Skip to main content

Cardiovascular Effects of Emphysema

  • Chapter
Lung Volume Reduction Surgery
  • 110 Accesses

Abstract

The recent reintroduction of lung volume reduction surgery (LVRS) for the treatment of severe emphysema has led to a renewed interest in the pathophysiology of this debilitating condition. Severe shortness of breath is generally the most distressing symptom of the emphysematous form of the chronic obstructive pulmonary disease (COPD) spectrum. The origin of this symptom is likely to be multifactorial and, hence, the mechanisms by which LVRS may alleviate symptoms is also likely to be multifactorial. Given the interactions between respiratory and cardiovascular systems, it is not surprising that there is interest in the effects of LVRS on cardiovascular function and how these effects are integrated into the overall response. Whereas the cardiovascular effects of COPD have been the subject of hundreds of scientific studies, the majority of these studies do not distinguish between the major subgroups of COPD, chronic bronchitis, and emphysema. Because most patients have significant symptoms of chronic bronchitis, these studies, by design, do not give a comprehensive view of the cardiovascular effects of relatively “pure” emphysema. One problem regarding this is how to define emphysema, on clinical, pathological, or physiological grounds and distinguish this from chronic bronchitis. Some of these issues influence the interpretation of studies purporting to assess the hemodynamic effects of emphysema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1963) World Health Organization: Definition of chronic cor pulmonale: a report of the expert committee. Circulation 27: 594.

    Google Scholar 

  2. Laks M, Morady F, Adomian G, Swan J (1970) Presence of widened and multiple intercalated discs in the hypertophied canine heart. Circ Res 27: 391–402.

    Article  PubMed  CAS  Google Scholar 

  3. Laks M, Morady F, Swan J (1970) Canine right and left ventricular cell and sarcomere lengths after banding the pulmonary artery. Circ Res 24: 705–710. 4 Janicki JS, Weber KT (1980) The pericardium and ventricular interaction, distensibility and function. Am J Physiol 238: H494—HSO3.

    Google Scholar 

  4. Scharf SM (1994) Right ventricular load tolerance: role of left ventricular function. Perspectives en Réanimation, Les Interactions cardio-pulmonaires. Societé de Réanimation de langue francais, Arnette, Paris, pp. 17–28.

    Google Scholar 

  5. Whittenberger JL, McGregor M, Berglund E, Borst MC (1960) Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol 15: 878–882.

    PubMed  CAS  Google Scholar 

  6. Permutt S, Howell JBL, Proctor D, Riley RL (1961) Effects of lung inflation on static pressure-volume characteristics of pulmonary vessels. J Appl Physiol 16: 64–70.

    PubMed  CAS  Google Scholar 

  7. Dhainaut JF, Aouate P, Brunet FP (1989) Circulatory effects of positive end-expiratory pressure in patients with acute lung injury. In: Scharf SM and Cassidy SS, eds. Heart-Lung Interactions in Health and Disease. New York: Marcel Dekker, pp. 809–838.

    Google Scholar 

  8. Nakhjavan FK, Palmer WH, McGregor M (1966) Influence of respiration on venous return in pulmonary emphysema. Circulation 23: 8–16.

    Article  Google Scholar 

  9. Fessler HE, Brower RG, Shapiro EP, Permutt S (1993) Effects of positive end-expiratory pressure and body position on pressure in the thoracic great veins. Am Rev Resp Dis 148: 1657–1664.

    Article  PubMed  CAS  Google Scholar 

  10. Robotham J, Scharf SM (1983) The effects of positive and negative pressure ventilation on cardiac performance. In: Matthay RA, Matthay MA, Dantzker D, eds. Cardiovascular Pulmonary Interaction in Normal and Diseased Lung. Philadelphia: W.B. Saunders, 161–187.

    Google Scholar 

  11. Fessler HE, Brower RG, Wise RA, Permutt S (1992) Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Resp Dis 146: 4–10.

    Article  PubMed  CAS  Google Scholar 

  12. Wallis TW, Robotham JL, Compear R, Kindred MK (1983) Mechanical Heart-lung interactions with positive end-expiratory pressure. J Appl Physiol 54: 1039–1047.

    PubMed  CAS  Google Scholar 

  13. Lloyd TC (1989) Mechanical heart-lung interactions. In: Scharf SM and Cassidy SS, eds. Heart-Lung Interactions in Health and Disease. New York: Marcel Dekker pp. 309–338.

    Google Scholar 

  14. Butler J, Schrijen F, Henriquez A, Polu JM, Albert RK (1988) Cause of the raised wedge pressure on exercise in chronic obstructive pulmonary disease. Am Rev Resp Dis 138: 350–354.

    Article  PubMed  CAS  Google Scholar 

  15. Albert RK, Muramoto A, Caldwell J, Koespell T, Butler J (1985) Increases in intrathoracic pressure do not explain the rise in left ventricular end-diastolic pressure that occurs during exercise in patients with chronic obstructive pulmonary disease. Am Rev Resp Dis 132: 623–627.

    PubMed  CAS  Google Scholar 

  16. Snider GL, Kleinerman J, Thurlbeck Wmk et al. (1985) The definition of emphysema: Results of a National Heart, Lung and Blood Institute, Division of Lung Diseases, Workshop. Am Rev Resp Dis 132: 182–185.

    Google Scholar 

  17. Murphy ML, Bone RC (1984) Cor Pulmonale in Chronic Bronchitis and Emphysema. Mt Kisco, NY: Futura.

    Google Scholar 

  18. Traver GA, Cline MG, Burrows B (1979) Predictors of mortality in chronic obstructive pulmonary disease. Am Rev Resp Dis 119: 895–902.

    PubMed  CAS  Google Scholar 

  19. Burrows B, Kettel LJ, Niden AH, Rabinowitz M, Diener CF (1972) Patterns of cardiovascular dysfunction in chronic obstructive lung disease. N Engl J Med 286: 912–918.

    Article  PubMed  CAS  Google Scholar 

  20. Mise J, Moriyama K, Itagaki S (1996) Clinical course and prognosis of chronic pulmonary emphysema with special reference to pulmonary circulatory disturbance. Jpn Heart J 7: 45–55.

    Article  Google Scholar 

  21. Deschamps C, Farkas GA, Beck KC, Schroeder MA, Hyatt RE (1995) Experimental emphysema. Chest Clin North Am 5: 691–699.

    CAS  Google Scholar 

  22. Snider GL, Lucey EC, Stone PJ (1986) State of the Art: Animal Models of emphysema. Am Rev Resp Dis 133: 149–169.

    PubMed  CAS  Google Scholar 

  23. Wright JL, Churg A (1991) Effect of long–term cigarette smoke exposure on pulmonary vascular structure and function in the guinea pig. Lung Res 17: 997–1009.

    Article  CAS  Google Scholar 

  24. Sato S, Kato S, Arisaka Y, Takahashi H, Tomoike H (1994) Pulmonary haemodynamics in awake rats following treatment with endotracheal pancreatic elastase. Eur Resp J 7: 1294–1299.

    Article  CAS  Google Scholar 

  25. Tseng SM, Qian S, Mitzner W (1992) Pulmonary vascular reactivity and hemodynamic changes in elastase-induced emphysema in hamsters. J Appl Physiol 73: 1474–1480.

    PubMed  CAS  Google Scholar 

  26. Martorana PA, Wasten B, Van Evan P, Gîbel H, Schaper J (1982) A six-month study of the evolution of papain-induced emphysema in the dog. Am Rev Resp Dis 126: 898–903.

    PubMed  CAS  Google Scholar 

  27. McFadden ER Jr, Braunwald E (1980) Cor pulmonale and pulmoanry thromboembolism. In: Braunwald E, ed. Heart Disease, A Textbook of Cardiovascular Medicine. Philadelphia: WB Saunders, 1643–1680.

    Google Scholar 

  28. Daly PA, Sole MJ (1990) Myocardial catecholanimes and the pathophysiology of heart failure. Circulation (suppl 1 ); 82: I34 - I43.

    Google Scholar 

  29. Swedberg K, Enroth P, Kjekshus J, Wilhelmsen L (1990) Hormones regulating cardiovascular function in patients with severe CHF and their relation to mortality. Circulation 82: 1730–1736.

    Article  PubMed  CAS  Google Scholar 

  30. Mink SN, Gomez A, Whitley L, Coalson JJ (1986) hemodynamics in dogs with pulmonary hypertension due to emphysema. Lung 164: 41–54.

    Google Scholar 

  31. Gomez A, Unruh H, Mink S (1994) Left ventricular systolic performance is depressed in chronic pulmonary emphysema in dogs. Am Heart J 267 (Heart Circ Physiol 36): H232 - H247.

    CAS  Google Scholar 

  32. Sagawa K, Suga H, Shoukas A, Bakalar K (1977) End-systolic pressure/volume ratio: new index of ventricular contractility. Am J Cardiol 40: 748–753.

    Article  PubMed  CAS  Google Scholar 

  33. Gomez A, Unruh H, Mink SN (1993) Altered left ventricular chamber stiffness and isovolumikc relaxation in dogs with chronic pulmonary hypertension caused by emphsema. Circulation 87: 247–260.

    Article  PubMed  CAS  Google Scholar 

  34. Scharf SM, Brown R, Warner KG, Khuri S (1989) Esophageal and pericardial pressures and left ventricular configuration with respiratory maneuvers. JAppl Physiol 66: 481–491.

    CAS  Google Scholar 

  35. Filley GF, Beckwitt HJ, Reeves JT, Mitchell RS (1968) Chronic obstructive bronchopulmonary disease. Oxygen transport in two clinical tyupes. Am J Med 44: 26–37.

    Article  PubMed  CAS  Google Scholar 

  36. Bishop JM (1973) Cardiovascular complications of chronic bronchitis and emphysema. Med Clinc North Am 57: 771–780.

    CAS  Google Scholar 

  37. Matthay RA, Berger HJ (1981) Cardiovascular performance in chronic obstructive pulmonary disease. Med Clin North Am 65: 489–524.

    CAS  Google Scholar 

  38. Guidet B, Offenstadt G, Baffa G, et al. (1987) Polycythaemia in chronic obstructive pulmonary disease. Chest 92: 867–870.

    Article  PubMed  CAS  Google Scholar 

  39. Jones NL (1966) Pulmonary gas exchange during exercise in patients with chronic airways obstruction. Clin Sci 31: 39–50.

    PubMed  CAS  Google Scholar 

  40. Mitchell AS, Stanford RE, Johnson JM, Silvers GW, Dart S, George MS (1976) The morphologic features of the bronchi, bronchioles and alveoli in chronic airway obstruction: a clinicopathologic study. Am Rev Resp Dis 114: 137–145.

    PubMed  CAS  Google Scholar 

  41. Biernacki W, Gould GA, Whyte KF, Flenley DC (1989) Pulmonary hemodynamics, gas exchange, and the severity of emphysema as assessed by quantitative CT scan in chronic bronchitis and emphysema. Am Rev Resp Dis 139: 1509–1515.

    Article  PubMed  CAS  Google Scholar 

  42. Boushy SF, North LB (1977) Hemodynamic changes in chronic obstructive pulmonary disease. Chest 72: 565–570.

    Article  PubMed  CAS  Google Scholar 

  43. Wright JL, Lawson L, ParÇ PD, Hooper RO, Peretz DW, Nelems JM, Schulzer M, Hogg JC (1983) The structure and function of the pulmonary vasculature in mild chronic obstructive pulmonary disease. Am Rev Resp Dis 128: 702–707.

    PubMed  CAS  Google Scholar 

  44. Schulman LL, Lennon PF, Wood JA, Enson Y (1994) Pulmonary vascular resistance in emphysema. Chest 105; 798–805.

    Article  PubMed  CAS  Google Scholar 

  45. Oswald-Mammosser M, Apprill M, Bachez P, Ehrhart M, Weitzenblum E (1993) Pulmonary hemodynamics in chronic obstructive pulmonary disease of the emphysematous type. Respiration 58: 304–310.

    Article  Google Scholar 

  46. Krayenbuehl HP, Turino J, Hess O (1978) Left ventricular function in chronic pulmonary hypertension. Am J Cardiol 41: 1150–1158.

    Article  PubMed  CAS  Google Scholar 

  47. Rao BS, Cohn KE, Eldridge FL, Hancock HW (1968) Left ventricular failure secondary to chronic pulmonary disease. Am J Med 45: 229–241.

    Article  PubMed  CAS  Google Scholar 

  48. Hooper RG, Whitecomb ME (1974) Systolic time intervals in chronic obstructive pulmonary disease. Circulation 50: 1205–1209.

    Article  PubMed  CAS  Google Scholar 

  49. Chipps BE, Alderson PO, Roland JA, et al. (1979) Noninvasive evaluation of left ventricular function in chronic obstructive pulmonary disease. J Pediatr 95: 379–387.

    Article  PubMed  CAS  Google Scholar 

  50. Jardin F, Gueret P, Prost J-F (1984) Two dimensional echocardiographic assessment of left ventricular function in chronic obstructive pulmonary disease. Am Rev Resp Dis 129: 135–144.

    PubMed  CAS  Google Scholar 

  51. Caldwell EN (1984) The left ventricle in chronic obstructive lung diseases. In: Rubin LJ, ed. Pulmonary Heart Disease. The Hague: Martinus Nijhoff, p. 247.

    Chapter  Google Scholar 

  52. Fishman AP (1971) The left ventricle in chronic bronchitis and emphysema (editorial). N Engl J Med 285: 402.

    Article  PubMed  CAS  Google Scholar 

  53. Kachel RB (1978) Left ventricular function in chronic obstructive pulmonary disease. Chest 74: 286–290.

    Article  PubMed  CAS  Google Scholar 

  54. Weisse AB (1974) Contralateral effects of cardiac disease affecting either the left or right chambers of the heart. Am Heart J 87: 654–663.

    Article  PubMed  CAS  Google Scholar 

  55. Steele P, Ellis JH Jr, Van Dyke D, Sutton F, Creagh E, Davies H (1975) Left ventricular ejection fraction in severe chronic obstructive airways disease. Am J Med 59: 21–28.

    Article  PubMed  CAS  Google Scholar 

  56. Kohama A, Tanouchi J, Hori M, et al. (1990) Pathologic involvement of the left ventricle in chronic cor pulmonale. Chest 98: 794–800.

    Article  PubMed  CAS  Google Scholar 

  57. Scharf SM (1991) Cardiovascular effects of airway obstruction. Lung 169: 1–23.

    Article  PubMed  CAS  Google Scholar 

  58. Scharf SM, Brown R, Tow DE, Parisi AF (1979) Cardiac effects of increased lung volume and decreased pleural pressure in man. JAppl Physiol 47: 257–262.

    CAS  Google Scholar 

  59. Scharf SM, Bianco JA, Tow DE, Brown R (1981) The effects of large negative intrathoracic pressure on left ventricular function in patients with coronary artery disease. Circulation 63: 871–875.

    Article  PubMed  CAS  Google Scholar 

  60. Salejee I, Tarasiuk A, Reder I, Scharf SM (1993) Chronic upper airways obstruction produces right but not left ventricular hypertrophy in rats. Am Rev Resp Dis 148: 1346–1350.

    Article  PubMed  CAS  Google Scholar 

  61. Thurnheer R, Muntwyler J, Stammberger U, Bloch K, Zollinger A, Weder W, Russi E (1997) Coronary artery disease in patients undergoing lung volume reduction surgery for emphysema. Chest 112: 122–128.

    Article  PubMed  CAS  Google Scholar 

  62. Mithoefer JC, Holford FD, Keighley JF (1974) The effect of oxygen administration on mixed venous oxygen in chronic obstructive pulmonary disease. Chest 66: 122–132.

    Article  PubMed  CAS  Google Scholar 

  63. Mithoefer JC, Ramirez C, Cook W (1978) The effect of mixed venous oxygenation on arterial blood in chronic obstructive pulmonary disease. Am Rev Res Dis 117: 259–264.

    CAS  Google Scholar 

  64. Stewart RI, Lewis CM (1986) Cardiac output during exercise in patients with COPD. Chest 89: 199–205.

    Article  PubMed  CAS  Google Scholar 

  65. Joint Statement of the American Society for Transplant Physicians (ASTP), American Thoracic Society (ATS), European Respiratory Society (ERS), International Society for Heart and Lung Transplantation (IHSLT) (1998) International guidelines for the selection of lung transplant candidates. Am J Resp Crit Care Med 158: 335–339.

    Google Scholar 

  66. Keller CA, Espiritu JD, Ohar J, Trello C, Osterloh J, Ruppel G (1996) Pulmonary function, gas exchange and hemodynamics in patients with smokinginduced versus a-antitrypsin deficiency (al-ATD) endstage emphysema. Am J Resp Crit Care Med 153 (4 Abstracts): A48.

    Google Scholar 

  67. Vigneswaran WT, McDougall JC, Olson LJ, et al. (1993) Right ventricular assessment in patients presenting for lung transplantation. Transplantation 55: 1051–1055.

    Article  PubMed  CAS  Google Scholar 

  68. Judson MA (1993) Clinical aspects of lung transplantation. Clin Chest Med 14: 335–362.

    PubMed  CAS  Google Scholar 

  69. Keller CA, Ohar J, Ruppel G, et al. (1995) Rightr ventricular function in patients with severe COPD evaluated for lung transplantaion. Chest 107: 1510–1516.

    Article  PubMed  CAS  Google Scholar 

  70. Spinale FG, Smith AC, Carabello BA, et al. (1990) Right ventricular function computed by thermodilution and ventrulography. J Thorac Cardiovasc Surg 99: 141–152.

    PubMed  CAS  Google Scholar 

  71. Spinale FG, Mukherjee R, Ryunhei T, et al. (1991) The effects of valvular regurgitation on thermodilution ejection fraction measurements. Chest 101: 723–731.

    Article  Google Scholar 

  72. Morrison DL, Maurer JR, Grossman RF (1990) Preoperative assessment for lung transplantation. Clin Chest Med 11: 207–215.

    PubMed  CAS  Google Scholar 

  73. Hoyos A, Demajo W, Snell G, et al. (1993) Preoperative prediction for the use of cardiopulmonary bypass in lung transplantation. J Thorac Cardiovasc Surg 106: 787–796.

    PubMed  Google Scholar 

  74. Pasque MK, Trulock EP, Cooper JD, et al. (1995) Single lung transplantation for pulmonary hyptertension. Circulation 92: 2252–2258.

    Article  PubMed  CAS  Google Scholar 

  75. Keller CA, Naunheim KS, Osterloch J, et al. (1997) Hemodynamics and gas exchange after single lung transplantation and unilateral thoacoscopic lung reduction. J Heart Lung Transplant 16: 199–208.

    PubMed  CAS  Google Scholar 

  76. Bjortuff O, Simonsen S, Geiran OR, et al. (1996) Pulmonary haemodynamics after single lung transplantation for end-stage pulmonary parenchymal disease. Eur Resp J 9: 2007–2011.

    Article  Google Scholar 

  77. Rensing BJ, McDougall JC, Breen JF, et al. (1997) Right and left ventricular remodeling after orthotoic single lung transplantation for end-stage emphysema. J Heart Lung Transplant 16: 926–933.

    PubMed  CAS  Google Scholar 

  78. Iqbal M, Keller C, Criner G, Fessler H, Berkoski P, Scharf S (2000) Pulmonary hemodynamics in patients with severe emphysema. Am J Resp Crit Care Med 2000; 161: A817.

    Google Scholar 

  79. Cooper JD, Trulock EP, Triantafillou AN, Patterson GA, Pohl MS, Deloney PA, Sundaresan RS, Roper CL (1995) Bilateral pneumonectomy (volume reduction) for chronic obstructive pulmonary disease. J Thorac Cardiovasc Surg 109: 106–119.

    Article  PubMed  CAS  Google Scholar 

  80. Sciurba FC, Rogers RM, Keenan RI, Slivka WA, Gorcsan J, Ferson PF, Holbert JM, Brown ML, Landreneau RI (1996) Improvement in pulmonary flinction and elastic recoil after lung-reduction surgery for difflise emphysema. NEngl J Med 334: 1095–1099.

    Article  CAS  Google Scholar 

  81. Scharf SM, Rossoff L, Graver LM, McKeon K, Graham C, Steinberg H (1998) Changes in pulmonary mechanics following lung volume reduction surgery. Lung 176: 191–204.

    Article  PubMed  CAS  Google Scholar 

  82. Weg IL, L Rossoff, McKeon K, Graver LM, Steinberg HN, Scharf SM (1999) Development of pulmonary hypertension following lung volume reduction surgery. Am J Resp Resp Crit Care Med 159: 552–556.

    Article  CAS  Google Scholar 

  83. Oswald-Mammoser M, Kessler R, Massard G, Wihlm J-M, Weitzenblum E, Lonsdorfer J (1998) Effect of lung volume reduction surgery on gas exchange and pulmonary hemodynamics at rest and during exercise. Am J Respir Crit Care Med 158: 1020–1025.

    Article  Google Scholar 

  84. Raper R, Sibbald W (1986) Misled by the wedge? The Swan-Ganz catheter and left ventricular preload. Chest 89: 427–434.

    Article  PubMed  CAS  Google Scholar 

  85. Jezek V, Herles F (1969) Uneven distribution of pulmonary arterial wedge pressure in chronic bronchitis and emphysema. Cardiologia 54: 164–169.

    Article  PubMed  CAS  Google Scholar 

  86. Hellens HR, Haynes FW, Dexter L (1949) Pulmonary “capillary” pressures in man. J Appl Physiol 2: 24–29.

    Google Scholar 

  87. Herles F (1966) The pulmonary artery wedge pressure: its origin and value in assessing pulmonary hemodynamics in emphysema. Editorial. Cor Vasa 8: 161–166.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scharf, S.M. (2002). Cardiovascular Effects of Emphysema. In: Argenziano, M., Ginsburg, M.E. (eds) Lung Volume Reduction Surgery. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-121-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-121-3_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-220-9

  • Online ISBN: 978-1-59259-121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics