at chromosome 2q33 in human small-cell lung carcinoma identified by arbitrarily primed PCR genomic fingerprinting. Oncogene 9: 103–108.

    PubMed  CAS  Google Scholar 

  239. Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., et al. (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.

    Article  PubMed  CAS  Google Scholar 

  240. Markowitz, S. D. and Roberts, A. B. (1996) Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev. 7: 93–102.

    Article  PubMed  CAS  Google Scholar 

  241. Gerwin, B. I., Spillare, E., Forrester, K., Lehman, T. A., Kispert, J., Welsh, J. A., et al. (1992) Mutant p53 can induce tumorigenic conversion of human bronchial epithelial cells and reduce their responsiveness to a negative growth factor, transforming growth factor beta 1. Proc. Natl. Acad. Sci. USA 89: 2759–2763.

    Article  PubMed  CAS  Google Scholar 

  242. Heldin, C. H., Miyazono, K., and ten Dijke, P. (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465–471.

    Article  PubMed  CAS  Google Scholar 

  243. Nergaard, P., Spang-Thomsen, M., and Poulsen, H. S. (1996) Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines. Br. J. Cancer 73: 1037–1043.

    Article  Google Scholar 

  244. Tani, M., Takenoshita, S., Kohno, T., Hagiwara, K., Nagamachi, Y., Harris, C. C., et al. (1997) Infrequent mutations of the transforming growth factor beta-type II receptor gene at chromosome 3p22 in human lung cancers with chromosome 3p deletions. Carcinogenesis 18: 1119–1121.

    Article  PubMed  CAS  Google Scholar 

  245. Takenoshita, S., Hagiwara, K., Gemma, A., Nagashima, M., Ryberg, D., Lindstedt, B. A., et al. (1997) Absence of mutations in the transforming growth factor-beta type II receptor in sporadic lung cancers with microsatellite instability and rare H-ras 1 alleles. Carcinogenesis 18: 1427–1429.

    Article  PubMed  CAS  Google Scholar 

  246. Merlo. A., Gabrielson, E., Mabry, M., Vollmer, R., Baylin, S. B., and Sidransky, D. (1994) Homozygous deletion on chromosome 9p and loss ofheterozygosity on 9q, 6p, and 6q in primary human small cell lung cancer. Cancer Res. 54: 232–2326.

    Google Scholar 

  247. Riggins, G. J., Kinzler, K. W., Vogelstein, B., and Thiagalingam, S. (1997) Frequency of Smad gene mutations in human cancers. Cancer Res. 57: 2578–2580.

    PubMed  CAS  Google Scholar 

  248. Uchida, K., Nagatake, M., Osada, H., Yatabe, Y., Kondo, M., Mitsudomi, T., et al. (1996) Somatic in vivo alterations of the JV 181 gene at 18g21 in human lung cancers. Cancer Res. 56: 5583–5585.

    PubMed  CAS  Google Scholar 

  249. Nagatake, M., Takagi, Y., Osada, H., Uchida, K., Mitsudomi, T., Saul, S., et al. (1996) Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. Cancer Res. 56: 2718–2720.

    PubMed  CAS  Google Scholar 

  250. Hayashi, H., Abdollah, S., Qiu, Y., Cai, J., Xu, Y.-Y., Grinnell, B. W., et al. (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Ce11 89: 1165–1173.

    CAS  Google Scholar 

  251. Sundaresan, V., Ganly, P., Hasleton, P., Rudd, R., Sinha, G., Bleehen, N. M., et al. (1992) p53 and chromosome 3 abnormalities, charac teristic of malignant lung tumours, are detectable in preinvasive lesions of the bronchus. Oncogene 7: 1989–1997.

    Google Scholar 

  252. Nuorva, K., Soini, Y., Kamel, D., Autio-Harmainen, H., Risteli, L., Risteli_, J., et al. (1993) Concurrent p53 expression in bronchial dysplasias and squamous cell lung carcinomas. Am. J. Pathol. 142: 725–732.

    PubMed  CAS  Google Scholar 

  253. Bennett, W. P., Colby, T. V., Travis, W. D., Borkowski, A., Jones, R. T., Lane, D. P., et al. (1993) p53 protein accumulates frequently in early bronchial neoplasia. Cancer Res. 53: 4817–4822.

    Google Scholar 

  254. Hirano, T., Franzen, B., Kato, H., Ebihara, Y., and Auer, G. (1994) Genesis of squamous cell lung carcinoma. Sequential changes of proliferation, DNA ploidy, and p53 expression. Am. J. Pathol. 144: 296–302.

    PubMed  CAS  Google Scholar 

  255. Satoh, Y., Ishikawa, Y., Nakagawa, K., Hirano, T., and Tsuchiya, E. (1997) A follow-up study of progression from dysplasia to squamous cell carcinoma with immunohistochemical examination of p53 protein overexpression in the bronchi of ex-chromate workers. Br. J. Cancer 75: 678–683.

    Article  PubMed  CAS  Google Scholar 

  256. Li, Z. JH., Zheng, J., Weiss, L. M., and Shibata, D. (1994) c-k-ras and p53 mutations occur very early in adenocarcinoma of the lung. Am. J. Pathol. 144: 303–309.

    Google Scholar 

  257. Chung, G. T. Y., Sundaresan, V., Hasleton, P., Rudd, R., Taylor, R., and Rabbitts, P. H. (1995) Sequential molecular genetic changes in lung cancer development. Oncogene 11: 2591–2598.

    PubMed  CAS  Google Scholar 

  258. Hung, J., Kishimoto, Y., Sugio, K., Virmani, A., Mclntire, D. D., Minna, J. D., et al. (1995) Allele-specific chromosome 3p deletions occur at an early stage in the pathogenesis of lung carcinoma. JA MA 273: 558–563.

    CAS  Google Scholar 

  259. Kishimoto, Y., Sugio, K., Hung, J. Y., Virmani, A. K., McIntire, D. D., Minna, J. D., et al. (1995) Allele-specific loss in chromosome 9p loci in preneoplastic lesions accompanying non-small-cell lung cancers. J. Natl. Cancer Inst. 87: 1224–1229.

    Article  PubMed  CAS  Google Scholar 

  260. Sugio, K., Kishimoto, Y., Virmani, A. K., Hung, J. Y., and Gazdar, A. F. (1994) K-ras mutations are a relatively late event in the pathogenesis of lung carcinomas. Cancer Res. 54: 5811–5815.

    PubMed  CAS  Google Scholar 

  261. Westra, W. H., Baas, I.O., Hruban, R. H., Askin, F. B., Wilson, K., Offerhaus, G. J., et al. (1996) K-ras oncogene activation in atypical alveolar hyperplasias of the human lung. Cancer Res. 56: 2224–2228.

    PubMed  CAS  Google Scholar 

  262. Slaughter, D. P., Southvick, H. W., and Smejkal, W. (1953) “Field cancerization” in oral stratified squamous epithelium: clinical implicati ons of multicentric origin. Cancer 6:963–968.

    Google Scholar 

  263. Franklin, W. A., Gazdar, A. F., Haney, J., Wistuba, I. 1., La Rosa, F. G., Kennedy, T., et al. (1997) Widely dispersed p53 mutation in respiratory epithelium. J. Clin. Invest.100:2133–2137.

    Google Scholar 

  264. Peltomäki, P., Lothe, R. A., Aaltonen, L. A., Pylkkänen, L., Nyström-Lahti, M., Seruca, R., et al. (1993) Microsatellite instability is associated with tumors that characterize the hereditary nonpolyposis colorectal carcinoma syndrome. Cancer Res. 53: 5853–5855.

    PubMed  Google Scholar 

  265. Ryberg, D., Lindstedt, B. A., Zienolddiny, S., and Haugen, A. (1995) A hereditary genetic marker closely associated with microsatellite instability in lung cancer. Cancer Res. 55: 3996–3999.

    PubMed  CAS  Google Scholar 

  266. Mao, L., Lee, D. J., Tockman, M. S., Erozan, Y. S., Askin, F., and Sidransky, D. (1994) Microsatellite alterations as clonal markers for the detection of human cancer. Proc. Natl. Acad. Sci. USA 91: 9871–9875.

    Article  PubMed  CAS  Google Scholar 

  267. Merlo, A., Mabry, M., Gabrielson, E., Vollmer, R., Baylin, S. B., and Sidransky, D. (1994) Frequent microsatellite instability in primary small cell lung cancer. Cancer Res. 54: 209–2101.

    Google Scholar 

  268. Shridhar, V., Siegfried, J., Hunt, J., del Mar Alonso, M., and Smith, D. I. (1994) Genetic instability of microsatellite sequences in many non-small cell lung carcinomas. Cancer Res. 54: 2084–2087.

    PubMed  CAS  Google Scholar 

  269. Fong, K. M., Zimmerman, P. V., and Smith, P. J. (1995) Microsatellite instability and other molecular abnormalities in non-small cell lung cancer. Cancer Res. 55: 28–30.

    PubMed  CAS  Google Scholar 

  270. Adachi, J., Shiseki, M., Okazaki, T., lshimaru, G., Noguchi, M., Hirohashi, S., et al. (1995) Microsatellite instability in primary and metastatic lung carcinomas. Genes Chromosomes Cancer 14: 301–306.

    Article  PubMed  CAS  Google Scholar 

  271. Chen, X. Q., Stroun, M., Magnenat, J. L., Nicod, L. P., Kurt, A. M., Lyautey, J., et al. (1996) Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nature Med. 2: 1033–1035.

    Article  PubMed  CAS  Google Scholar 

  272. Hurr, K., Kemp, B., Silver, S. A., and El-Naggar, A. K. (1996) Microsatellite alteration at chromosome 3p loci in neuroendocrine and non-neuroendocrine lung tumors. Histogenetic and clinical relevance. Am. J. Pathol. 149: 613–620.

    PubMed  CAS  Google Scholar 

  273. Rosell, R., Pifarré, A., Monzo, M., Astudillo, J., López-Cabrerizo, M. P., Calvo, R., et al. (1997) Reduced survival in patients with stage-I non-small-cell lung cancer associated with DNA-replication errors. Int. J. Cancer 74: 330–334.

    Article  PubMed  CAS  Google Scholar 

  274. Sekine, I., Yokose, T., Ogura, T., Suzuki, K., Nagai, K., Kodama, T., et al. (1997) Microsatellite instability in lung cancer patients 40 years of age or younger. Jpn. J. Cancer Res. 88: 559–563.

    Article  PubMed  CAS  Google Scholar 

  275. Miozzo, M., Sozzi, G., Musso, K., Pilotti, S., Incarbone, M., Pastorino, U., et al. (1996). Microsatellite alterations in bronchial and sputum specimens of lung cancer patients. Cancer Res. 56: 2285–2288.

    PubMed  CAS  Google Scholar 

  276. Lindstedt, B.-A., Ryberg, D., and Haugen, A. (1997) Rare alleles at different VNTR loci among lung-cancer patients with microsatellite instability in tumours. Int. J. Cancer 70: 412–415.

    Article  PubMed  CAS  Google Scholar 

  277. Chuang, L. S.-H., Ian, H.-I., Koh, T.-W., Ng, H.-H., Xu, G., and Li, B. F. L. (1997) Human DNA-(cytosine-5) methyltransferase PCNA complex as a target for p21(WAF1). Science 277: 1996–2000.

    Article  PubMed  CAS  Google Scholar 

  278. Herman, J. G., Latif, F., Weng, Y., Lerman, M. I., Zbar, B., Liu, S., et al. (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA 91: 9700–9704.

    Article  PubMed  CAS  Google Scholar 

  279. Ohtani-Fujita, N., Dryja, T. P., Rapaport, J. M., Fujita, T., Matsumura, S., Ozasa, K., et al. (1997) Hypermethylation in the retinoblastoma gene is associated with unilateral, sporadic retino-blastoma. Cancer Genet. Cytogenet. 98: 43–49.

    Article  PubMed  CAS  Google Scholar 

  280. Sakai, T., Toguchida, J., Ohtani, N., Yandell, D. W., Rapaport, J. M., and Dryja, T. P. (1991) Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am. J. Human Genet. 48: 880–888.

    CAS  Google Scholar 

  281. Makos, M., Nelkin, B. D., Lerman, M. I., Latif, F., Zbar, B., and Baylin, S. B. (1992) Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proc. Natl. Acad. Sci. USA 89: 1929–1933.

    Article  PubMed  CAS  Google Scholar 

  282. Schroeder, M. and Mass, M. J. (1997) CpG methylation inactivates the transcriptional activity of the promoter of the human p53 tumor suppressor gene. Biochem. Biophys. Res. Commun. 235: 403–406.

    Article  PubMed  CAS  Google Scholar 

  283. Zöchbauer-Müller, S., Fong, K. M., Maitra, A., Lam, S., Geradts, J., Ashfaq, R., et al. 5’CpG Island methylation of the FHIT gene os correlated with loss of gene expression in lung and breast cancer, Cancer Res. 61 in Press.

    Google Scholar 

  284. Zochbauer-Muller, S., Fong, K. M., Virmani, A. K., Geradts, J., Gazdar, A. F., and Minna, J. D. Aberrant promoter methylation of multiple genes in non-small cell lung cancers, Cancer Res. 61: 249–55., 2001

    Google Scholar 

  285. Suzuki, H., Ueda, R., Takahashi, T., and Takahashi, T. (1994) Altered imprinting in lung cancer. Nature Genet. 6: 332–333.

    Article  PubMed  CAS  Google Scholar 

  286. Kondo, M., Suzuki, H., Ueda, R., Osada, H., Takagi, K., Takahashi, T., et al. (1995). Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene 10: 1193–1198.

    PubMed  CAS  Google Scholar 

  287. Gazdar, A. F. and Minna, J. D. (1997) Cigarettes, sex, and lung adenocarcinoma. J. Natl. Cancer Inst. 89: 1563–1565.

    Article  PubMed  CAS  Google Scholar 

  288. Denissenko, M. F., Pao, A., Tang, M., and Pfeifer, G.P. (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in p53. Science 274: 430–432.

    Article  PubMed  CAS  Google Scholar 

  289. Spivack, S. D., Fasco, M. J., Walker, V. E., and Kaminsky, L. S. (1997) The molecular epidemiology of lung cancer. Crit. Rev. Toxicol. 27: 319–365.

    Article  PubMed  CAS  Google Scholar 

  290. Wolf, C. R., Smith, C. A., and Forman, D. (1994) Metabolic polymorphisms in carcinogen metabolising enzymes and cancer susceptibility. Br. Med. Bull. 50: 718–731.

    PubMed  CAS  Google Scholar 

  291. Hayes, J. D. and Pulford, D. J. (1995) The glutathione S-transferasc supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30: 445–600.

    Article  PubMed  CAS  Google Scholar 

  292. Nazar-Stewart, V., Motulsky, A. G., Eaton, D. L., White, E., Hornung, S. K., Leng, Z. T., et al. (1993) The glutathione S-transferase mu polymorphism as a marker for susceptibility to lung carcinoma. Cancer Res. 53: 2313–2318.

    PubMed  CAS  Google Scholar 

  293. Hayashi, S., Watanabe, J., and Kawajiri, K. (1992) High susceptibility to lung cancer analyzed in terms of combined genotypes of P450IA1 and Mu-class glutathione S-transferase genes. Jpn. J. Cancer Res. 83: 866–870.

    Article  PubMed  CAS  Google Scholar 

  294. Brockmoller, J., Kerb, R., Drakoulis, N., Nitz, M., and Roots, I. (1993) Genotype and phenotype of glutathione S-transferase class mu isoenzymes mu and psi in lung cancer patients and controls. Cancer Res. 53: 1004–1011.

    PubMed  CAS  Google Scholar 

  295. Nakajima, T., Elovaara, E., Anttila, S., Hirvoncn, A., Camus, A. M., Hayes, J. D., et al. (1995) Expression and polymorphism of glutathione S-transferase in human lungs: risk factors in smoking-related lung cancer. Carcinogenesis 16: 707–711.

    Article  PubMed  CAS  Google Scholar 

  296. McWilliams, J. E., Sanderson, B. J., Harris, E. L., Richert Boe, K. E., and Henner, W. D. (1995) Glutathione S-transferase M1 (GSTM1) deficiency and lung cancer risk. Cancer Epidemiol. Biomark. Prey. 4: 589–594.

    CAS  Google Scholar 

  297. Anttila, S., Hirvonen, A., Vainio, H., Husgafvel Pursiainen, K., Hayes, J. D., and Ketterer, B. (1993) Immunohistochemical localization of glutathione S-transferases in human lung. Cancer Res. 53: 5643–5648.

    PubMed  CAS  Google Scholar 

  298. Ryberg, D., Skaug, V., Hewer, A., Phillips, D. H., Harries, L. W., Wolf, C. R., et al. (1997) Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 18: 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  299. Zimniak, P., Nanduri, B., Pikula, S., Bandorowicz Pikula, J., Singhal, S. S., Srivastava, S. K., et al. (1994) Naturally occurring human glutathione S-transferase GSTPI-1 isoforms with isoleueine and valine in position 104 differ in enzymic properties. Eur. J. Biochem. 224: 893–899.

    Article  PubMed  CAS  Google Scholar 

  300. Kawajiri, K., Nakachi, K., Imai, K., Yoshii, A., Shinoda, N., and Watanabe, J. (1990) Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett. 263: 131–133.

    Article  PubMed  CAS  Google Scholar 

  301. Kawajiri, K., Nakachi, K., Imai, K., Watanabe, J., and Hayashi, S. (1993) The CYP1A1 gene and cancer susceptibility. Crit. Rev. Oncol. Hematol. 14: 77–87.

    Article  PubMed  CAS  Google Scholar 

  302. Hirvonen, A., Husgafvel-Pursiainen, K., Anttila, S., Karjalainen, A., Sorsa, M., and Vainio, H. (1992) Metabolic cytochrome P450 genotypes and assessment of individual susceptibility to lung cancer. Pharmacogenet. 2: 259–263.

    Article  CAS  Google Scholar 

  303. Alexandrie, A. K., Sundberg, M. I., Seidegard, J., Tornling, G., and Rannug, A. (1994) Genetic susceptibility to lung cancer with special emphasis on CYP1A1 and GSTM1: a study on host factors in relation to age at onset, gender and histological cancer types. Carcinogenesis 15: 1785–1790.

    Article  PubMed  CAS  Google Scholar 

  304. Tefre, T., Daly, A. K., Armstrong, M., Leathart, J. B., Idle, J. R., Brogger, A., et al. (1994) Genotyping of the CYP2D6 gene in Norwegian lung cancer patients and controls. Pharmacogenetics 4: 47–57.

    Article  PubMed  CAS  Google Scholar 

  305. Xu, X., Kelsey, K. T., Wiencke, J. K., Wain, J. C., and Christiani, D. C. (1996) Cytochrome P450 CYP1A1 MspI polymorphism and lung cancer susceptibility. Cancer Epidemiol. Biomark. Prey. 5: 687–692.

    CAS  Google Scholar 

  306. Goto, I., Yoneda, S., Yamamoto, M., and Kawajiri, K. (1996) Prognostic significance of germ line polymorphisms of the CYP1A1 and glutathione S-transferase genes in patients with non-small cell lung cancer. Cancer Res. 56: 3725–3730.

    PubMed  CAS  Google Scholar 

  307. Hayashi, S., Watanabe, J., Nakachi, K., and Kawajiri, K. (1991) Genetic linkage of lung cancer-associated Mspl polymorphisms with amino acid replacement in the heure binding region of the human cytochrome P4501A1 gene. J. Biochem. 110: 407–411.

    PubMed  CAS  Google Scholar 

  308. Persson, I., Johansson, I., and Ingelman Sundberg, M. (1997) In vitro kinetics of two human CYP1A1 variant enzymes suggested to be associated with interindividual differences in cancer susceptibility. Biochem. Biophys. Res. Commun. 231: 227–230.

    Article  PubMed  CAS  Google Scholar 

  309. Zhang, Z.-Y., Fasco, M. J., Huang, L., Guengerich, F. P., and Kaminsky, L. S. (1996) Characterization of purified human recombinant cytochrome P4501A1-Ile462 and -Va1462: assessment of a role for the rare allele in carcinogenesis. Cancer Res. 56: 3926–3933.

    PubMed  CAS  Google Scholar 

  310. Hamada, G. S., Sugimura, H., Suzuki, I., Nagura, K., Kiyokawa, E., Iwase, T., et al. (1995) The heme-binding region polymorphism of cytochrome P4501A 1 (CyplAi), rather than the RsaI polymorphism of IIE 1 (CypIIE 1), is associated with lung cancer in Rio de Janeiro. Cancer Epidemiol. Biomark. Prevent. 4: 63–67.

    CAS  Google Scholar 

  311. Drakoulis, N., Cascorbi, I., Brockmoller, J., Gross, C. R., and Roots, I. (1994). Polymorphisms in the human CYP1A1 gene as susceptibility factors for lung cancer: exon-7 mutation (4889 A to G), and a T to C mutation in the 3’-flanking region. Clin. Invest. 72: 240–248.

    Article  CAS  Google Scholar 

  312. Caporaso, N., DeBaun, M. R., and Rothman, N. (1995) Lung cancer and CYP2D6 (the debrisoquine polymorphism): sources of heterogeneity in the proposed association. Pharmacogenetics 129: 129–134.

    Article  Google Scholar 

  313. Christensen, P. M., Gotzsche, P. C., and Brosen, K. (1997) The sparteine/debrisoquine (CYP2D6) oxidation polymorphism and the risk of lung cancer: a meta-analysis. Eur. J. Clin. Pharmacol. 51: 389–393.

    Article  PubMed  CAS  Google Scholar 

  314. Bouchardy, C., Benhamou, S., and Dayer, P. (1996) The effect of tobacco on lung cancer risk depends on CYP2D6 activity. Cancer Res. 56: 251–253.

    PubMed  CAS  Google Scholar 

  315. London, S. J., Daly, A. K., Leathart, J. B., Navidi, W. C., Carpenter, C. C., and Idle, J. R. (1997) Genetic polymorphism of CYP2D6 and lung cancer risk in African-Americans and Caucasians in Los Angeles County. Carcinogenesis 18: 1203–1214.

    Article  PubMed  CAS  Google Scholar 

  316. Legrand, M., Stucker, I., Marez, D., Sabbagh, N., Lo-Guidice, J. M., and Broly, F. (1996) Influence of a mutation reducing the catalytic activity of the cytochrome P450 CYP2D6 on lung cancer susceptibility. Carcinogenesis 17: 2267–2269.

    Article  PubMed  CAS  Google Scholar 

  317. Tran, T. A., Kallakury, B. V., Sheehan, C. E., and Ross, J. S. (1997) Expression of CD44 standard form and variant isoforms in non-small cell lung carcinomas. Human Pathol. 28: 809–814.

    Article  CAS  Google Scholar 

  318. Falco, J. P., Baylin, S. B., Lupu, R., Borges, M., Nelkin, B. D., Jasti, R. K., et al. (1990). v-rasH induces non-small cell phenotype, with associated growth factors and receptors, in a small cell lung cancer cell line. J. Clin. Invest. 85: 1740–1745.

    Google Scholar 

  319. Borges, M., Linnoila, R. I., van de Velde, H. J., Chen, H., Nelkin, B. D., Mabry, M., et al. (1997) An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386: 852–855.

    Article  PubMed  CAS  Google Scholar 

  320. Berard, J., Laboune, F., Mukuna, M., Masse, S., Kothary, R., and Bradley, W. E. (1996) Lung tumors in mice expressing an antisense RARbeta2 transgene. FASEB J. 10: 1091–1097.

    PubMed  CAS  Google Scholar 

  321. Hiyama, K., Hiyama, E., Ishioka, S., Yamakido, M., Inai, K., Gazdar, A. F., et al. (1995) Telomerase activity in small-cell and non-small-cell lung cancers. J. Natl. Cancer Inst. 87: 895–902.

    Article  PubMed  CAS  Google Scholar 

  322. Kim, N.-W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., et al. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015.

    Article  PubMed  CAS  Google Scholar 

  323. Albanell, J., Lonardo, F., Rusch, V., Engelhardt, M., Langenfeld, J., Han, W., et al. (1997) High telomerase activity in primary lung cancers: association with increased cell proliferation rates and advanced pathologic stage. J. Natl. Cancer Inst. 89: 1609–1615.

    Article  PubMed  CAS  Google Scholar 

  324. Yashima, K., Piatyszek, M. A., Saboorian, H. M., Virmani, A. K., Brown, D., Shay, J. W., et al. (1997) Telomerase activity and in situ telomerase RNA expression in malignant and non-malignant lymph nodes. J Clin. Pathol. 50: 110–117.

    Article  PubMed  CAS  Google Scholar 

  325. Meyerson, M., Counter, C. M., Eaton, E. N., Ellison, L. W., Steiner, P., Caddle, S. D., et al. (1997) hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90: 785–795.

    Google Scholar 

  326. Bryan, T. M., Marusic, L., Bacchetti, S., Namba, M., and Reddel, R. R. (1997) The telomere lengthening mechanism in telomerasenegative immortal human cells does not involve the telomerase RNA subunit. Human Mol. Genet. 6: 921–926.

    Article  CAS  Google Scholar 

  327. Redondo, M., Concha, A., Oldiviela, R., Cueto, A., Gonzalez, A., Garrido, F., et al. (1991) Expression of HLA class I and II antigens in bronchogenic carcinomas: its relationship to cellular DNA content and clinical-pathological parameters. Cancer Res. 51: 4948–4954.

    PubMed  CAS  Google Scholar 

  328. Korkolopoulou, P., Kaklamanis, L., Pezzella, F., Harris, A. L., and Gatter, K. C. (1996) Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer. Br. J. Cancer 73: 148–153.

    Article  PubMed  CAS  Google Scholar 

  329. Chen. H. L., Gabrilovich, D., Virmani, A., Ratnani, I., Girgis, K. R., Nadaf-Rahrov, S., et al. (1996) Structural and functional analysis of beta2 microglobulin abnormalities in human lung and breast cancer. lit. J Cancer 67: 756–763.

    Google Scholar 

  330. Singal, D. P., Ye, M., and Qiu, X. (1996) Molecular basis for lack of expression of HLA class I antigens in human small-cell lung carcinoma cell lines. Int. J. Cancer 68: 629–636.

    Article  PubMed  CAS  Google Scholar 

  331. Chen, H. L., Gabrilovich, D., Tampe, R., Girgis, K. R., Nadaf, S., and Carbone, D. P. (1996) A functionally defective allele of TAP 1 results in loss of MHC class I antigen presentation in a human lung cancer. Nature Genet. 13: 210–213.

    Article  PubMed  CAS  Google Scholar 

  332. Niehans, G. A., Brunner, T., Frizelle, S. P., Liston, J. C., Salerno, C. T., Knapp, D. J., et al. (1997) Human lung carcinomas express Fas ligand. Cancer Res. 57: 1007–1012.

    PubMed  CAS  Google Scholar 

  333. Hahne, M., Rimoldi, D., Schroter, M., Romero, P., Schreier, M., French, L. E., et al. (1996) Melanoma cell expression of Fas(Apo1/CD95) ligand: implications for tumor immune escape. Science 274: 1363–1366.

    Article  PubMed  CAS  Google Scholar 

  334. Strand, S., Hofmann, W. J., Hug, H., Muller, M., Otto, G., Strand, D., et al. (1996) Lymphocyte apoptosis induced by CD95 (APO-1/ Fas) ligand-expressing tumor cells: A mechanism of immune evasion? Nature Med. 2: 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  335. Angeletti, C. A., Lucchi, M., Fontanini, G., Mussi, A., Chella, A., Ribechini, A., et al. (1996) Prognostic significance of tumoral angiogenesis in completely resected late stage lung carcinoma (stage IIIA-N2). Impact of adjuvant therapies in a subset of patients at high risk of recurrence. Cancer 78: 409–415.

    Article  PubMed  CAS  Google Scholar 

  336. Fontanini, G., Lucchi, M., Vignati, S., Mussi, A., Ciardiello, F., De Laurentiis, M., et al. (1997) Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: a prospective study. J. Natl. Cancer Inst. 89: 881–886.

    Article  PubMed  CAS  Google Scholar 

  337. Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364.

    Article  PubMed  CAS  Google Scholar 

  338. Mattem, J., Koomagi, R., and Volm, M. (1996) Association of vascular endothelial growth factor expression with intratumoral microvessel density and tumour cell proliferation in human epidermoid lung carcinoma. Br. J. Cancer 73: 931–934.

    Article  Google Scholar 

  339. Fontanini, G., Vignati, S., Lucchi, M., Mussi, A., Calcinai, A., Boldrini, L., et al. (1997) Neoangiogenesis and p53 protein in lung cancer: their prognostic role and their relation with vascular endothelial growth factor (VEGF) expression. Br. J. Cancer 75: 1295–1301.

    Article  PubMed  CAS  Google Scholar 

  340. Ohta, Y., Watanabe, Y., Murakami, S., Oda, M., Hayashi, Y., Nonomura, A., et al. (1997) Vascular endothelial growth factor and lymph node metastasis in primary lung cancer. Br. J. Cancer 76: 1041–1045.

    Article  PubMed  CAS  Google Scholar 

  341. Volm, M., Koomägi, R., and Mattem, J. (1997) Prognostic value of vascular endothelial growth factor and its receptor Flt-1 in squamous cell lung cancer. Int. J. Cancer 74: 64–68.

    Article  PubMed  CAS  Google Scholar 

  342. Volm, M., Koomägi, R., Mattem, J., and Stammler, G. (1997) Prognostic value of basic fibroblast growth factor and its receptor (FGFR-1) in patients with non-small cell lung carcinomas. Eur. J. Cancer 33: 691–693.

    Article  PubMed  CAS  Google Scholar 

  343. Takanami, I., Imamura, T., Hashizume, T., Kikuchi, K., Yamamoto, Y., Yamamoto, T., et al. (1996) Immunohistochemical detection of basic fibroblast growth factor as a prognostic indicator in pulmonary adenocarcinoma. Jpn. J. Clin. Oncol. 26: 293–297.

    Article  PubMed  CAS  Google Scholar 

  344. Koukourakis, M. I., Giatromanolaki, A., O’Byrne, K. J., Comley, M., Whitehouse, R. M., Talbot, D. C., et al. (1997) Platelet-derived endothelial cell growth factor expression correlates with tumour angiogenesis and prognosis in non-small-cell lung cancer. Br. J. Cancer 75: 477–481.

    Article  PubMed  CAS  Google Scholar 

  345. Boehm, T., Folkman, J., Browder, T., and O’Reilly, M. S. (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390: 404–407.

    Article  PubMed  CAS  Google Scholar 

  346. Dameron, K. M., Volpert, O. V., Tainsky, M. A., and Bouck, N. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582–1584.

    Article  PubMed  CAS  Google Scholar 

  347. Arenberg, D. A., Kunkel, S. L., Polverini, P. J., Morris, S. B., Burdick, M. D., Glass, M. C., et al. (1996) Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J. Exp. Med. 184: 981–992.

    Article  PubMed  CAS  Google Scholar 

  348. Arenberg, D. A., Polverini, P. J., Kunkel, S. L., Shanafelt, A., Hesselgesser, J., Horuk, R., et al. (1997) The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer. J. Leuk. Biol. 62: 554–562.

    CAS  Google Scholar 

  349. Mao, L., Hruban, R. H., Boyle, J. O., Tockman, M., and Sidransky, D. (1994) Detection of oncogene mutations in sputum precedes diagnosis of lung cancer. Cancer Res. 54: 1634–1637.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fong, K.M., Sekido, Y., Minna, J.D. (2002). The Molecular Basis of Lung Carcinogenesis. In: Coleman, W.B., Tsongalis, G.J. (eds) The Molecular Basis of Human Cancer. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-125-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-125-1_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-107-3

  • Online ISBN: 978-1-59259-125-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics