Skip to main content

Cardiopulmonary Exercise Testing in the Evaluation of the Patient with Emphysema

  • Chapter
Lung Volume Reduction Surgery

Abstract

Comprehensive exercise testing offers an opportunity to study the cellular, cardiovascular, and ventilatory systems’ responses simultaneously under controlled conditions (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wasserman K, Hansen JE, Sue DY, Casaburi R, Whipp BJ (1999) In: Principles of Exercise Testing and Interpretation 3rd ed. Lipincott, Williams & Wilkins, Baltimore, Maryland.

    Google Scholar 

  2. Jones NL, Moran Campbell EJ (1982) Clinical Exercise Testing, 2nd ed. Philadelphia, Pennsylvania: W. B. Saunders Co.

    Google Scholar 

  3. Goldring RM (1984) Specific defects in cardiopulmonary gas transport, Am Rev Respir Dis 129 (Suppl): S57 - S59.

    Google Scholar 

  4. Blackie SP, Fairburn MS, McElvaney GN, Morrison NJ, Wilcox PG, Pardy RL (1989) Prediction of maximal oxygen uptake and power during cycle ergometry in subjects older than 55 years of age. Am Rev Respir Dis 139: 1424–1429.

    Article  PubMed  CAS  Google Scholar 

  5. Shephard RJ (1971) Standard tests of aerobic power, In: Shephard RJ, ed, Frontiers of Fitness. Springfield, IL: Charles C Thomas.

    Google Scholar 

  6. Shephard RJ (1966) The relative merits of the step test, bicycle and treadmill in the assessment of cardiorespiratory fitness. Int ZAngew Physiol 23: 219–230.

    CAS  Google Scholar 

  7. Wasserman K, Whipp BJ (1975) Exercise physiology in health and disease. Am Rev Respir Dis 112: 219–249.

    PubMed  CAS  Google Scholar 

  8. Rochmis P, Blackburn H (1971) Exercise tests, a survey of procedures, safety and litigation experience in approximately 170,000 tests. JAMA 17: 1061–1066.

    Article  Google Scholar 

  9. Shephard RJ (1970) For exercise testing–a review of procedures available to the clinician. Bull Physiopathol Resp 6: 425–474.

    CAS  Google Scholar 

  10. Franklin, BA, Gordon S, Timmis GC, O’Neill W (1997) Is direct physician supervision of exercise stress testing routinely necessary. Chest 111: 262–265.

    Article  PubMed  CAS  Google Scholar 

  11. Stuart RJ Jr, Ellestad MH (1980) National survey of exercise testing facilities. Chest 77: 94–97.

    Article  PubMed  Google Scholar 

  12. Cahalin LP, Blessey, RL, Kummer D, et al (1987) The safety of exercise testing performed independently by physical therapists. J Cardiopulm Rehabil7; 269–276.

    Google Scholar 

  13. Utz JP, Hubmayr RD, Deschamps C (1998) Lung volume reduction surgery for emphysema: out on a limb without a NETT (Review). Mayo Clinic Proc 3: 552–566.

    Article  Google Scholar 

  14. Higgins MW, Thom T (1989) Incidence, prevalence, and mortality: intra and inter country differences. Lung Biol Health Dis 43: 23–43.

    Google Scholar 

  15. Petty TL (1997) A new national stategy for COPD. J Respir Dis 18: 363–369.

    Google Scholar 

  16. Feinleib M, Rosenberg HM, Collins JG, Delozier JE, Pokras R, Chevarley FM (1989) Trends in COPD morbidity and mortality in the United States. Am Rev Respir Dis 140 (Suppl): S9 - S18.

    Article  PubMed  CAS  Google Scholar 

  17. American Thoracic Society (1995) Standards for the diagnosis and care of patients with chronic obstructive lung disease. Am J Respir Crit Care Med 152 (Suppl): S77 - S120.

    Google Scholar 

  18. American Lung Society (1993) Lung disease data. New York: American Lung Association.

    Google Scholar 

  19. Lacasee Y, Wong E, Guyatt GH, King D, Cook DJ, Goldstein RS (1996) Meta-analysis of respiratory rehabilitation in chronic obstructive pulmonary disease. Lancet 348: 1115–1119.

    Article  Google Scholar 

  20. Szekely, LA et al. (1997) Preoperative predictors of operative morbidity and mortality in COPD patients undergoing bilateral lung volume reduction surgery. Chest 111: 550–558.

    Article  PubMed  CAS  Google Scholar 

  21. ERS Task Force (1997) Clinical exercise testing with reference to lung diseases: indications, standardization and interpretation strategies. Eur Respir J 10: 2662–2689.

    Article  Google Scholar 

  22. The National Emphyema Treatment Trial Research research protocol.

    Google Scholar 

  23. Benditt, JO, Lewis S, Wood DE, Klima L, Albert RK (1997) Lung volume reduction surgery improves maximal O2 consumption, maximal minute ventilation, O2 pulse, and dead-space-to-tidal volume ratio during leg cycle ergometry. Am J Respir Crit Care Med 156: 561–566.

    Article  PubMed  CAS  Google Scholar 

  24. Cooper JD, Patterson AG (1996) Lung volume reduction surgery for severe emphysema. Semin Thorac Cardiovasc Surg 8 (1): 52–60.

    PubMed  CAS  Google Scholar 

  25. Yusen, RD, Trulock EP, Pohl MS, Biggar DG, et al. (1996) Results of lung volume reduction surgery in emphysema. Semin Thorac Cardiovasc Surg 8 (1): 99–1090.

    PubMed  CAS  Google Scholar 

  26. Weisman IM, Zeballos RJ, eds. (1994) An integrated approach to the interpretation of the CPET, Clinical exercise testing in Clinics in Chest Medicine Philadelphia: W.B. Saunders.

    Google Scholar 

  27. Wagner PD, Gale GE. Ventilation perfusion relationships. In: Whipp BJ, Wasserman K, eds. Pulmonary physiology and pathophysiology of exercise. New York: Dekker, 1991; 121–142.

    Google Scholar 

  28. Potter WA, Olafsson S, Hyat RE (1971) Ventilatory mechanics and expiratory flow limitation during exercise in patients with obstructive lung disease. J Clin Invest 50: 910–919.

    Article  PubMed  CAS  Google Scholar 

  29. Gallagher C (1990) Exercise and chronic obstructive pulmonary disease. Med Clin N Am 74: 619–641.

    PubMed  CAS  Google Scholar 

  30. Jones NL, Berman LB (1984) Gas exchange in chronic air-flow obstruction. Am Rev Respir Dis 129 (Suppl): S81 - S83.

    PubMed  CAS  Google Scholar 

  31. Dodd DS, Brancatisano T, Engel LA (1988) Chest wall mechanics during exercise in patients with severe chronic air flow obstruction. ARRD 129: 33–38.

    Google Scholar 

  32. O’Donnell DE, Webb KA (1993) Exertional breathlessness in patients with chronic airflow limitation. ARRD 148: 1351–1357.

    Article  Google Scholar 

  33. Johnson BD, Weisman IM, Zeballos RJ, Beck KC (1999) Emerging concepts in the evaluation of ventilatory limitation during exercise–the exercise flow volume loop. Chest 116: 488–503.

    Article  PubMed  CAS  Google Scholar 

  34. Murariu C, Ghezzo H, Milic-Emili J, Gautier H (1998) Exercise limitation in obstructive lung disease. Chest 114: 965–968.

    Article  PubMed  CAS  Google Scholar 

  35. Stewart RI, Lewis CM (1986) Cardiac output during exercise in patients with COPD. Chest 89: 199–205.

    Article  PubMed  CAS  Google Scholar 

  36. Agusti AG, Barbera JA, Roca J, Rodriguez-Roisin R, Wagner PD, Agust-Vidal A (1990) Hypoxic vasoconstriction and gas exchange during exercise in chronic obstructive pulmonary disease. Chest 97: 268–275.

    Article  PubMed  CAS  Google Scholar 

  37. O’Brien GM, Furukawa S, Kuzma, AM, Cordova F, Criner GJ (1999) Improvements in lung function, exercise and quality of life in hypercapnic COPD patients after lung volume reduction surgery. Chest 115: 75–84.

    Article  PubMed  Google Scholar 

  38. Gelb AF, Brenner M, McKenna R, Fischel R, Zamel N, Schein MJ (1998) Serial lung function and elastic recoil 2 years after lung volume reduction surgery for emphysema. Chest 113: 1497–1506.

    Article  PubMed  CAS  Google Scholar 

  39. Potter WA, Olafsson S, Hyatt RE (1971) Ventilatory mechanics and expiratory flow limitation during exercise in patients with obstructive lung disease. J Clin Invest 50: 910–919.

    Article  PubMed  CAS  Google Scholar 

  40. O’Donnell DE, Webb KA, Bertley JC, et al. (1996) Mechanisms of relief of exertional breathlessness following unilateral bullectomy and lung volume reduction surgery in emphysema. Chest 110: 18–27.

    Article  PubMed  Google Scholar 

  41. Gelb AF, McKenna RJ, Brenner M, Schein MJ, Zamel N, Fischel R (1999) Lung function 4 years after lung volume reduction surgery for emphysema. Chest 116: 1608–1615.

    Article  PubMed  CAS  Google Scholar 

  42. The National Emphysema Treatment Trial Research Group (1999) Rationale and Design of the National Emphysema Treatment Trial, A Prospective Randomized Trial of Lung Volume Reduction Surgery. Chest 116: 1750–1761.

    Article  Google Scholar 

  43. Sciurba FIC, Rogers RM, Keenan RJ, Silvka WA, Gorcsan J III, Ferson PF, et al (1996) Improvement in pulmonary function and elastic recoil after lung volume reduction surgery for diffuse emphysema. N Engl J Med 334: 1096–1099.

    Article  Google Scholar 

  44. Keller CA, Ruppel G, Hibbett A, Osterloh J, Naunheim KS (1997) Thoracoscopic lung volume reduction surgery reduces dyspnea and improves exercise capacity in patients with emphysema. Am J Respir Crit Care Med 156: 60–67.

    Article  Google Scholar 

  45. The National Emphyema Treatment Trial Research Group (1999) Rationale and design of the national emphysema treatment trial (NETT): a prospective randomized trial of lung volume reduction surgery. J Thorac Cardiovasc Surg 118: 518–528.

    Article  Google Scholar 

  46. Light RW, Mintz HM, Linden GS, Brown SE (1984) Hemodynamics of patients with severe chronic obstructive pulmonary disease during progressive upright exercise. Am Rev Respir Dis 130: 391–395.

    PubMed  CAS  Google Scholar 

  47. Oswald-Mammosser M, Kessler R, Massard G, Wihlm J, Weitzenblum E, Lonsdorfer J (1998) Effect of lung volume reduction surgery on gas exchange and pulmonary hemodynamics at rest and during exercise. Am J Respir Crit Care Med 158: 1020–1025.

    Article  PubMed  CAS  Google Scholar 

  48. Wagner PD (1998) Functional consequences of lung volume reduction surgery for COPD (Editorial). Am J Respir Crit Care Med 158: 1017–1019.

    Article  PubMed  CAS  Google Scholar 

  49. Balfe DL, Nathanson A, Wasserman K, Mohsenifar Z. Does pulmonary artery catheterization add to traditional cardiopulmonary exercise testing in diagnosing dyspnea? submitted for publication.

    Google Scholar 

  50. Cooper JD, Trulock EP, Triantafillou AN, Patterson GA, Pohl MS, Deloney PA, Sundaresan RS, Poper CL (1995) Bilateral pneumonectomy (volume reduction) for chronic obstructive pulmonary disease. J Thorac Cardiovasc Surg 109: 106–119.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balfe, D., Mohsenifar, Z. (2002). Cardiopulmonary Exercise Testing in the Evaluation of the Patient with Emphysema. In: Argenziano, M., Ginsburg, M.E. (eds) Lung Volume Reduction Surgery. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-121-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-121-3_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-220-9

  • Online ISBN: 978-1-59259-121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics