Skip to main content

8-Aminoquinolines

  • Chapter
Antimalarial Chemotherapy

Part of the book series: Infectious Disease ((ID))

Abstract

The 8-aminoquinolines emerged during the 20th century as the only family of antimalarial compounds with activity against multiple life-cycle stages of the plasmodia that infect humans. Primaquine, the lone representative of 8-aminoquinolines among licensed antimalarials, has been in use for over 50 yr. It remains the only drug licensed for the prevention of malaria relapse (i.e., killing liver stages of the parasite). Primaquine also kills asexual blood stages and sterilizes the sexual-stage gametocytes. Thus, primaquine can prevent infection or relapse, cure disease, and prevent transmission of the infection. This broad range of activities represents the promise held in this family of compounds. A new 8-aminoquinoline, tafenoquine (WR 238605), is now in clinical trials and may revolutionize the prevention of malaria in travelers. Moreover, tafenoquine may provide an urgently needed weapon to combat epidemic malaria with a single regimen of therapy. The factor that most jeopardizes such utility is another trait shared by many 8-aminoquinolines, hemolytic toxicity in people lacking glucose-6-phosphate dehydrogenase (G6PD). G6PD deficiency is one of the most common genetic abnormalities in human beings, and it is especially common where malaria is or has been endemic. The challenge for pharmacologists, biochemists, and parasitologists is separating the therapeutic properties of 8-aminoquinolines from hemolytic toxicity. This chapter will summarize knowledge regarding mechanisms of therapeutic and toxic activities and point out areas where further investigation may lead to advances in our understanding of these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greenwood D. Conflicts of interest: the genesis of synthetic antimalarial agents in peace and war. J Antimicrob Chemother 1995; 36 (5): 857–872.

    Article  PubMed  CAS  Google Scholar 

  2. Carson P. 8-Aminoquinolines In Peters W, Richards WHG (eds)., Antimalarial Drugs II. New York: Springer-Verlag, 1984, pp. 83–121.

    Google Scholar 

  3. Beadle C, Hoffman SL. History of malaria in the United States Naval Forces at war: World War I through the Vietnam conflict. Clin Infect Dis 1993; 16 (2): 320–329.

    Article  PubMed  CAS  Google Scholar 

  4. Nodiff EA, Chatterjee S, Musallam HA. Antimalarial activity of the 8-aminoquinolines. In Ellis GP and West GB (eds.), Progress in Medicinal Chemistry Amsterdam: Elsevier Science, 1991, vol. 28, pp. 1–40.

    Google Scholar 

  5. Sweeney T. 8-Aminoquinolines. In Peters W. and Richards WHG (eds.), Antimalarial Drugs II. New York: Springer-Verlag, 1984, pp. 325–342.

    Google Scholar 

  6. Brueckner RP, Lasseter KC, Lin ET, Schuster BG. First-time-in-humans safety and pharmacokinetics of WR 238605, a new antimalarial. Am J Trop Med Hyg 1998; 58 (5): 645–649.

    PubMed  CAS  Google Scholar 

  7. Brueckner RP, Fleckenstein, L. Simultaneous modeling of the pharmacokinetics and methemoglobin pharmacodynamics of an 8-aminoquinoline candidate antimalarial (WR 238605). Pharm Res 1991; 8 (12): 1505–1510.

    Article  PubMed  CAS  Google Scholar 

  8. Pukrittayakamee S, Vanijanonta S, Chantra A, Clemens R, White NJ. Blood stage antimalarial efficacy of primaquine in Plasmodium vivax malaria. J Infect Dis 1994; 169 (4): 932–935.

    Article  PubMed  CAS  Google Scholar 

  9. Arnold J, Alvinig AS, Clayman CB. Induced primaquine resistance in vivax malaria. Trans R Soc Trop Med Hyg 1961; 55 (4): 345–350.

    Article  PubMed  CAS  Google Scholar 

  10. Bates MD, Meshnick SR, Sigler CI, Leland P, Hollingdale MR. In vitro effects of primaquine and primaquine metabolites on exoerythrocytic stages of Plasmodium berghei. Am J Trop Med Hyg 1990; 42 (6): 532–537.

    PubMed  CAS  Google Scholar 

  11. Lanners HN. Effect of the 8-aminoquinoline primaquine on culture-derived gametocytes of the malaria parasite Plasmodium falciparum. Parasitol Res 1991; 77 (6): 478–481.

    Article  PubMed  CAS  Google Scholar 

  12. Boulard Y, Landau I, Miltgen F, Ellis DS, Peters W. The chemotherapy of rodent malaria, XXXIV. Causal prophylaxis Part III: Ultrastructural changes induced in exo-erythrocytic schizonts of Plasmodium yoelii yoelii by primaquine. Ann Trop Med Parasitol 1983; 77 (6): 555–568.

    PubMed  CAS  Google Scholar 

  13. Warhurst DC. Why are primaquine and other 8-aminoquinolines particularly effective against the mature gametocytes and the hypnozoites of malaria? Ann Trop Med Parasitol 1984; 78 (2): 165.

    PubMed  CAS  Google Scholar 

  14. Peters W, Ellis D, Boulard Y, Landau I. The chemotherapy of rodent malaria XXXVI. Part IV. The activity of a new 8-aminoquinoline, WR 225,448:against exo-erythrocytic schizonts of Plasmodium yoelii yoelii. Ann Trop Med Parasitol 1984; 78 (5): 467–478.

    PubMed  CAS  Google Scholar 

  15. Goheen MP, Bartlett MS, Queener SF, Smith JW. The effect of primaquine on the ultra-structural morphology of Pneumocystis carinii. J Protozool 1991; 38 (6): 164S - 165S.

    PubMed  CAS  Google Scholar 

  16. Goheen MP, Bartlett MS, Shaw MM, Queener SF, Smith JW. Effects of 8-aminoquinolines on the ultrastructural morphology of Pneumocystis carinii. Int J Exp Pathol 1993; 74 (4): 379–387.

    PubMed  CAS  Google Scholar 

  17. Aikawa M, Beaudoin RL. Plasmodium fallax: high-resolution autoradiography of exoerythrocytic stages treated with Primaquine in vitro. Exp Parasitol 1970; 27 (3): 454–463.

    Article  PubMed  CAS  Google Scholar 

  18. Howells RE, Peters W, Fullard J. The chemotherapy of rodent malaria. 13. Fine structural changes observed in the erythrocytic stages of Plasmodium berghei berghei following exposure to primaquine and menoctone. Ann Trop Med Parasitol 1970; 64 (2): 203–207.

    PubMed  CAS  Google Scholar 

  19. Peters W, Irare SG, Ellis DS, Warhurst DC, Robinson BL. The chemotherapy of rodent malaria, XXXVIII. Studies on the activity of three new antimalarials (WR 194,965:WR 228,258 and WR 225,448) against rodent and human malaria parasites (Plasmodium berghei and P. falciparum). Ann Trop Med Parasitol 1984; 78 (6): 567–579.

    PubMed  CAS  Google Scholar 

  20. Rotman, A. Genetics of a primaquin-resistant yeast. J Gen Microbiol 1975; 89 (1): 1–10.

    Article  PubMed  CAS  Google Scholar 

  21. Jiang JB, Jacobs G, Liang DS, Aikawa, M. Qinghaosu-induced changes in the morphology of Plasmodium inui. Am J Trop Med Hyg 1985; 34 (3): 424–428.

    PubMed  CAS  Google Scholar 

  22. Kawai S, Kano S, Suzuki, M. Morphologic effects of artemether on Plasmodium falciparum in Aotus trivirgatus. Am J Trop Med Hyg 1993; 49 (6): 812–818.

    PubMed  CAS  Google Scholar 

  23. Powers KG, Aikawa M, Nugent KM. Plasmodium knowlesi: morphology and course of infection in rhesus monkeys treated with clindamycin and its N-demethyl-4’-pentyl analog. Exp Parasitol 1976; 40 (1): 13–24.

    Article  PubMed  CAS  Google Scholar 

  24. Peters, W., 2nd (ed) Chemotherapy and Drug Resistance in Malaria. Orlando, FL: Academic, 1987.

    Google Scholar 

  25. Srivastava IK, Vaidya AB. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob Agents Chemother 1999; 43 (6): 1334–1339.

    PubMed  CAS  Google Scholar 

  26. Srivastava IK, Rottenberg H, Vaidya AB. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondria] membrane potential in a malarial parasite. J Biol Chem 1997; 272 (7): 3961–3966.

    Article  PubMed  CAS  Google Scholar 

  27. Fry M, Pudney M. Site of action of the antimalarial hydroxynaphthoquinone, 24trans-4(4’-chlorophenyl)cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem Pharmacol 1992; 43 (7): 1545–1553.

    Article  PubMed  CAS  Google Scholar 

  28. Geary TG, Jensen JB. Effects of antibiotics on Plasmodium falciparum in vitro. Am J Trop Med Hyg 1983; 32 (2): 221–225.

    PubMed  CAS  Google Scholar 

  29. Kiatfuengfoo R, Suthiphongchai T, Prapunwattana P, Yuthavong Y. Mitochondria as the site of action of tetracycline on Plasmodium falciparum. Mol Biochem Parasitol 1989; 34 (2): 109–115.

    Article  PubMed  CAS  Google Scholar 

  30. Carson PE, Hohl R, Nora MV, Parkhurst GW, Ahmad T, Scanlan S, et al. Toxicology of the 8-aminoquinolines and genetic factors associated with their toxicity in man. Bull WHO 1981; 59 (3): 427–437.

    PubMed  CAS  Google Scholar 

  31. Fry M, Beesley JE. Mitochondria of mammalian Plasmodium spp. Parasitology 1991; 102 (Ptl): 17–26.

    Article  PubMed  Google Scholar 

  32. Ginsburg H, Divo AA, Geary TG, Boland MT, Jensen JB. Effects of mitochondria] inhibitors on intraerythrocytic Plasmodium. falciparum in in vitro cultures. J Protozool 1986; 33 (1): 121–125.

    PubMed  CAS  Google Scholar 

  33. Prapunwattana P, O’Sullivan WJ, Yuthavong, Y. Depression of Plasmodium falciparum dihydroorotate dehydrogenase activity in in vitro culture by tetracycline. Mol Biochem Parasitol 1988; 27 (2–3): 119–124.

    Article  PubMed  CAS  Google Scholar 

  34. Alberts, B., 3rd (ed). Molecular Biology of the Cell. New York: Garland, 1994.

    Google Scholar 

  35. Vaidya AB, Lashgari MS, Pologe LG, Morrisey J. Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Mol Biochem Parasitol 1993; 58 (1): 33–42.

    Article  PubMed  CAS  Google Scholar 

  36. Ittarat I, Asawamahasakda W, Meshnick SR. The effects of antimalarials on the Plasmodium falciparum dihydroorotate dehydrogenase. Exp Parasitol 1994; 79 (1): 50–56.

    Article  PubMed  CAS  Google Scholar 

  37. Vuist WM, Feijge MA, Heemskerk JW. Kinetics of store-operated Cat+ influx evoked by endomembrane Cat+-ATPase inhibitors in human platelets. Prostaglandins Leukot Essential Fatty Acids 1997; 57 (4–5): 447–450.

    Article  CAS  Google Scholar 

  38. Barry SR, Bernal J. Antimalarial drugs inhibit calcium-dependent backward swimming and calcium currents in Paramecium calkinsi. J Comp Physiol [A] 1993; 172 (4): 457–466.

    Article  CAS  Google Scholar 

  39. Somasundaram B, Norman JC, Mahaut-Smith MP. Primaquine, an inhibitor of vesicular transport, blocks the calcium-release-activated current in rat megakaryocytes. Biochem J 1995; 309 (Pt 3): 725–729.

    PubMed  CAS  Google Scholar 

  40. Hiebsch RR, Raub TJ, Wattenberg BW. Primaquine blocks transport by inhibiting the formation of functional transport vesicles. Studies in a cell-free assay of protein transport through the Golgi apparatus. J Biol Chem 1991;266(30):20,323–20,328.

    Google Scholar 

  41. Grewal RS. Pharmacology of 8-aminoquinolines. Bull WHO 1981; 59 (3): 397–406.

    PubMed  CAS  Google Scholar 

  42. Ni YC, Xu YQ, Wang MJ. Rat liver microsomal and mitochondrial metabolism of primaquine in vitro. Chung Kuo Yao Li Hsueh Pao 1992; 13 (5): 431–435.

    PubMed  CAS  Google Scholar 

  43. Baker JK, McChesney JD. Differential metabolism of the enantiomers of primaquine. J Pharm Sci 1988; 77 (5): 380–382.

    Article  PubMed  CAS  Google Scholar 

  44. Armer RE, Barlow JS, Dutton CJ, Greenway DH, Greenwood SD, Lad N, et al. 8-Aminoquinolines as anticoccidials-II. Bioorg Med Chem Lett 1998; 8 (12): 1487–1492.

    Article  PubMed  CAS  Google Scholar 

  45. Casarett LJ, Klaassen CD, Amdur MO, Doull J., (eds). Casarett and Doull’s Toxicology: The Basic Science of Poisons. New York: McGraw-Hill Health Professions, 1996.

    Google Scholar 

  46. Frischer H, Mellovitz RL, Ahmad T, Nora MV. The conversion of primaquine into primaquine-aldehyde, primaquine-alcohol, and carboxyprimaquine, a major plasma metabolite. J Lab Clin Med 1991;117(61:468–476.

    Google Scholar 

  47. Fletcher KA, Barton PF, Kelly JA. Studies on the mechanisms of oxidation in the erythrocyte by metabolites of primaquine. Biochem Pharmacol 1988; 37 (13): 2683–2690.

    Article  PubMed  CAS  Google Scholar 

  48. Vasquez-Vivar J, Augusto O. Oxidative activity of primaquine metabolites on rat erythrocytes in vitro and in vivo. Biochem Pharmacol 1994; 47 (2): 309–316.

    Article  PubMed  CAS  Google Scholar 

  49. Clark IA, Butcher GA, Buffinton GD, Hunt NH, Cowden WB. Toxicity of certain products of lipid peroxidation to the human malaria parasite Plasmodium falciparum. Biochem Pharmacol 1987; 36 (4): 543–546.

    Article  PubMed  CAS  Google Scholar 

  50. Reichman N, Porteous CM, Murphy MP. Cyclosporin A blocks 6-hydroxydopamineinduced efflux of Cat+ from mitochondria without inactivating the mitochondrial inner-membrane pore. Biochem J 1994; 297 (Pt 1): 151–155.

    PubMed  CAS  Google Scholar 

  51. Dockrell HM, Playfair JH. Killing of blood-stage murine malaria parasites by hydrogen peroxide. Infect Immun 1983; 39 (1): 456–459.

    PubMed  CAS  Google Scholar 

  52. Friedman MJ. Oxidant damage mediates variant red cell resistance to malaria. Nature 1979; 280 (5719): 245–247.

    Article  PubMed  CAS  Google Scholar 

  53. Vennerstrom JL, Eaton JW. Oxidants, oxidant drugs, and malaria. J Med Chem 1988; 31 (7): 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  54. Cappadoro M, Giribaldi G, O’Brien E, Turrini F, Mannu F, Ulliers D, et al. Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood 1998; 92 (7): 2527–2534.

    PubMed  CAS  Google Scholar 

  55. Atamna H, Ginsburg H. The malaria parasite supplies glutathione to its host cell-investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. Eur J Biochem 1997; 250 (3): 670–679.

    Article  PubMed  CAS  Google Scholar 

  56. Srivastava P, Puri SK, Kamboj KK, Pandey VC. Glutathione-S-transferase activity in malarial parasites. Trop Med Int Health 1999; 4 (4): 251–254.

    Article  PubMed  CAS  Google Scholar 

  57. Vennerstrom JL, Nuzum EO, Miller RE, Dorn A, Gerena L, Dande PA, et al. 8-Aminoquinolines active against blood stage Plasmodium falciparum in vitro inhibit hematin polymerization. Antimicrob Agents Chemother 1999; 43 (3): 598–602.

    PubMed  CAS  Google Scholar 

  58. Atamna H, Krugliak M, Shalmiev G, Deharo E, Pescarmona G, Ginsburg H. Mode of antimalarial effect of methylene blue and some of its analogues on Plasmodium falciparum in culture and their inhibition of P. vinckei petteri and P. yoelii nigeriensis in vivo. Biochem Pharmacol 1996; 51 (5): 693–700.

    Article  PubMed  CAS  Google Scholar 

  59. Beutler, E. G6PD deficiency. Blood 1994; 84 (11): 3613–3636.

    PubMed  CAS  Google Scholar 

  60. Degowin RL, Eppes RB, Powell RD, Carson PE. The haemolytic effects of diaphenylsulfone (DDS) in normal subjects and in those with glucose-6-phosphate-dehydrogenase deficiency. Bull WHO 1966; 35 (2): 165–179.

    PubMed  CAS  Google Scholar 

  61. Knight JA. Free radicals: their history and current status in aging and disease. Ann Clin Lab Sci 1998; 28 (6): 331–346.

    PubMed  CAS  Google Scholar 

  62. Beal MF. Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol 1996; 6 (5): 661–666.

    Article  PubMed  CAS  Google Scholar 

  63. Atamna H, Pascarmona G, Ginsburg H. Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. Mol Biochem Parasitol 1994; 67 (1): 79–89.

    Article  PubMed  CAS  Google Scholar 

  64. Gaetani GF, Kirkman HN, Mangerini R, Ferraris AM. Importance of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 1994; 84 (1): 325–330.

    PubMed  CAS  Google Scholar 

  65. Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF. Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem 1999;274(20):13,908–13,914.

    Google Scholar 

  66. Scott MD, Zuo L, Lubin BH, Chiu DT. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Blood 1991; 77 (9): 2059–2064.

    PubMed  CAS  Google Scholar 

  67. Deslauriers R, Butler K, Smith IC. Oxidant stress in malaria as probed by stable nitroxide radicals in erythrocytes infected with Plasmodium berghei. The effects of primaquine and chloroquine. Biochim Biophys Acta 1987; 931 (3): 267–275.

    Article  PubMed  CAS  Google Scholar 

  68. Baird JK, Davidson DE, Jr, Decker-Jackson JE. Oxidative activity of hydroxylated primaquine analogs. Non-toxicity to glucose-6-phosphate dehydrogenase-deficient human red blood cells in vitro. Biochem Pharmacol 1986; 35 (7): 1091–1098.

    Article  PubMed  CAS  Google Scholar 

  69. Baird JK, McCormick GJ, Canfield CJ. Effects of nine synthetic putative metabolites of primaquine on activity of the hexose monophosphate shunt in intact human red blood cells in vitro. Biochem Pharmacol 1986; 35 (7): 1099–1106.

    Article  PubMed  CAS  Google Scholar 

  70. Hohl RJ, Kennedy EJ, Frischer H. Defenses against oxidation in human erythrocytes: role of glutathione reductase in the activation of glucose decarboxylation by hemolytic drugs. J Lab Clin Med 1991; 117 (4): 325–331.

    PubMed  CAS  Google Scholar 

  71. Amitai Y, Bhooma T, Frischer H. Glucose-6-phosphate dehydrogenase deficiency severely restricts the biotransformation of daunorubicin in human erythrocytes. J Lab Clin Med 1996; 127 (6): 588–598.

    Article  PubMed  CAS  Google Scholar 

  72. Cohen G, Hochstein P. Generation of hydrogen peroxide in erythrocytes by hemolytic agents. Biochemistry 1963; 3: 901–903.

    Article  Google Scholar 

  73. Summerfield M, Tudhope GR. Studies with primaquine in vitro: superoxide radical formation and oxidation of haemoglobin. Br J Clin Pharmacol 1978; 6 (4): 319–323.

    Article  PubMed  CAS  Google Scholar 

  74. Frischer H, Ahmad T. Consequences of erythrocytic glutathione reductase deficiency. J Lab Clin Med 1987; 109 (5): 583–588.

    PubMed  CAS  Google Scholar 

  75. Vasquez-Vivar J, Augusto O. ESR detection of free radical intermediates during autoxidation of 5-hydroxyprimaquine. Free Radic Res Commun 1990; 9 (3–6): 383–389.

    Article  PubMed  CAS  Google Scholar 

  76. Vasquez-Vivar J, Augusto O. Hydroxylated metabolites of the antimalarial drug primaquine. Oxidation and redox cycling. J Biol Chem 1992; 267 (10): 6848–6854.

    PubMed  CAS  Google Scholar 

  77. Kelman SN, Sullivan SG, Stern A. Primaquine-mediated oxidative metabolism in the human red cell. Lack of dependence on oxyhemoglobin, H202 formation, or glutathione turnover. Biochem Pharmacol 1982; 31 (14): 2409–2414.

    Article  PubMed  CAS  Google Scholar 

  78. Silva JM, O’Brien PJ. Primaquine-induced oxidative stress in isolated hepatocytes as a result of reductive activation. Adv Exp Med Biol 1991; 283: 359–363.

    Article  PubMed  CAS  Google Scholar 

  79. Goldberg AL, Boches FS. Oxidized proteins in erythrocytes are rapidly degraded by the adenosine triphosphate-dependent proteolytic system. Science 1982; 215 (4536): 1107–1109.

    Article  PubMed  CAS  Google Scholar 

  80. Itano HA, Matteson JL. Mechanism of initial reaction of phenylhydrazine with oxyhemoglobin and effect of ring substitutions on the biomolecular rate constant of this reaction. Biochemistry 1982; 21 (10): 2421–2426.

    Article  PubMed  CAS  Google Scholar 

  81. Itano HA, Hirota K, Hosokawa K. Mechanism of induction of haemolytic anaemia by phenylhydrazine. Nature 1975; 256 (5519): 665–667.

    Article  PubMed  CAS  Google Scholar 

  82. Grinberg LN, Newmark H, Kitrossky N, Rahamim E, Chevion M, Rachmilewitz EA. Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochem Pharmacol 1997; 54 (9): 973–978.

    Article  PubMed  CAS  Google Scholar 

  83. Grinberg LN, Samuni A. Nitroxide stable radical prevents primaquine-induced lysis of red blood cell. Biochim Biophys Acta 1994; 1201 (2): 284–248.

    Article  PubMed  CAS  Google Scholar 

  84. Grinberg LN, Rachmilewitz EA, Newmark H. Protective effects of rutin against hemoglobin oxidation. Biochem Pharmacol 1994; 48 (4): 643–649.

    Article  PubMed  CAS  Google Scholar 

  85. Hong YL, Pan HZ, Scott MD, Meshnick SR. Activated oxygen generation by a primaquine metabolite: inhibition by antioxidants derived from Chinese herbal remedies. Free Radic Biol Med 1992; 12 (3): 213–218.

    Article  PubMed  CAS  Google Scholar 

  86. Senok AC, Nelson EA, Li K, Oppenheimer SJ. Thalassaemia trait, red blood cell age and oxidant stress: effects on Plasmodium falciparum growth and sensitivity to artemisinin. Trans R Soc Trop Med Hyg 1997; 91 (5): 585–589.

    Article  PubMed  CAS  Google Scholar 

  87. Bradshaw TP, McMillan DC, Crouch RK, Jollow DJ. Formation of free radicals and protein mixed disulfides in rat red cells exposed to dapsone hydroxylamine. Free Radic Biol Med 1997; 22 (7): 1183–1193.

    Article  PubMed  CAS  Google Scholar 

  88. Jollow DJ, Bradshaw TP, McMillan DC. Dapsone-induced hemolytic anemia. Drug Metab Rev 1995; 27 (1–2): 107–124.

    Article  PubMed  CAS  Google Scholar 

  89. McMillan DC, Jensen CB, Jollow DJ. Role of lipid peroxidation in dapsone-induced hemolytic anemia. J Pharmacol Exp Ther 1998; 287 (3): 868–876.

    PubMed  CAS  Google Scholar 

  90. Agarwal S, Gupta UR, Daniel CS, Gupta RC, Anand N, Agarwal SS. Susceptibility of glucose-6-phosphate dehydrogenase deficient red cells to primaquine, primaquine enantiomers, and its two putative metabolites. II. Effect on red blood cell membrane, lipid peroxidation, MC-540 staining, and scanning electron microscopic studies. Biochem Pharmacol 1991; 41 (1): 17–21.

    Article  PubMed  CAS  Google Scholar 

  91. Magwere T, Naik YS, Hasler JA. Primaquine alters antioxidant enzyme profiles in rat liver and kidney. Free Radic Res 1997; 27 (2): 173–179.

    Article  PubMed  CAS  Google Scholar 

  92. Miller A, Smith HC. The in vitro effect of primaquine on red cell phospholipid metabolism. J Lab Clin Med 1976; 88 (3): 462–468.

    PubMed  CAS  Google Scholar 

  93. George JN, O’Brien RL, Pollack S, Crosby WH. Studies of in vitro primaquine hemolysis: substrate requirement for erythrocyte membrane damage. J Clin Invest 1966; 45 (8): 1280–1289.

    Article  PubMed  CAS  Google Scholar 

  94. Chasis JA, Schrier SL. Membrane deformability and the capacity for shape change in the erythrocyte. Blood 1989; 74 (7): 2562–2568.

    PubMed  CAS  Google Scholar 

  95. Thompson SF, Fraser IM, Strother A, Bull BS. Change of deformability and Heinz body formation in G6PD-deficient erythrocytes treated with 5-hydroxy-6-desmethylprimaquine. Blood Cells 1989; 15 (2): 443–452.

    PubMed  CAS  Google Scholar 

  96. Johnson RM, Panchoosingh H, Goyette G, Jr, Ravindranath Y. Increased erythrocyte deformability in fetal erythropoiesis and in erythrocytes deficient in glucose-6-phosphate dehydrogenase and other glycolytic enzymes. Pediatr Res 1999; 45 (1): 106–113.

    Article  PubMed  CAS  Google Scholar 

  97. Krzyzaniak JF, Alvarez Nunez FA, Raymond DM, Yalkowsky SH. Lysis of human red blood cells. 4. Comparison of in vitro and in vivo hemolysis data. J Pharm Sci 1997; 86 (11): 1215–1217.

    Article  PubMed  CAS  Google Scholar 

  98. Horton HM, Calabrese EJ. Predictive models for human glucose-6-phosphate dehydrogenase deficiency. Drug Metab Rev 1986; 17 (3–4): 261–281.

    Article  PubMed  CAS  Google Scholar 

  99. Bashan N, Peleg N, Moses SW. Attempts to predict the hemolytic potential of drugs in glucose-6-phosphate dehydrogenase deficiency of the Mediterranean type by an in vitro test. Isr J Med Sci 1988; 24 (1): 61–64.

    PubMed  CAS  Google Scholar 

  100. Bloom KE, Brewer GJ, Magon AM, Wetterstroem N. Microsomal incubation test of potentially hemolytic drugs for glucose-6-phosphate dehydrogenase deficiency. Clin Pharmacol Ther 1983; 33 (4): 403–409.

    Article  PubMed  CAS  Google Scholar 

  101. Magon A, Leipzig RM, Bloom K, Brewer GJ. Pharmacogenetic interactions in G6PD deficiency and development of an in vitro test to predict a drug’s hemolytic potential. Prog Clin Biol Res 1981; 55: 709–724.

    PubMed  CAS  Google Scholar 

  102. Tsukamoto N, Chen J, Yoshida A. Enhanced expressions of glucose-6-phosphate dehydrogenase and cytosolic aldehyde dehydrogenase and elevation of reduced glutathione level in cyclophosphamide-resistant human leukemia cells. Blood Cells Mol Dis 1998; 24 (2): 231–238.

    Article  PubMed  CAS  Google Scholar 

  103. Ursini MV, Parrella A, Rosa G, Salzano S, Martini G. Enhanced expression of glucose-6phosphate dehydrogenase in human cells sustaining oxidative stress. Biochem J 1997; 323 (Pt 3): 801–806.

    PubMed  CAS  Google Scholar 

  104. Tian WN, Braunstein LD, Apse K, Pang J, Rose M, Tian X, et al. Importance of glucose-6phosphate dehydrogenase activity in cell death. Am J Physiol 1999; 276 (5 Pt 1): C1121 - C1131.

    PubMed  CAS  Google Scholar 

  105. Schmidt LH, Alexander S, Allen L, Rasco J. Comparison of the curative antimalarial activities and toxicities of primaquine and its d and 1 isomers. Antimicrob Agents Chemother 1977; 12 (1): 51–60.

    Article  PubMed  CAS  Google Scholar 

  106. Nicholl DD, Edwards G, Ward SA, Orme ML, Breckenridge AM. The disposition of primaquine in the isolated perfused rat liver. Stereoselective formation of the carboxylic acid metabolite. Biochem Pharmacol 1987; 36 (20): 3365–3369.

    Article  PubMed  CAS  Google Scholar 

  107. Jaffe ER. Metabolic processes involved in the formation and reduction of methemoglobin in human erythrocytes. In Bishop C, Surgenor D (eds.), The Red Blood Cell. New York: Academic, 1964, pp. 397–422.

    Google Scholar 

  108. Hall AH, Kulig KW, Rumack BH. Drug-and chemical-induced methaemoglobinaemia. Clinical features and management. Med Toxicol 1986; 1 (4): 253–260.

    PubMed  CAS  Google Scholar 

  109. Coleman MD, Coleman NA. Drug-induced methaemoglobinaemia. Treatment issues. Drug Safety 1996; 14 (6): 394–405.

    Article  PubMed  CAS  Google Scholar 

  110. Alving AS, Johnson CF, Tarlov AR, Brewer GJ, Kellermeyer RW, Carson PE. Mitigation of the haemolytic effect of primaquine and enhancement of its action against exoerythrocytic forms of the Chesson strain of Plasmodium vivax by intermittent regimens of drug administraton. Bull WHO 1960; 22: 621–631.

    PubMed  CAS  Google Scholar 

  111. Clyde DF. Clinical problems associated with the use of primaquine as a tissue schizontocidal and gametocytocidal drug. Bull WHO 198l;59(3):391–395.

    Google Scholar 

  112. Rosen PJ, Johnson C, McGehee WG, Beutler E. Failure of methylene blue treatment in toxic methemoglobinemia. Association with glucose-6-phosphate dehydrogenase deficiency. Ann Intern Med 1971; 75 (1): 83–86.

    PubMed  CAS  Google Scholar 

  113. Idowu OR, Peggins JO, Brewer TG, Kelley C. Metabolism of a candidate 8-aminoquinoline antimalarial agent, WR 238605:by rat liver microsomes. Drug Metab Dispos 1995; 23 (1): 1–17.

    PubMed  CAS  Google Scholar 

  114. Idowu OR, Peggins JO, Brewer TG. Side-chain hydroxylation in the metabolism of 8-aminoquinoline antiparasitic agents. Drug Metab Dispos 1995; 23 (1): 18–27.

    PubMed  CAS  Google Scholar 

  115. Strother A, Fraser IM, Allahyari R, Tilton BE. Metabolism of 8-aminoquinoline antimalarial agents. Bull WHO 1981; 59 (3): 413–425.

    PubMed  CAS  Google Scholar 

  116. Strother A, Allahyari R, Buchholz J, Fraser IM, Tilton BE. In vitro metabolism of the antimalarial agent primaquine by mouse liver enzymes and identification of a methemoglobin-forming metabolite. Drug Metab Dispos 1984; 12 (1): 35–44.

    PubMed  CAS  Google Scholar 

  117. Magon AM, Leipzig RM, Zannoni VG, Brewer GJ. Interactions of glucose-6-phosphate dehydrogenase deficiency with drug acetylation and hydroxylation reactions. J Lab Clin Med 1981; 97 (6): 764–770.

    PubMed  CAS  Google Scholar 

  118. Bangchang KN, Karbwang J, Back DJ. Primaquine metabolism by human liver microsomes: effect of other antimalarial drugs. Biochem Pharmacol 1992; 44 (3): 587–590.

    Article  PubMed  CAS  Google Scholar 

  119. Mihaly GW, Ward SA, Edwards G, Orme ML, Breckenridge AM. Pharmacokinetics of primaquine in man: identification of the carboxylic acid derivative as a major plasma metabolite. Br J Clin Pharmacol 1984; 17 (4): 441–446.

    Article  PubMed  CAS  Google Scholar 

  120. Dua VK, Kar PK, Sarin R, Sharma VP. High-performance liquid chromatographic determination of primaquine and carboxyprimaquine concentrations in plasma and blood cells in Plasmodium vivax malaria cases following chronic dosage with primaquine. J Chromatogr B Biomed Appl 1996; 675 (1): 93–98.

    Article  PubMed  CAS  Google Scholar 

  121. Abu-El-Haj S, Allahyari R, Chavez E, Fraser IM, Strother A. Effects of an NADPHgenerating system on primaquine degradation by hamster liver fractions. Xenobiotica 1988; 18 (10): 1165–1178.

    Article  PubMed  CAS  Google Scholar 

  122. Frischer H, Ahmad T, Nora MV, Carson PE, Sivarajan M, Mellovitz R, et al. Biotransformation of primaquine in vitro with human K562 and bone marrow cells. J Lab Clin Med 1987; 109 (4): 414–421.

    PubMed  CAS  Google Scholar 

  123. Dockham PA, Sreerama L, Sladek NE. Relative contribution of human erythrocyte aldehyde dehydrogenase to the systemic detoxification of the oxazaphosphorines. Drug Metab Dispos 1997; 25 (12): 1436–1441.

    PubMed  CAS  Google Scholar 

  124. Baker JK, Yarber RH, Nanayakkara NP, McChesney JD, Homo F, Landau I. Effect of aliphatic side-chain substituents on the antimalarial activity and on the metabolism of primaquine studied using mitochondria and microsome preparations. Pharm Res 1990; 7 (1): 91–95.

    Article  PubMed  CAS  Google Scholar 

  125. Feo F, Pirisi L, Pascale R, Daino L, Frassetto S, Zanetti S, Garcea R. Modulatory mechanisms of chemical carcinogenesis: the role of the NADPH pool in the benzo(a)pyrene activation. Toxicol Pathol 1984; 12 (3): 261–268.

    Article  PubMed  CAS  Google Scholar 

  126. Feo F, Ruggiu ME, Lenzerini L, Garcea R, Daino L, Frassetto S, et al. Benzo(a)pyrene metabolism by lymphocytes from normal individuals and individuals carrying the Mediterranean variant of glucose-6-phosphate dehydrogenase. Int J Cancer 1987; 39 (5): 560–564.

    Article  PubMed  CAS  Google Scholar 

  127. Efferth T, Fabry U, Glatte P, Osieka R. Increased induction of apoptosis in mononuclear cells of a glucose-6- phosphate dehydrogenase deficient patient. J Mol Med 1995; 73 (1): 47–49.

    Article  PubMed  CAS  Google Scholar 

  128. Arnold J, Alving AS, Hockwald RS, Clayman CB, Dern RJ, Beutler E, et al. The antimalarial action of primaquine against the blood and tissue stages of falciparum malaria (Panama, P-F-6 strain). J Lab Clin Med 1955; 46 (3): 391–397.

    PubMed  CAS  Google Scholar 

  129. Arnold J, Alving AS, Hockwald RS, Clayman CB, Dem RJ, Beutler E, et al. The effect of continuous and intermittent primaquine therapy on the relapse rate of Chesson strain vivax malaria. J Lab Clin Med 1954; 44 (3): 429–438.

    PubMed  CAS  Google Scholar 

  130. Baird JK, Fryauff DJ, Basri H, Bangs MJ, Subianto B, Wiady I, et al. Primaquine for prophylaxis against malaria among nonimmune transmigrants in Irian Jaya, Indonesia. Am J Trop Med Hyg 1995; 52 (6): 479–484.

    PubMed  CAS  Google Scholar 

  131. Fryauff D, Baird J, Basri H, Sumawinata I, Purnomo, RT, Ohrt C, et al. Randomised placebo-controlled trial of primaquine for prophalaxis of falciparum and vivax malaria. Lancet 1995; 346: 1190–1193.

    Article  PubMed  CAS  Google Scholar 

  132. Powell RD, Brewer GJ. Effects of pyrimethamine, chlorguanide, and primaquine against exoerythrocytic forms of a strain of chloroquine-resistant Plasmodium falciparum from Thailand. Am J Trop Med Hyg 1967; 16 (6): 693–698.

    PubMed  CAS  Google Scholar 

  133. Weiss WR, Oloo AJ, Johnson A, Koech D, Hoffman SL. Daily primaquine is effective for prophylaxis against falciparum malaria in Kenya: comparison with mefloquine, doxycycline, and chloroquine plus proguanil. J Infect Dis 1995; 171 (6): 1569–1575.

    Article  PubMed  CAS  Google Scholar 

  134. Clayman C, Arnold J, Hockwald R, Yount E Jr, Edgecomb J, Alving A. Toxicity of primaquine in Caucasians. JAMA 1952; 149: 1563–1568.

    Article  CAS  Google Scholar 

  135. Brueckner RP, Coster T, Wesche DL, Shmuklarsky M, Schuster BG. Prophylaxis of Plasmodiumfalciparum infection in a human challenge model with WR 238605:a new 8-aminoquinoline antimalarial. Antimicrob Agents Chemother 1998; 42 (5): 1293–1294.

    PubMed  CAS  Google Scholar 

  136. Most H, London IM, Kane CA, Lavietes PH, Schroeder EF, Hayman JM Jr. Landmark article July 20:1946: Chloroquine for treatment of acute attacks of vivax malaria. JAMA 1984; 251 (18): 2415–2419.

    Article  CAS  Google Scholar 

  137. Alving A, Hankey D, Coatney G, Jones Jr R, Coker W, Garrison P, et al. Korean vivax malaria. II. Curative treatment with pamaquine and primaquine. Am J Trop Med Hyg 1953; 6: 970–976.

    Google Scholar 

  138. Hankey D, Jones Jr, R., Coatney G, Alving A, Coker W, Garrision P, et al. Korean vivax malaria. I. Natural history and response to chloroquine. Am J Trop Med Hyg 1952; 6: 958–969.

    Google Scholar 

  139. Coatney G, Alving A, Jones Jr., R., Hankey D, Robinson D, Garrison P, et al. Korean vivax malaria. V. Cure of the infection by primaquine administered during long-term latency. Am J Trop Med Hyg 1952; 6: 985–988.

    Google Scholar 

  140. Adak T, Sharma VP, Orlov VS. Studies on the Plasmodium vivax relapse pattern in Delhi, India. Am J Trop Med Hyg 1998; 59 (1): 175–179.

    PubMed  CAS  Google Scholar 

  141. Singh N, Mishra AK, Sharma VP. Radical treatment of vivax malaria in Madhya Pradesh, India. Indian J Malariol 1990; 27 (1): 55–56.

    PubMed  CAS  Google Scholar 

  142. Schmidt LH, Fradkin R, Vaughan D, Rasco J. Radical cure of infections with Plasmodium cynomolgi: a function of total 8-aminoquinoline dose. Am J Trop Med Hyg 1977; 26 (6 Pt 1): 1116–1128.

    PubMed  CAS  Google Scholar 

  143. Clyde DF, McCarthy VC. Radical cure of Chesson strain vivax malaria in man by 7:not 14:days of treatment with primaquine. Am J Trop Med Hyg 1977; 26 (3): 562–563.

    PubMed  CAS  Google Scholar 

  144. Bruce-Chwatt L. (ed). Chemotherapy of Malaria, Vol. 27. Geneva: World Health Organization, 1981.

    Google Scholar 

  145. Edgecomb J, Arnold J, Yount E Jr, Alving A, Eichelberger L. Primaquine, SN-13272, a new curative agent in vivax malaria: a preliminary report. Nat Malaria Soc 1950; 9: 285–357.

    Google Scholar 

  146. Bunnag D, Karbwang J, Thanavibul A, Chittamas S, Ratanapongse Y, Chalermrut K, et al. High dose of primaquine in primaquine resistant vivax malaria. Trans R Soc Trop Med Hyg 1994; 88 (2): 218–219.

    Article  PubMed  CAS  Google Scholar 

  147. Jelinek T, Nothdurft HD, Von Sonnenburg F, Loscher T. Long-term efficacy of primaquine in the treatment of vivax malaria in nonimmune travelers. Am J Trop Med Hyg 1995; 52 (4): 322–324.

    PubMed  CAS  Google Scholar 

  148. Kaplan MH, Bernstein LS. Improved therapy for Vietnam acquired vivax malaria. Mil Med 1974; 141 (6): 444–448.

    PubMed  CAS  Google Scholar 

  149. Martelo OJ, Smoller M, Saladin TA. Malaria in American soldiers. Arch Intern Med 1969; 123 (4): 383–387.

    Article  PubMed  CAS  Google Scholar 

  150. Fisher GU, Gordon MP, Lobel HO, Runcik K. Malaria in soldiers returning from Vietnam. Epidemiologie, therapeutic, and clinical studies. Am J Trop Med Hyg 1970; 19 (1): 27–39.

    PubMed  CAS  Google Scholar 

  151. Singh J, Ray A, Misra B, Nair C. Antirelapse treatment with primaquine and pyrimethamine. Indian J Malariol 1954; 8: 127–136.

    PubMed  CAS  Google Scholar 

  152. Basavaraj, H. (1960) Observations on the treatment of 678 malaria cases with primaquine in an area free from malaria transmission in Mysore State, India. Indian J Malariol 14: 269–281.

    Google Scholar 

  153. Cedillos RA, Warren M, Jeffery GM. Field evaluation of primaquine in the control of Plasmodium vivax. Am J Trop Med Hyg 1978; 27 (3): 466–472.

    PubMed  CAS  Google Scholar 

  154. Baird JK. Primaquine as anti-relapse therapy for Plasmodium vivax [letter; comment]. Trans R Soc Trop Med Hyg 1998; 92 (6): 687.

    Article  PubMed  CAS  Google Scholar 

  155. Contacos PG, Coatney GR, Collins WE, Briesch PE, Jeter MH. Five day primaquine therapy-an evaluation of radical curative activity against vivax malaria infection. Am J Trop Med Hyg 1973; 22 (6): 693–695.

    PubMed  CAS  Google Scholar 

  156. Miller LH, Wyler DJ, Glew RH, Collins WE, Contacos PG. Sensitivity of four Central American strains of Plasmodium vivax to primaquine. Am J Trop Med Hyg 1974; 23 (2): 309–310.

    PubMed  CAS  Google Scholar 

  157. Walsh DS, Looareesuwan S, Wilairatana P, Heppner Jr, DG, Tang DB, Brewer TG, et al. Randomized dose-ranging study of the safety and efficacy of WR 238605 (tafenoquine) in the prevention of relapse of Plasmodium vivax malaria in Thailand. J Infect Dis 1999; 180 (4): 1282–1287.

    Article  PubMed  CAS  Google Scholar 

  158. Looareesuwan S, White NJ, Chittamas S, Bunnag D, Harinasuta T. High rate of Plasmodium vivax relapse following treatment of falciparum malaria in Thailand. Lancet 1987; 2 (8567): 1052–1055.

    Article  PubMed  CAS  Google Scholar 

  159. Walker AJ. Potentialities of monthly doses of Camoquin and a gametocidal drug in malaria control. Trans R Soc Trop Med Hyg 1955; 49: 351–355.

    Article  PubMed  CAS  Google Scholar 

  160. Jeffery GM, Young MD, Eyles DE. The treatment of Plasmodium falciparum infection with chloroquine, with a note on infectivity of mosquitoes of primaquine-and pyrimthamine-treated cases. Am J Trop Med Hyg 1956; 64: 1–11.

    CAS  Google Scholar 

  161. Rieckmann KH, McNamara JV, Kass L, Powell RD. Gametocytocidal and sporontocidal effects of primaquine upon two strains of Plasmodium falciparum. Mil Med 1969; 134 (10): 802–819.

    PubMed  CAS  Google Scholar 

  162. WHO. Practical Chemotherapy of Malaria. Geneva: World Health Organization, 1990.

    Google Scholar 

  163. Collins WE, Jeffery GM. Primaquine resistance in Plasmodium vivax. Am J Trop Med Hyg 1996; 55 (3): 243–249.

    PubMed  CAS  Google Scholar 

  164. Murphy GS, Basri H, Purnomo, Andersen EM, Bangs MJ, Mount DL, et al. Vivax malaria resistant to treatment and prophylaxis with chloroquine. Lancet 1993; 341 (8837): 96–100.

    Article  PubMed  CAS  Google Scholar 

  165. Baird JK, Leksana B, Masbar S, Fryauff DJ, Sutanihardja MA, Suradi, et al. Diagnosis of resistance to chloroquine by Plasmodium vivax: timing of recurrence and whole blood chloroquine levels. Am J Trop Med Hyg 1997; 56 (6): 621–626.

    PubMed  CAS  Google Scholar 

  166. Wiselogle, F. A Survey of Antimalarial Drugs 1941–1946. Ann Arbor, MI: Edwards, 1946.

    Google Scholar 

  167. Alving AS, Arnold J, Hockwald RS, Clayman CB, Dem RJ, Beutler E, et al. Potentialtion of the curative action of primaquine in vivax malaria by quinine and chloroquine. J Lab Clin Med 1955; 46 (2): 301–306.

    PubMed  CAS  Google Scholar 

  168. Soto J, Toledo J, Rodriquez M, Sanchez J, Herrera R, Padilla J, et al. Primaquine prophylaxis against malaria in nonimmune Colombian soldiers: efficacy and toxicity. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998; 129 (3): 241–244.

    PubMed  CAS  Google Scholar 

  169. Mason PJ. New insights into G6PD deficiency. Br J Haematol 1996; 94 (4): 585–591.

    PubMed  CAS  Google Scholar 

  170. Carson P, Flanagan C, Ickes C, Alving A. Enzymatic deficiency in primaquine sensitive erythrocytes. Science 1956; 124: 484–485.

    Article  PubMed  CAS  Google Scholar 

  171. Vulliamy T, Mason P, Luzzatto, L. The molecular basis of glucose-6-phosphate dehydrogenase deficiency. Trends Genet 1992; 8 (4): 138–143.

    Article  PubMed  CAS  Google Scholar 

  172. Ruwende C, Khoo SC, Snow RW, Yates SN, Kwiatkowski D, Gupta S, et al. Natural selection of hemi-and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 1995; 376 (6537): 246–249.

    Article  PubMed  CAS  Google Scholar 

  173. Sarkar S, Prakash D, Marwaha RK, Garewal G, Kumar L, Singhi S, Walia BN. Acute intravascular haemolysis in glucose-6-phosphate dehydrogenase deficiency. Ann Trop Paediatr 1993; 13 (4): 391–394.

    PubMed  CAS  Google Scholar 

  174. Choudhry VP, Ghafary A, Zaher M, Qureshi MA, Fazel I, Ghani, R. Drug-induced haemolysis and renal failure in children with glucose-6- phosphate dehydrogenase deficiency in Afghanistan. Ann Trop Paediatr 1990; 10 (4): 335–338.

    PubMed  CAS  Google Scholar 

  175. Chugh KS, Singhal PC, Sharma BK, Mahakur AC, Pal Y, Datta BN, et al. Acute renal failure due to intravascular hemolysis in the North Indian patients. Am J Med Sci 1977; 274 (2): 139–146.

    Article  PubMed  CAS  Google Scholar 

  176. Karwacki JJ, Shanks GD, Kummalue T, Watanasook C. Primaquine induced hemolysis in a Thai soldier. Southeast Asian J Trop Med Public Health 1989; 20 (4): 555–556.

    PubMed  CAS  Google Scholar 

  177. Bouma MJ, Goris M, Akhtar T, Khan N, Kita E. Prevalence and clinical presentation of glucose-6-phosphate dehydrogenase deficiency in Pakistani Pathan and Afghan refugee communities in Pakistan; implications for the use of primaquine in regional malaria control programmes. Trans R Soc Trop Med Hyg 1995; 89 (1): 62–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brueckner, R.P., Ohrt, C., Baird, J.K., Milhous, W.K. (2001). 8-Aminoquinolines. In: Rosenthal, P.J. (eds) Antimalarial Chemotherapy. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-111-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-111-4_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-124-0

  • Online ISBN: 978-1-59259-111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics