Skip to main content

The Plasmodium Food Vacuole

  • Chapter
  • 468 Accesses

Part of the book series: Infectious Disease ((ID))

Abstract

The Plasmodium food vacuole is a sophisticated organelle optimized for hemoglobin metabolism. It is the site of acidification, hemoglobin proteolysis, peptide transport, heme polymerization, detoxification of oxygen radicals, and quinoline action. A number of proteins that function in the food vacuole are known. Among them are aspartic, cysteine, and metalloproteases, an ATP-binding cassette (ABC) transporter, an ATPase, a heme polymerase, and several oxidant defense enzymes. In this chapter, we review the molecular details of food vacuole function and highlight potential targets for antimalarial drug development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ting IP, Sherman IW. Carbon dioxide fixation in malaria—I. Kinetic studies in Plasmodium lophurae. Comp Biochem Physiol 1966; 19: 855–869.

    Article  CAS  Google Scholar 

  2. Sherman IW Amino acid metabolism and protein synthesis in malarial parasites. Bull WHO 1977; 55: 265–276.

    CAS  Google Scholar 

  3. Stryer L Biochemistry. New York: WH Freeman;1988:143–176.

    Google Scholar 

  4. Morrison DB, Jeskey HA. Alterations in some constituents of the monkey erythrocyte infected with Plasmodium knowlesi as related to pigment formation. J Natl Malar Soc 1948; 7: 259–264.

    PubMed  CAS  Google Scholar 

  5. Ball EG, McKee RW, Anfinsen CB, Cruz WO, Geiman Q M. Studies on malarial parasites: IX. Chemical and metabolic changes during growth and multiplication in vivo and in vitro. J Biol Chem 1948; 175: 547–571.

    PubMed  CAS  Google Scholar 

  6. Loria P, Miller S, Foley M, Tilley L. Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem J 1999; 339: 363–370.

    Article  PubMed  CAS  Google Scholar 

  7. McCormick GJ. Amino acid transport and incorporation in red blood cells of normal and Plasmodium knowlesi-infected Rhesus monkeys. Exp Parasitol 1970; 27: 143–149.

    Article  PubMed  CAS  Google Scholar 

  8. Sherman IW, Tanigoshi L. Incorporation of 14C-amino acids by malaria (Plasmodium lophurae). Int J Biochem 1970; 1: 635–637.

    Article  CAS  Google Scholar 

  9. Divo AD, Geary TG, Davis NL, Jensen JB. Nutritional requirements of Plasmodium falciparum in culture. I. Exogenously supplied dialyzable components necessary for continuous growth. J Protozool 1985; 32: 59–64.

    PubMed  CAS  Google Scholar 

  10. Pollet H, Conrad ME. Malaria: extracellular amino acid requirements for in vitro growth of erythrocytic forms of Plasmodium knowlesi. Proc Soc Exp Biol Med 1968; 127: 251–253.

    Google Scholar 

  11. Francis SE, Gluzman IY. Oksman A, Knickerbocker A, Mueller R, Bryant ML, et al. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J 1994; 13: 306–317.

    CAS  Google Scholar 

  12. Bailly E, Jambou R, Savel J, Jaureguiberry G. Plasmodium falciparum: differential sensitivity in vitro to E-64 (cysteine protease inhibitor) and pepstatin A (aspartyl protease inhibitor). J Protozool 1992; 39: 593–599.

    PubMed  CAS  Google Scholar 

  13. Rosenthal PJ, Olson JE, Lee GK, Palmer JT, Klaus JL, Rasnick D. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. Antimicrob Agents Chemother 1996; 40: 1600–1603.

    PubMed  CAS  Google Scholar 

  14. Rosenthal PJ, Wollish WS, Palmer JT, Rasnick D. Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J Clin Invest 1991; 88: 1467–1472.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenthal PJ. Plasmodium falciparum: effects of proteinase inhibitors on globin hydrolysis by cultured malaria parasites. Exp Parasitol 1995;80:272–281.

    Google Scholar 

  16. Rosenthal PJ, McKerrow JH, Rasnick D, Leech JH. Plasmodium falciparum: inhibitors of lysosomal cysteine proteinases inhibit a trophozoite proteinase and block parasite development. Mol Biochem Parasitol 1989; 35: 177–184.

    Article  PubMed  CAS  Google Scholar 

  17. Pasvol G, Weatherall DJ, Wilson RJM. Effects of foetal haemoglobin on susceptibility of red cells to Plasmodium falciparum. Nature 1977; 270: 171–173.

    Article  PubMed  CAS  Google Scholar 

  18. Wilson, R.J.M., Pasvol G, Weatherall DJ. Invasion and growth of Plasmodium falciparum in different types of human erythrocyte. Bull WHO 1977; 55: 179–186.

    PubMed  CAS  Google Scholar 

  19. Shear HL, Grinberg L, Gilman J, Fabry ME, Stamatoyannopoulos G, Goldberg DE, et al. Transgenic mice expressing human fetal globin are protected from malaria by a novel mechanism. Blood 1998; 92: 2520–2526.

    PubMed  CAS  Google Scholar 

  20. Geary TG, Delaney EJ, Klotz IM, Jensen JB. Inhibition of the growth of Plasmodium falciparum in vitro by covalent modification of hemoglobin. Mol Biochem Parasitol 1983; 9: 59–72.

    Article  PubMed  CAS  Google Scholar 

  21. Rangachari K, Dluzewski AR, Wilson RI. M., Gratzer WB. Cytoplasmic factor required for entry of malaria parasites into RBC’s. Blood 1987; 70: 77–82.

    PubMed  CAS  Google Scholar 

  22. Zarchin S, Krugliak M, Ginsburg H. Digestion of the host erythrocyte by malaria parasites is the primary target for quinoline-containing antimalarials. Biochem Pharmacol 1986; 35: 2435–2442.

    Article  PubMed  CAS  Google Scholar 

  23. Ginsburg H. Some reflections concerning host erythrocyte-malarial parasite interrelationships. Blood Cells 1990; 16: 225–235.

    PubMed  CAS  Google Scholar 

  24. Desai SA, Krogstad DJ, McCleskey EW. A nutrient-permeable channel on the intra-erythrocytic malaria parasite. Nature 1993; 362: 643–646.

    Article  PubMed  CAS  Google Scholar 

  25. Langreth SG, Jensen JB, Reese RT, Trager W. Fine structure in human malaria in vitro. J Protozool 1978; 25: 443–452.

    PubMed  CAS  Google Scholar 

  26. Olliaro PL, Goldberg DE. The Plasmodium digestive vacuole: Metabolic headquarters and choice drug target. Parasitol Today 1995; 11: 294–297.

    Article  PubMed  CAS  Google Scholar 

  27. Slomianny C. Three-dimensional reconstruction of the feeding process of the malaria parasite. Blood Cells 1990; 16: 369–378.

    PubMed  CAS  Google Scholar 

  28. Goldberg DE, Slater AFG, Cerami A, Henderson GB. Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle. Proc Natl Acad Sci USA 1990; 87: 2931–2935.

    Article  PubMed  CAS  Google Scholar 

  29. Aikawa M, Hepler PK, Huff CG, Sprinz H. The feeding mechanism of avian malarial parasites. J Cell Biol 1966; 28: 355–373.

    Article  PubMed  CAS  Google Scholar 

  30. Goldberg DE. Hemoglobin degradation in Plasmodium-infected red blood cells. Semin Cell Biol 1993; 4: 355–361.

    Article  PubMed  CAS  Google Scholar 

  31. Aikawa M, Thompson PE. Localization of acid phosphatase activity in Plasmodium berghei and P. gallinaceum: an electron microscopic observation. J Parasitol 1971; 57: 603–610.

    Article  PubMed  CAS  Google Scholar 

  32. Macomber P, Sprinz H. Morphological effects of chloroquine on Plasmodium berghei in mice. Nature 1967; 214: 937–939.

    Article  PubMed  CAS  Google Scholar 

  33. Aikawa M. High-resolution autoradiography of malarial parasites treated with 3H-chloroquine. Am J Pathol 1972; 67: 277–284.

    PubMed  CAS  Google Scholar 

  34. Yayon A, Timberg R, Friedman S, Ginsburg H. Effects of chloroquine on the feeding mechanism of the intraerythrocytic human malarial parasite Plasmodium falciparum. J Protozool 1984; 31: 367–372.

    PubMed  CAS  Google Scholar 

  35. Krugliak M, Waldman Z, Ginsburg H. Gentamicin and amikacin repress the growth of Plasmodium falciparum in culture, probably by inhibiting a parasite acid phospholipase. Life Sci 1987; 40: 1253–1257.

    Article  PubMed  CAS  Google Scholar 

  36. Slomianny C, Prensier G. A cytochemical ultrastructural study of the lysosomal system of different species of malaria parasites. J Protozool 1990; 37: 465–470.

    PubMed  CAS  Google Scholar 

  37. Rudzinska M, Trager W, Bray RS. Pinocytotic uptake and digestion of hemoglobin in malaria parasites. J Protozool 1965; 12: 563–576.

    PubMed  CAS  Google Scholar 

  38. Krogstad DJ, Schlesinger PH, Gluzman IY. Antimalarials increase vesicle pH in Plasmodium falciparum. J Cell Biol 1985; 101: 2302–2309.

    Article  PubMed  CAS  Google Scholar 

  39. Yayon A, Cabantchik ZI, Ginsburg H. Identification of the acidic compartment of Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine. EMBO J 1984; 3: 2695–2700.

    CAS  Google Scholar 

  40. Gyang FN, Poole B, Trager W. Peptidases from Plasmodium falciparum cultured in vitro. Mol Biochem Parasitol 1982; 5: 263–273.

    Article  PubMed  CAS  Google Scholar 

  41. Vander Jagt DL, Hunsaker LA, Campos NM. Comparison of proteases from chloroquinesensitive and chloroquine-resistant strains of Plasmodium falciparum. Biochem Pharmacol 1987; 36: 3285–3291.

    Article  Google Scholar 

  42. Bailly E, Savel J, Mahouy G, Jaureguiberry G. Plasmodium falciparum: isolation and characterization of a 55-kDa protease with a cathepsin D-like activity from P. falciparum. Exp Parasitol 1991; 72: 278–284.

    Article  PubMed  CAS  Google Scholar 

  43. Vander Jagt DL, Hunsaker LA, Campos NM. Characterization of a hemoglobin-degrading, low molecular weight protease from Plasmodium falciparum. Mol Biochem Parasitol, 1986; 18: 389–400.

    Article  Google Scholar 

  44. Levy MR, Siddiqui WA, Chou SC. Acid protease activity in Plasmodium falciparum and P. knowlesi and ghosts of their respective host red cells. Nature 1974; 247: 546–549.

    Article  PubMed  CAS  Google Scholar 

  45. Sherman IW, Tanigoshi L. Purification of Plasmodium lophurae cathepsin D and its effects on erythrocyte membrane proteins. Mol Biochem Parasitol 1983; 8: 207–226.

    Article  PubMed  CAS  Google Scholar 

  46. Levy MR, Chou SC. Activity and some properties of an acid proteinase from normal and Plasmodium berghei-infected red cells. J Parasitol 1973; 59: 1064–1070.

    Article  PubMed  CAS  Google Scholar 

  47. Aissi E, Charet P, Bouquelet S, Biguet J. Endoprotease in Plasmodium yoelii nigeriensis. Comp Biochem Physiol 1983; 74B: 559–566.

    CAS  Google Scholar 

  48. Hempelmann E, Wilson RJM. Endopeptidases from Plasmodium knowlesi. Parasitology 1980; 80: 323–330.

    Article  PubMed  CAS  Google Scholar 

  49. Sato K, Fukabori Y, Suzuki M. Plasmodium berghei: a study of globinolytic enzyme in erythrocytic parasite. Zbl Bakt Hyg 1987; 264: 487–495.

    CAS  Google Scholar 

  50. Vander Jagt DL, Hunsaker LA, Campos NM, Scaletti JV. Localization and characterization of hemoglobin-degrading aspartic proteinases from the malarial parasite Plasmodium falciparum. Biochim Biophys Acta 1992; 1122: 256–264.

    Article  Google Scholar 

  51. Goldberg DE, Slater AFG, Beavis R, Chait B, Cerami A, Henderson GB. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease. J Exp Med 1991; 173: 961–969.

    Article  PubMed  CAS  Google Scholar 

  52. Gluzman IY, Francis SE, Oksman A, Smith CE, Duffin KL, Goldberg DE. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J Clin Invest 1994; 93: 1602–1608.

    Article  PubMed  CAS  Google Scholar 

  53. Francis SE, Gluzman IY, Oksman A, Banerjee D, Goldberg DE. Characterization of native falcipain, an enzyme involved in Plasmodium falciparum hemoglobin degradation. Mol Biochem Parasitol 1996; 83: 189–200.

    Article  PubMed  CAS  Google Scholar 

  54. Dame TB, Reddy GR, Yowell CA, Dunn BM, Kay J, Berry C. Sequence, expression, and modeled structure of an aspartic proteinase from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 1994; 64: 177–190.

    Article  PubMed  CAS  Google Scholar 

  55. Manning JM. Remote contributions to subunit interactions: lessons from adult and fetal hemoglobins. TIBS 1999; 24: 211–212.

    PubMed  CAS  Google Scholar 

  56. Dianni Carroll C, Patel H, Johnson TO, Guo T, Orlowski M, He Z, et al. Identification of potent inhibitors of Plasmodium falciparum plasmepsin II from an encoded statine combinatorial library. Bioorg Med Chem. Lett 1998; 8: 2315–2320.

    Article  Google Scholar 

  57. Westling J, Yowell CA, Majer P, Erickson JW, Dame JB, Dunn BM. Plasmodium falciparum, P. vivax, P. malariae: a comparison of the active site properties of plasmepsins cloned and expressed from three different species of the malaria parasite. Exp Parasitol 1997; 87: 185–193.

    Article  PubMed  CAS  Google Scholar 

  58. Berry C, Dame JB, Dunn BM, Kay J. Aspartic proteinases from the human malaria parasite Plasmodium falciparum. In: Takahashi K (ed). Aspartic Proteinases: Structure, Function, Biology, and Biomedical Implications, New York: Plenum 1995, pp. 511–518.

    Google Scholar 

  59. Luker KE, Francis SE, Gluzman IY, Goldberg DE. Kinetic analysis of plasmepsins I and II, aspartic proteases of the Plasmodium falciparum digestive vacuole. Mol Biochem Parasitol 1996; 79: 71–78.

    Article  PubMed  CAS  Google Scholar 

  60. Francis SE, Banerjee R, Goldberg DE. Biosynthesis and maturation of the malarial aspartic hemoglobinases plasmepsins I and II. J Biol Chem 1997;272:14, 961–14, 968.

    Google Scholar 

  61. Moon RP, Tyas L, Certa U, Rupp K, Bur D, Jacquet C, et al. Expression and characterization of plasmepsin I from Plasmodium falciparum. Eur J Biochem 1997; 244: 552–560.

    Article  PubMed  CAS  Google Scholar 

  62. Shinagawa T, Do YS, Baxter JD, Carilli C, Schilling J, Hsueh WA. Identification of an enzyme in human kidney that correctly processes prorenin. Proc Natl Acad Sci USA 1990; 87: 1927–1931.

    Article  PubMed  CAS  Google Scholar 

  63. Kim W, Hatsuzawa K, Ishizuka Y, Hashiba K, Murakami K, Nakayama K. A processing enzyme for prorenin in mouse submandibular gland. J Biol Chem 1990; 265: 5930–5933.

    PubMed  CAS  Google Scholar 

  64. Hill J, Tyas L, Phylip LH, Kay J, Dunn BM, Berry C. High level expression and characterisation of plasmepsin II, an aspartic proteinase from Plasmodium falciparum. FEBS Lett 1994; 352: 155–158.

    Article  PubMed  CAS  Google Scholar 

  65. Tyas L, Gluzman IY, Moon RP, Rupp K, Westling J, Ridley RG, et al. Naturally-occurring and recombinant forms of the aspartic proteinases plasmepsins I and II from the malaria parasite Plasmodium falciparum. FEBS Lett 1999; 454: 210–214.

    Article  PubMed  CAS  Google Scholar 

  66. Silva AM, Lee AY, Gulnik SV, Majer, P. et al. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc Natl Acad Sci USA 1996;93:10, 034–10, 039.

    Google Scholar 

  67. Hague TS, Skillman G, Lee CE, Habashita H, Gluzman IY, Ewing TJ. et al. Potent low-molecular weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II. J Med Chem 1999; 42: 1428–1440.

    Article  Google Scholar 

  68. Bernstein NK, Cherney MM, Loetscher H, Ridley RG, James MNG. Crystal structure of the novel aspartic proteinase zymogen proplasmepsin II from Plasmodium falciparum. Nature Struct Biol 1999; 6: 32–37.

    Article  PubMed  CAS  Google Scholar 

  69. Deguercy A, Hommel M, Schrevel J. Purification and characterization of 37-kilodalton proteases from Plasmodium falciparum and Plasmodium berghei which cleave erythrocyte cytoskeletal components. Mol Biochem Parasitol 1990; 38: 233–244.

    Article  PubMed  CAS  Google Scholar 

  70. Le Bonniec S, Deregnaucourt C, Redeker V, Banerjee R, Grellier P, Goldberg DE, et al. Plasmepsin II, an acidic hemoglobinase from the Plasmodium falciparum food vacuole is active at neutral pH on the host erythrocyte membrane skeleton. J Biol Chem 1999;274: 14, 218–14, 223.

    Google Scholar 

  71. Rosenthal PJ, McKerrow JH, Aikawa M, Nagasawa H, Leech JH. A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest 1988; 82: 1560–1566.

    Article  PubMed  CAS  Google Scholar 

  72. Gamboa de Dominguez ND, Rosenthal PJ. Cysteine proteinase inhibitors block early steps in hemoglobin degradation by cultured malaria parasites. Blood 1996; 87: 4448–4454.

    Google Scholar 

  73. Rosenthal PJ, Nelson RG. Isolation and characterization of a cysteine proteinase gene of Plasmodium falciparum. Mol Biochem Parasitol 1992; 51: 143–152.

    Article  PubMed  CAS  Google Scholar 

  74. Salas F, Fichmann J, Lee GK, Scott MD, Rosenthal PJ. Functional expression of falcipain, a Plasmodium falciparum cysteine proteinase, supports its role as a malarial hemoglobinase. Infect Immun 1995; 63: 2120–2125.

    PubMed  CAS  Google Scholar 

  75. Rosenthal Pi. A Plasmodium vinckei cysteine proteinase shares unique features with its Plasmodium falciparum analogue. Biochim Biophys Acta 1993; 1173: 91–93.

    Article  Google Scholar 

  76. Rosenthal PJ. Conservation of key amino acids among the cysteine proteinases of multiple malarial species. Mol Biochem Parasitol 1996; 75: 255–260.

    Article  PubMed  CAS  Google Scholar 

  77. Olson JE, Lee GK, Semenov A, Rosenthal PJ. Antimalarial effects in mice of orally administered peptidyl cysteine protease inhibitors. Bioorg Med Chem 1999; 7: 633–638.

    Article  PubMed  CAS  Google Scholar 

  78. Rosenthal PJ, Lee GK, Smith RE. Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J Clin Invest 1993; 91: 1052–1056.

    Article  PubMed  CAS  Google Scholar 

  79. Eggleson KK, Duffin KL, Goldberg DE. Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J Biol Chem 1999;274:32, 411–32, 417.

    Google Scholar 

  80. Bray PG, Janneh O, Raynes KJ, Mungthin M, Ginsburg H, Ward SA. Cellular uptake of chloroquine is dependent on binding to ferriprotoporphyrin IX and is independent of NHE activity in Plasmodium falciparum. J Cell Biol 1999; 145: 363–376.

    Article  PubMed  CAS  Google Scholar 

  81. Kolakovich KA, Gluzman IY, Duffin KL, Goldberg DE. Generation of hemoglobin peptides in the acidic digestive vacuole of Plasmodium falciparum implicates peptide transport in amino acid production. Mol Biochem Parasitol 1997; 87: 123–135.

    Article  PubMed  CAS  Google Scholar 

  82. Florent I, Derhy Z, Allary M, Monsigny M, Mayer R, Schrevel J. A Plasmodium falciparum aminopeptidase gene belonging to the M1 family of zinc-metallopeptidases is expressed in erythrocytic stages. Mol Biochem Parasitol 1998; 97: 149–160.

    Article  PubMed  CAS  Google Scholar 

  83. Vander Jagt DL, Baack BR, Hunsaker LA. Purification and characterization of an aminopeptidase from Plasmodium falciparum. Mol Biochem Parasitol 1984; 10: 45–54.

    Article  Google Scholar 

  84. Curley GP, O’Donovan S, McNally J, Mullally M, O’Hara H, Troy A, et al. Aminopeptidases from Plasmodium falciparum, Plasmodium chabaudi chabaudi, and Plasmodium berghei. J Euk Microbiol 1994; 41: 119–123.

    Article  PubMed  CAS  Google Scholar 

  85. Nankya-Kitaka MF, Curley GP, Gavigan CS, Bell A, Dalton JP. Plasmodium chabaudi chabaudi and P. falciparum: inhibition of aminopeptidase and parasite growth by bestatin and nitrobestatin. Parasitol Res 1998; 84: 552–558.

    Article  PubMed  CAS  Google Scholar 

  86. Berry C, Humphreys Mi., Matharu P, Granger R, Horrocks P, Moon RP, et al. A distinct member of the aspartic proteinase gene family from the human malaria parasite Plasmodium falciparum. FEBS Lett 1999; 447: 149–154.

    Article  PubMed  CAS  Google Scholar 

  87. Xie S, Low BG, Nagel RJ, Kramer KK, Anthony RV, Zoli AP, et al. Identification of the major pregnancy-specific antigens of cattle and sheep as inactive members of the aspartic proteinase family. Proc Natl Acad Sci USA 1991;88:10, 247–10, 251.

    Google Scholar 

  88. Xie S, Green J, Beckers J, Roberts RM. The gene encoding bovine pregnancy-associated glycoprotein-1, an inactive member of the aspartic proteinase family. Gene 1995; 159: 193–197.

    Article  PubMed  CAS  Google Scholar 

  89. Guruprasad K, Blundell TL, Xie S, Green J, Szafranska B, Nagel RJ, et al. Comparative modelling and analysis of amino acid substitutions suggests that the family of pregnancy-associated glycoproteins includes both active and inactive aspartic proteinases. Protein Engin 1996; 9: 849–856.

    Article  CAS  Google Scholar 

  90. Xie S., G., J., Bixby JB, Szafranska B, DeMartini JC, Hecht S, Roberts RM. The diversity and evolutionary relationships of the pregnancy-associated glycoproteins, an aspartic proteinase subfamily consisting of many trophoblast-expressed genes. Proc Natl Acad Sci USA 1997;94:12, 809–12, 816.

    Google Scholar 

  91. Elmendorf HG, Haldar K. Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implication for organization of the Golgi. EMBO J 1993; 12: 4763–4773.

    CAS  Google Scholar 

  92. Van Wye J, Ghori N, Webster P, Mitschler RR, Elmendorf HG, Haldar K. Identification and localization of rab6, separation of rab6 from ERD2 and implications for an unstacked Golgi, in Plasmodium falciparum. Mol Biochem Parasitol 1996; 83: 107–120.

    Article  PubMed  Google Scholar 

  93. Mattei D, Ward GE, Langsley G, Lingelbach K. Novel secretory pathways in Plasmodium Parasitol Today 1999; 15: 235–237.

    Article  PubMed  CAS  Google Scholar 

  94. Crary JL, Haldar K. Brefeldin A inhibits protein secretion and parasite maturation in the ring stage of Plasmodium falciparum. Mol Biochem Parasitol 1992; 53: 185–192.

    Article  PubMed  CAS  Google Scholar 

  95. Moura IC, Pudles J. A Plasmodium chabaudi chabaudi high molecular mass glycoprotein translocated to the host cell membrane by a non-classical secretory pathway. Eur J Cell Biol 1999; 78: 186–193.

    Article  PubMed  CAS  Google Scholar 

  96. Elmendorf HG, Bangs JD, Haldar K. Synthesis and secretion of proteins by released malarial parasites. Mol Biochem Parasitol 1992; 52: 215–230.

    Article  PubMed  CAS  Google Scholar 

  97. Kimura EA, Couto AS, Peres VJ, Casal OL, Katzin AM. N-Linked glycoproteins are related to schizogony of the intraerythrocytic stage in Plasmodium falciparum. J Biol Chem 1996;271:14, 452–14, 461.

    Google Scholar 

  98. Dieckmann-Schuppert A, Bause E, Schwarz RT. Studies on 0-glycans of Plasmodium falciparum-infected human erythrocytes: evidence for O-G1cNAc and transferase in malaria parasites. Eur J Biochem 1993; 216: 779–788.

    Article  PubMed  CAS  Google Scholar 

  99. Dieckmann-Schuppert A, Bender S, Odenthal-Schnittler M, Bause E, Schwarz RT. Apparent lack of N-glycosylation in the asexual intraerythrocytic stage of Plasmodium falciparum. Eur J Biochem 1992; 205: 815–825.

    Article  PubMed  CAS  Google Scholar 

  100. Gowda DC, Gupta P, Davidson EA. Glycosylphosphatidylinositol anchors represent the major carbohydrate modification in proteins of intraerythrocytic stage Plasmodium falciparum. J Biol Chem 1997; 272: 6428–6439.

    Article  PubMed  CAS  Google Scholar 

  101. Klionsky DJ, Banta LM, Emr SD. Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information. Mol Cell Biol 1988; 8: 2105–2116.

    PubMed  CAS  Google Scholar 

  102. Valls LA, Hunter CP, Rothman JH, Stevens TH. Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell, 1987; 48: 887–897.

    Article  PubMed  CAS  Google Scholar 

  103. Oda MN, Scott SV, Hefner-Gravink A, Caffarelli AD, Klionsky DJ. Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I. J Cell Biol 1996; 132: 999–1010.

    Article  PubMed  CAS  Google Scholar 

  104. Johnson LM, Bankaitis VA, Emr SD, Distinct sorting determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell 1987; 48: 875–885.

    Article  PubMed  CAS  Google Scholar 

  105. Karcz SR, Herrmann VR, Trottein F, Cowman AF. Cloning and characterization of the vacuolar ATPase B subunit from Plasmodium falciparum. Mol Biochem Parasitol 1994; 65: 123–133.

    Article  PubMed  CAS  Google Scholar 

  106. Cowman AF, Karcz S, Galatis D, Culvenor JG. A P-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole. J Cell Biol 1991; 114: 1033–1042.

    Article  Google Scholar 

  107. Sullivan DJ, Gluzman IY, Goldberg DE. Plasmodium hemozoin formation mediated by histidine-rich proteins. Science 1996; 271: 219–222.

    Article  PubMed  CAS  Google Scholar 

  108. Choi I, Mego JL. Intravacuolar proteolysis in Plasmodium falciparum digestive vacuoles is similar to intralysosomal proteolysis in mammalian cells. Biochim Biophys Acta 1987; 926: 170–176.

    Article  PubMed  CAS  Google Scholar 

  109. Choi I, Mego JL. Purification of Plasmodium falciparum digestive vacuoles and partial characterization of the vacuolar membrane ATPase. Mol Biochem Parasitol 1988; 31: 71–78.

    Article  PubMed  CAS  Google Scholar 

  110. Saliba KJ, Folb PI, Smith PJ. Role for the Plasmodium falciparum digestive vacuole in chloroquine resistance. Biochem Pharm 1998; 56: 313–320.

    Article  PubMed  CAS  Google Scholar 

  111. Karcz SR, Herrmann VR, Cowman AF. Cloning and characterization of a vacuolar ATPase A subunit homologue from Plasmodium falciparum. Mol Biochem Parasitol 1993; 58: 333–344.

    Article  PubMed  CAS  Google Scholar 

  112. Rubio JP, Cowman AF. The ATP-binding cassette (ABC) gene family of Plasmodium falciparum. Parasitol Today 1996; 12: 135–140.

    Article  PubMed  CAS  Google Scholar 

  113. Wilson CM, Serrano AE, Wasley A, Bogenschutz MP, Shankar AH, Wirth DF. Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science 1989; 244: 1184–1186.

    Article  PubMed  CAS  Google Scholar 

  114. Karcz SR, Galatis D, Cowman AF. Nucleotide binding properties of a P-glycoprotein homologue from Plasmodium falciparum. Mol Biochem Parasitol 1993; 58: 269–276.

    Article  PubMed  CAS  Google Scholar 

  115. Lim A, Cowman AF. Phosphorylation of a P-glycoprotein homologue in Plasmodium falciparum. Mol Biochem Parasitol 1993; 62: 293–302.

    Article  PubMed  CAS  Google Scholar 

  116. Van Es H, Karcz S, Chu F, Cowman AF, Vidal S, Gros P, et al. Expression of the plasmo-dial pfmdrl gene in mammalian cells is associated with increased susceptibility to chloroquine. Mol Cell Biol 1994; 14: 2419–2428.

    Article  PubMed  Google Scholar 

  117. Volkman SK, Cowman AF, Wirth DF. Functional complementation of the ste6 gene of Saccharomyces cerevisiae with the pfmdrl gene of Plasmodium falciparum. Proc Natl Acad Sci USA 1995; 92: 8921–8925.

    Article  PubMed  CAS  Google Scholar 

  118. Volkman S, Wirth D. Functional analysis of pfmdrl gene of Plasmodium falciparum. Methods Enzymol 1998; 292: 174–181.

    Article  PubMed  CAS  Google Scholar 

  119. Cowman AF, Karcz S. Drug resistance and the P-glycoprotein homologues of Plasmodium falciparum. Semin Cell Biol 1993; 4: 29–35.

    Article  PubMed  CAS  Google Scholar 

  120. Cowman AF, Galatis D, Thompson JK. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdrl gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci USA 1994; 91: 1143–1147.

    Article  PubMed  CAS  Google Scholar 

  121. Vennerstrom JL, Eaton JW. Oxidants, oxidant drugs, and malaria. J Med Chem 1988; 31: 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  122. Atamna H, Ginsburg H. Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol 1993; 61: 231–242.

    Article  PubMed  CAS  Google Scholar 

  123. Wallace WJ, Hourchens RA, Maxwell JC, Caughey WS. Mechanism of autooxidation for hemoglobins and myoglobins. J Biol Chem 1982; 257: 4966–4977.

    PubMed  CAS  Google Scholar 

  124. Arias AE, Walter RD. Plasmodium falciparum: association with erythrocyte superoxide dismutase. J Protozool 1988; 35: 348–351.

    PubMed  CAS  Google Scholar 

  125. Fairfield AS, Meshnick SR. Malaria parasites adopt host cell superoxide dismutase. Science, 1983; 221: 764–766.

    Article  PubMed  CAS  Google Scholar 

  126. Fairfield AS, Eaton JW, Meshnick SR. Superoxide dismutase and catalase in the murine malaria, Plasmodium berghei: content and subcellular distribution. Arch Biochem Biophys 1986; 250: 526–529.

    Article  PubMed  CAS  Google Scholar 

  127. Williams WJ, Beutler E, Erslev AJ, Lichtman MA. Hematology. New York: McGraw-Hill, 1990, p. 319.

    Google Scholar 

  128. Fairfield AS, Abosch A, Ranz A, Eaton JW, Meshnick SR. Oxidant defense enzymes of Plasmodium falciparum. Mol Biochem Parasitol 1988; 30: 77–82.

    Article  PubMed  CAS  Google Scholar 

  129. Gamain B, Langsley G, Fourmaux MN, Touzel JP, Camus D, Dive D, et al. Molecular characterization of the glutathione peroxidase gene of the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 1996; 78: 237–248.

    Article  PubMed  CAS  Google Scholar 

  130. Friedman MJ. Oxidant damage mediates variant red cell resistance to malaria. Nature 1979; 280: 245–247.

    Article  PubMed  CAS  Google Scholar 

  131. Eckman JR, Eaton JW. Dependence of plasmodial glutathione metabolism on the host cell. Nature 1979; 278: 754–756.

    Article  PubMed  CAS  Google Scholar 

  132. Weatherall DJ. Host genetics and infectious disease. Parasitology, 1996; 112: S23 - S29.

    PubMed  Google Scholar 

  133. Destro-Bisol G, Giardina B, Sansonetti B, Spedini G. Interaction between oxidized hemoglobin and the cell membrane: a common basis for several falciparum malaria-linked genetic traits. Yearbook Phys Anthropol 1996; 39: 137–159.

    Article  Google Scholar 

  134. Su X, Kirkman LA, Fujioka H, Wellems TE. Complex polymorphisms in a 330-kDa protein are linked to chloroquine-resistant P. falciparum in southeast Asia and Africa. Cell 1997; 91: 593–603.

    Article  PubMed  CAS  Google Scholar 

  135. Sanchez CP, Horrocks P, Lanzer M. Is the putative chloroquine resistance mediator CG2 the Na+/H+ exchanger of Plasmodium falciparum? Cell 1998; 92: 601–602.

    Article  PubMed  CAS  Google Scholar 

  136. Wellems TE, Wootton JC, Fujioka H, Su X, Cooper, R., Baruch D, et al. P. falciparum CG2, linked to chloroquine resistance, does not resemble Na+/H+ exchangers. Cell 1998; 94: 285–286.

    Article  PubMed  CAS  Google Scholar 

  137. Wellems TE, Howard RJ. Homologous genes encode two distinct histidine-rich proteins in a cloned isolate of Plasmodium falciparum. Proc Natl Acad Sci USA 1986; 83: 6065–6069.

    Article  PubMed  CAS  Google Scholar 

  138. Howard RJ, Uni S, Aikawa M, Aley SB, Leech JH, Lew AM, et al. Secretion of a malarial histidine-rich protein (PfHRP II) from Plasmodium falciparum-infected erythrocytes. J Cell Biol 1986; 103: 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  139. Parra ME, Evans CB, Taylor DW. Identification of Plasmodium falciparum histidine-rich protein II in the plasma of humans with malaria. J Clin Microbiol 1991; 29: 1629–1634.

    PubMed  CAS  Google Scholar 

  140. Dorn A, Stoffel R, Matile H, Bubendorf A, Ridley RG. Malarial haemozoin/(3-haematin supports haem polymerization in the absence of protein. Nature 1995; 374: 269–271.

    Article  PubMed  CAS  Google Scholar 

  141. Panton LJ, McPhie P, Maloy WL, Wellems TE, Taylor DW, Howard RJ. Purification and partial characterization of an unusual protein of Plasmodium falciparum: histidine-rich protein II. Mol Biochem Parasitol 1989; 35: 149–160.

    Article  PubMed  CAS  Google Scholar 

  142. Schwarzer E, Turrini F, Ulliers D, Giribaldi G, Ginsburg H, Arese P. Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. J Exp Med 1992; 176: 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  143. Banyal HS, Chevli R, Fitch CD. Hemin lyses malaria parasites. Science 1981; 214: 667–669.

    Article  PubMed  Google Scholar 

  144. Srivastava P, Pandey VC. Herne oxygenase and related indices in chloroquine-resistant and sensitive strains of Plasmodium berghei. Int J Parasitol 1995; 25: 1061–1064.

    Article  PubMed  CAS  Google Scholar 

  145. Slater A, Swiggard WJ, Orton BR, Flitter WD, Goldberg DE, Cerami A, et al. An ironcarboxylate bond links the heure units of malaria pigment. Proc Natl Acad Sci USA 1991; 88: 325–329.

    Article  PubMed  CAS  Google Scholar 

  146. Slater AFG, Cerami A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature 1992; 355: 167–169.

    Article  PubMed  CAS  Google Scholar 

  147. Francis SE, Sullivan DJ, Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu. Rev. Microbiol 1997; 51: 97–123.

    Article  PubMed  CAS  Google Scholar 

  148. Oliveira MF, Silva JR, Dansa-Petretski M, de Souza W, Lins U, Braga CM. S., et al. Haem detoxification by an insect. Nature 1999; 400: 517–518.

    Article  PubMed  CAS  Google Scholar 

  149. Homewood CA, Jewsbury JM. Comparison of malarial and schistosome pigment. Trans R Soc Trop Med Hyg 1972; 66: 1–2.

    Article  PubMed  CAS  Google Scholar 

  150. Ginsburg H, Famin O, Zhang J, Krugliak M. Inhibition of glutathione-dependent degradation of heure by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem Pharmacol 1998; 56: 1305–1313.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Banerjee, R., Goldberg, D.E. (2001). The Plasmodium Food Vacuole. In: Rosenthal, P.J. (eds) Antimalarial Chemotherapy. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-111-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-111-4_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-124-0

  • Online ISBN: 978-1-59259-111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics