Skip to main content

Part of the book series: Infectious Disease ((ID))

  • 450 Accesses

Abstract

Over the past two decades, global resistance to both insecticides and antimalarials has emerged, the incidence of malaria has increased, and the disease has become more widespread (1). Although early tests of malaria vaccines in human volunteers may have some promise (2,3),clinically applicable vaccines will not be available for a number of years (4) and their importance in controlling malaria is uncertain. In this setting, antimalarial chemotherapy remains the principal means available for reducing the morbidity and mortality of malaria and the task of developing new antimalarial drugs with new mechanisms of action is important (5). Two observations prompted the idea of using iron chelators against malaria infections: the central role of iron for the rapid proliferation of malaria parasites, and the arrest of parasite growth by iron chelators both in vitro and in vivo (6,7). More recently, the iron chelator desferrioxamine (DFO) was found to have antimalarial activity in humans (8,9). Iron chelation may not achieve a defined role in the treatment of malaria until new agents are designed specifically with antimalarial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clyde DF. Recent trends in the epidemiology and control of malaria. Epidemiol Rev 1987; 9: 219–243.

    PubMed  CAS  Google Scholar 

  2. Patarroyo ME, Amador R, Clavijo P, Moreno A, Guzman F, Romero P, et al. A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 1988; 332: 158–161.

    Article  PubMed  CAS  Google Scholar 

  3. Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons P, et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. N Engl J Med 1997; 336: 86–91.

    Article  PubMed  CAS  Google Scholar 

  4. Tanner M, Teuscher T, Alonso PL. SPf66—the first malaria vaccine. Parasitol Today 1995; 11: 10–13.

    Article  Google Scholar 

  5. WHO Scientific Group. Advances in Malaria Chemotherapy. WHO Tech Rep Series No. 711. Geneva: World Health Organization, 1984.

    Google Scholar 

  6. Raventos-Suarez C, Pollack S, Nagel RL. Plasmodium falciparum: inhibition of in vitro growth by desferrioxamine. Am J Trop Med Hyg 1982; 31: 919–922.

    PubMed  CAS  Google Scholar 

  7. Cabantchik ZI, Glickstein H, Golenser J, Loyevsky M, Tsafack, A. Iron chelators: mode of action as antimalarials. Acta Haematol 1996; 95: 70–77.

    Article  PubMed  CAS  Google Scholar 

  8. Gordeuk VR, Thuma PE, Brittenham GM, Biemba G, Zulu S, Simwanza G, et al. Iron chelation as a chemotherapeutic strategy for falciparum malaria. Am J Trop Med Hyg 1993; 48: 193–197.

    PubMed  CAS  Google Scholar 

  9. Mabeza G, Loyevsky M, Gordeuk VR, Weiss G. Iron chelation therapy for malaria: a review. Pharmacol Ther 1999; 81: 53–75.

    Article  PubMed  CAS  Google Scholar 

  10. Aikawa, M. Fine structure of malaria parasites in the various stages of development. In: Wernsdorfer WH, McGregor I (eds.). Principles and Practice of Malariology. Edinburgh: Churchill Livingstone, 1988, pp. 97–130.

    Google Scholar 

  11. Pouvelle B, Spiegel R, Hsiao L, Howard RJ, Morris RL, Thomas AP, et al. Direct access to serum macromolecules by intraerythrocytic malaria parasites. Nature 1991; 353: 73–75.

    Article  PubMed  CAS  Google Scholar 

  12. Loyevsky M, Lytton SD, Mester B, Libman J, Shanzer A, Cabantchik ZI. The antimalarial action of Desferal involves a direct access route to erythrocytic (Plasmodium falciparum) parasites. J Clin Invest 1993; 91: 218–224.

    Article  PubMed  CAS  Google Scholar 

  13. Slater AF, Cerami A. Inhibition by chloroquine of a novel heure polymerase enzyme activity in malaria trophozoites. Nature 1992; 355: 167–169.

    Article  PubMed  CAS  Google Scholar 

  14. Murray MJ, Murray AB, Murray MB, Murray CJ. The adverse effect of iron repletion on the course of certain infections, Br Med J 1978; 2: 1113–1115.

    Article  PubMed  CAS  Google Scholar 

  15. Oppenheimer SJ, Gibson FD, MacFarlane SB, Moody TB, Harrison C, Spencer A, et al. Iron supplementation increases prevalence and effects of malaria: report on clinical studies in Papua New Guinea. Trans R Soc Trop Med Hyg 1986; 80: 603–612.

    Article  PubMed  CAS  Google Scholar 

  16. Harvey PW, Heywood PF, Nesheim MC, Galme K, Zegans M, Habicht, J-P, et al. The effect of iron therapy on malarial infection in Papua New Guinean schoolchildren. Am J Trop Med Hyg 1989; 40: 12–18.

    PubMed  CAS  Google Scholar 

  17. Hershko C, Peto TE. Deferoxamine inhibition of malaria is independent of host iron status. J Exp Med 1988; 168: 375–387.

    Article  PubMed  CAS  Google Scholar 

  18. Pollack S, Schnelle, V. Inability to detect transferrin receptors on P. falciparum parasitized red cells. Br J Haematol 1988; 68: 125–129.

    Article  PubMed  CAS  Google Scholar 

  19. Sanchez-Lopez R, Halder K. A transferrin-independent iron uptake activity in Plasmodium falciparum-infected and uninfected erythrocytes. Mol Biochem Pharmacol 1992; 55: 9–20.

    CAS  Google Scholar 

  20. Pollack S, Flemming J. P. falciparum takes up iron from transferrin. Br J Haematol 1984; 58: 289–293.

    Article  PubMed  CAS  Google Scholar 

  21. van Zyl RL, Havlik I, Hempelman E, MacPhail AP, McNamara, L. Malaria pigment and extracellular iron: possible target for iron chelating agents. Biochem Pharmacol 1993; 45: 1431–1436.

    Article  PubMed  Google Scholar 

  22. Peto TE, Thompson JL. A reappraisal of the effects of iron and desferrioxamine on the growth of Plasmodium falciparum “in vitro”: the unimportance of serum iron. Br J Haematol 1986; 63: 273–280.

    Article  PubMed  CAS  Google Scholar 

  23. Cazzola M, Arioso P, Barosi G, Bergamaschi G, Dezza L, Ascari E. Ferritin in the red cells of normal subjects and patients with iron deficiency and iron overload. Br J Haematol 1983; 53: 659–665.

    Article  PubMed  CAS  Google Scholar 

  24. Gabay T, Ginsburg H. Haemoglobin denaturation and iron release in acidified red blood cell lysate-a possible source of iron for intraerythrocytic malaria parasites. Exp Parasitol 1993; 77: 261–272.

    Article  PubMed  CAS  Google Scholar 

  25. Gamboa de Dominguez N, Rosenthal PJ. Cysteine proteinase inhibitors block early steps in hemoglobin degradation by cultured malaria parasites. Blood 1996; 87: 4448–4454.

    Google Scholar 

  26. Kolakovich KA, Gluzman IY, Duffin KL, Goldberg DE. Generation of hemoglobin peptides in the acidic digestive vacuole of Plasmodium falciparum implicates peptide transport in amino acid production. Mol Biochem Parasitol 1997; 87: 123–135.

    Article  PubMed  CAS  Google Scholar 

  27. Francis SE, Banerjee R, Goldberg DE. Biosynthesis and maturation of the malaria aspartic hemoglobinases plasmepsins I and II. J Biol Chem 1997;272:14, 961–14, 968.

    Google Scholar 

  28. Loyevsky M, Sacci JB Jr, Boehme P, Weglicki W, John C, Gordeuk VR. Plasmodium falciparum and Plasmodium yoelii: effect of the iron chelation prodrug dexrazoxane on in vitro cultures. Exp Parasitol 1999; 91: 105–114.

    Article  PubMed  CAS  Google Scholar 

  29. Yinnon AM, Theanacho EN, Grady RW, Spira DT, Hershko C. Antimalarial effect of HBED and other phenolic and catecholic iron chelators. Blood 1989; 74: 2166–2171.

    PubMed  CAS  Google Scholar 

  30. Scott MD, Ranz A, Kuypers FA, Lubin BH, Meshnick SR. Parasite uptake of desferrioxamine: a prerequisite for antimalarial activity. Br J Haematol 1990; 75: 598–603.

    Article  PubMed  CAS  Google Scholar 

  31. Wrigglesworth JM, Baum H. The biochemical functions of iron. In: Jacobs A, Worwood M (eds). Iron in Biochemistry and Medicine II, New York: Academic, pp. 29–86, 1980.

    Google Scholar 

  32. Bezkorovainy A. Biochemistry of Nonheme Iron. New York: Plenum, 1980.

    Google Scholar 

  33. Scheibel LW, Sherman IW. Metabolism and organellar function during various stages of the life cycle: proteins, lipids, nucleic acids and vitamins. In: Wernsdorfer W, McGregor I (eds.). Malaria: Principles and Practice of Malariology, New York: Churchill Livingstone, p. 219, 1988.

    Google Scholar 

  34. Bonday ZQ, Taketani, S. Gupta PD, Padmanaban G. Herne biosynthesis by the malarial parasite. Import of delta-aminolevulinate dehydrase from the host red cell. J Biol Chem 1997;272:21, 839–21, 846.

    Google Scholar 

  35. Moormann AM, Hossler PA, Meshnick SR. Deferoxamine effects on Plasmodium falciparum gene expression. Mol Biochem Parasitol 1999; 98: 279–283.

    Article  PubMed  CAS  Google Scholar 

  36. Pradines B, Ramiandrasoa F, Basco LK, Bricard L, Kunesh G, Le-Bras J. In vitro activities of novel catecholate siderophores against Plasmodium falciparum. Antimicrob Agents Chemother 1996; 40: 2094–2098.

    PubMed  CAS  Google Scholar 

  37. Scheibei LW, Adler A, Trager W. Tetraethylthiuram disulfide (Antabuse) inhibits the human malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA 1979; 76: 5303–5307.

    Article  Google Scholar 

  38. Scheibel LW, Adler A. Anti-malarial activity of selected aromatic chelators. Mol Pharmacol, 1980; 18: 320–325.

    PubMed  CAS  Google Scholar 

  39. Bailey-Wood R, Blayney LM, Muir JR, Jacobs A. The effects of iron deficiency on rat liver enzymes. Brit J Exp Pathol 1975; 56: 193–198.

    CAS  Google Scholar 

  40. Glickstein H, Breuer B, Loyevsky M, Konijn A, Libman J, Shanzer A, et al. Differential cytotoxicity of iron chelators on malaria-infected cells versus mammalian cells. Blood 1996; 87: 4871–4878.

    PubMed  CAS  Google Scholar 

  41. Fritsch G, Sawatzki G, Treumer J, Jung A, Spira DT. Plasmodium falciparum: inhibition in vitro with lactoferrin, desferrithiocin and desferricrocin. Exp Parasitol 1987; 63: 1–9.

    Article  PubMed  CAS  Google Scholar 

  42. Shanzer,A., Libman J, Lytton SD, Glickstein H, Cabantchik ZI. Reversed siderophores act as anti-malarial agents. Proc Natl Acad Sci USA 1991; 88: 6585–6589.

    Article  PubMed  CAS  Google Scholar 

  43. Scheibel LW, Stanton GG. Anti-malarial activity of selected aromatic chelators IV. Cation uptake of Plasmodium falciparum in the presence of oxines and siderochromes. Mol Pharmacol 1986; 30: 364–369.

    PubMed  CAS  Google Scholar 

  44. Scheibel LW, Rodriguez S. Anti-malarial activity of selected aromatic chelators. V. Localization of 59Fe in Plasmodium falciparum in the presence of oxines. Prog Clin Biol Res 1989; 313: 119–149.

    PubMed  CAS  Google Scholar 

  45. Heppner DG, Hallaway PE, Kontoghiorghes GJ, Eaton JW. Antimalarial properties of orally active iron chelators. Blood 1988; 72: 358–361.

    PubMed  CAS  Google Scholar 

  46. Hershko C, Theanacho EN, Spira DT, Peter HH, Dobbin P, Hider RC. The effect of N-alkyl modification on the antimalarial activity of 3-hydroxyppyridin-4-one oral iron chelators. Blood 1991; 77: 637–643.

    PubMed  CAS  Google Scholar 

  47. Yang Y, Ranz A, Pan HZ, Zhang ZN, Lin XB, Meshnick SR. Daphnetin: a novel antimalarial agent with in vitro and in vivo activity. Am J Trop Med Hyg 1992; 46: 15–20.

    PubMed  CAS  Google Scholar 

  48. Clarke CJ, Eaton JM. Hydrophobic iron chelators as new antimalarial drugs. Clin Res 1990; 38: 300A.

    Google Scholar 

  49. Tsafack A, Loyevsky M, Ponka P, Cabantchik ZI. Mode of action of iron (III) chelators as anti-malarials. IV. Potentiation of desferal action by benzoyl and isonicotinoyl hydra-zone derivatives. J Lab Clin Med 1996; 127: 575–582.

    Article  Google Scholar 

  50. Loyevsky M, John C, Zaloujnyi I, Gordeuk V. Aminothiol multidentate chelators as antimalarials. Biochem Pharmacol 1997; 54: 451–458.

    Article  PubMed  CAS  Google Scholar 

  51. Loyevsky M, John C, Dickens B, Hu V, Gordeuk VR. Chelation of iron within the erythrocytic Plasmodium falciparum parasite by iron chelators. Mol Biochem Parasitol 101: 1999;.43–59.

    Google Scholar 

  52. Jairam KT, Havlik I, and Monteagudo FSE. Possible mechanism of action of desferrioxamine and 2,2’-bipyridyl on inhibiting the in vitro growth of Plasmodium falciparum (3 strain), Biochem Pharmacol 1991; 8: 1633–1634.

    Article  Google Scholar 

  53. Whitehead S, Peto TE. Stage-dependent effect of deferoxamine on growth of Plasmodium falciparum in vitro. Blood 1990; 76: 1250–1255.

    PubMed  CAS  Google Scholar 

  54. Reichard P, Ehrenburg A. Ribonucleotide reductase-a radical enzyme. Science 1983; 221: 514–519.

    Article  PubMed  CAS  Google Scholar 

  55. Cavanaugh PF, Porter CW, Tukalo D, Frankfurt DS, Pavelic ZP, Bergeron RJ. Characterization of L1210 cell growth inhibition by the bacterial iron chelators parabactin and compound II, Cancer Res 1985; 45: 4754–4759.

    PubMed  CAS  Google Scholar 

  56. Nyholm S, Mann GJ, Johansson AG, Bergeron RJ, Graslund A, Thelander, L. Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelators. J Biol Chem 1993;268:26, 200–26, 205.

    Google Scholar 

  57. Rubin H, Salem HS, Li LS, Yang FD, Mama S, Wang ZM, et al. Cloning, sequence determination, and regulation of the ribonucleotide reductase subunits from Plasmodium falciparum: a target for antimalarial therapy. Proc Natl Acad Sci USA 1993; 90: 9280–9284.

    Article  PubMed  CAS  Google Scholar 

  58. Hoffbrand AV, Ganeshaguru K, Hooton JW, Tattersall MH. Effect of iron deficiency and desferrioxamine on DNA synthesis in human cells. Br J Haematol 1976; 33: 517–526.

    Article  PubMed  CAS  Google Scholar 

  59. Surolia N, Padmanaban G. De novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem Biophys Res Commun 1992; 187: 744–750.

    Article  PubMed  CAS  Google Scholar 

  60. Fuchs O, Ponka P. The role of iron supply in the regulation of 5-aminolevulinate synthase mRNA levels in murine erythroleukemia cells. Neoplasma 1996; 43: 31–36.

    PubMed  CAS  Google Scholar 

  61. Ponka P, Richardson DR, Edward JT, Chubb FL. Iron chelators of the pyridoxal isonycotinoyl hydrazone class. Relationship of the lipophilicity of the apochelator to its ability to mobilize iron from reticulocytes in vitro. Can J Physiol Pharmacol 1994; 72: 659–666.

    Article  PubMed  CAS  Google Scholar 

  62. Goodwin JF, Whitten CF. Chelation of ferrous sulfate solutions by desferrioxamine B. Nature 1965; 205: 281–283.

    Article  PubMed  CAS  Google Scholar 

  63. Albert, A. Selective Toxicity. New York: Chapman & Hall, 1981.

    Google Scholar 

  64. Basco LK, Le Bras J. In vitro activity of chloroquine and quinine in combination with desferrioxamine against Plasmodium falciparum. Am J Haematol 1993; 42: 389–391.

    Article  CAS  Google Scholar 

  65. Chevion M, Chuang L, Golenser J. Effects of zinc-desferrioxamine on Plasmodium falciparum in culture. Antimicrob Agents Chemother 1995; 39: 1902–1905.

    Article  PubMed  CAS  Google Scholar 

  66. Lytton SD, Mester B, Libman J, Shanzer A, Cabantchik ZI. Mode of action of iron(III) chelators as antimalarials. II. Evidence for differential effects on parasite iron-dependent nucleic acid synthesis. Blood 1994; 84: 910–915.

    PubMed  CAS  Google Scholar 

  67. Cabantchik ZI. Iron chelators as antimalarials-the biochemical basis of selective cytotoxicity. Parasitol Today 1995; 11: 73–78.

    Article  Google Scholar 

  68. Neilands JB. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 1995;270:26, 723–26, 726.

    Google Scholar 

  69. Lytton SD, Mester B., Dayan I, Glickstein H, Libman J, Shanzer A, et al. Mode of action of iron (III) chelators as antimalarials: I. Membrane permeation properties and cytotoxic activity. Blood 1993; 81: 214–221.

    PubMed  CAS  Google Scholar 

  70. Porter JB, Gyparaki M, Huehns ER, Hider RC. The relationship between the lipophilicity of hydroxypyrid-4-one iron chelators and cellular iron metabolism using an hepatocyte culture model. Biochem Soc Trans 1986; 14: 1180 (abstract).

    CAS  Google Scholar 

  71. Kontoghiorghes GJ, Hoffbrand AV. Orally active alpha ketohydroxyl pyridine iron chela-tors intended for clinical use: in vivo studies in rabbits. Br J Haematol 1986; 62: 607–613.

    Article  PubMed  CAS  Google Scholar 

  72. Pattanapanyasat K, Thaithong S, Kyle DE, Udomsangpetch R, Yongvanitchit K, Hider RC, et al. Flow cytometric assessment of hydroxypyridone iron chelators on in vitro growth of drug-resistant malaria. Cytometry 1997; 27: 84–91.

    Article  PubMed  CAS  Google Scholar 

  73. Golenser J, Tsafack A, Amichai Y, Libman J, Shanzer A, Cabantchik ZI. Antimalarial action of hydroxamate-based iron chelators and potentiation of desferrioxamine action by reversed siderophores. Antimicrob Agents Chemother 1995; 39: 61–65.

    Article  PubMed  CAS  Google Scholar 

  74. Stahel E, Mazier D, Guillouzo A, Miltgen P, Landau I, Mellouk S, et al. Iron chelators: in vitro inhibitory effect on the liver stage of rodent and human malaria. Am J Trop Med Hyg 1988; 39: 236–240.

    PubMed  CAS  Google Scholar 

  75. Hasinoff BB. The interaction of the cardioprotective agent ICRF-187 ((+)-1,2bis(3,5-dioxopiperazinyl-1-yl)propane; its hydrolysis product (ICRF-198); and other chelating agents with the Fe (III) and Cu (II) complexes of adriamycin. Agents Action 1989; 26: 378–385.

    Article  CAS  Google Scholar 

  76. Hasinoff BB, Reiders FX, Clark V. The enzymatic hydrolysis-activation of the adriamycin cardioprotective agent (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane. Drug Metab Dispos 1991; 19: 74–80.

    PubMed  CAS  Google Scholar 

  77. Pollack S, Rossan RN, Davidson DE, Escajadillo A. Desferrioxamine suppresses Plasmodium falciparum in Aotus monkeys. Proc Soc Exp Biol Med 1987; 184: 162–164.

    PubMed  CAS  Google Scholar 

  78. Fritsch G, Treumer J, Spira DT, Jung A. Plasmodium vinckei: suppression of mouse infections with deferoxamine B. Exp Parasitol 1985; 60: 171–174.

    Article  PubMed  CAS  Google Scholar 

  79. Postma NS, Hermsen CC, Zuidema J, Eling WM. Plasmodium vinckei: optimization of desferrioxamine B delivery in the treatment of murine malaria. Exp Parasitol 1998: 89: 323–330.

    Article  PubMed  CAS  Google Scholar 

  80. Hershko C, Gordeuk VR, Thuma PE, Theanacho EN, Spira DT, Hider RC, et al. The antimalarial effect of iron chelators in animal models and in humans with mild falciparum malaria. J Inorg Biochem 47: 1992; 267–277.

    Article  PubMed  CAS  Google Scholar 

  81. Lytton SD, Loyevsky M, Mester B, Libman J, Landau I, Shanzer A, et al. In vivo antimalarial action of a lipophilic iron (III) chelator: suppression of Plasmodium vinckei infection by reversed siderophore. Am J Hematol 1993; 43: 217–220.

    Article  PubMed  CAS  Google Scholar 

  82. Golenser J, Domb A, Teomim D, Tsafack A, Nisim O, Ponka P, et al. The treatment of animal models of malaria with iron chelators by use of a novel polymeric device for slow drug release. J Pharmacol Exp Therap 1997; 281: 1127–1135.

    CAS  Google Scholar 

  83. Traore O, Carnevale P, Kaptue-Noche L, M’Bede J, Desfontaine M, Elion J, et al. Preliminary report on the use of desferrioxamine in the treatment of Plasmodium falciparum malaria. Am J Hematol 1991; 37: 206–208.

    Article  PubMed  CAS  Google Scholar 

  84. Gordeuk VR, Thuma PE, Brittenham GM, McLaren C, Parry D, Backenstose AR, et al. Effect of iron chelation therapy on recovery from deep coma in children with cerebral malaria. New Engl J Med 1992; 327: 1473–1477.

    Article  PubMed  CAS  Google Scholar 

  85. Thuma PE, Weiss G, Herold M. Gordeuk V. Serum neopterin, interleukin-4 and interleukin-6 concentrations in cerebral malaria patients and the effect of iron chelation therapy. Am J Trop Med Hyg 1996; 54: 164–168.

    PubMed  CAS  Google Scholar 

  86. Bunnag D, Poltera AA, Viravan. C., Looaresuwan S, Harinasuta T, Schundlery, C. Plasmodicidal effect of desferrioxamine in human vivax or falciparum malaria from Thailand. Acta Trop 1992; 52: 59–67.

    CAS  Google Scholar 

  87. Looaresuwan S, Wilairatana P, Vannaphan S, Gordeuk VR, Taylor TE, Meshnick SR, et al. Co-administration of desferrioxamine B with artesunate in malaria: an assessment of safety and tolerance. Ann Trop Med Parsaitol 1996; 90: 551–554.

    Google Scholar 

  88. MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA. Human cerebral malaria: a quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 1985; 119: 385–401.

    PubMed  CAS  Google Scholar 

  89. Oo MM, Aikawa M, Than T, Aye TM, Myint PT, Igarashi I, et al. Human cerebral malaria: a pathological study. J Neuropathol Exp Neurol 1987; 46: 223–231.

    Article  PubMed  CAS  Google Scholar 

  90. Aikawa M, Iseki M, Barnwell JW, Taylor D, Oo MM, Howard RJ. The pathology of human cerebral malaria. Am J Trop Med and Hyg 1990; 43 (Suppl): 30–37.

    CAS  Google Scholar 

  91. Berendt AR, Ferguson DJ, Gardner, J, Turner G, Rowe, A, McCormick C, Ret al. Molecular mechanisms of sequestration in malaria. Parasitology 1994; 108: 519–528.

    Article  Google Scholar 

  92. Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, and Eaton JW. Hemoglobin: a biologic Fenton reagent. J Biol Chem 1984;259:14, 354–14, 356.

    Google Scholar 

  93. Ward PA, Till GO, Kunkel R, Beauchamp C. Evidence for role of hydroxyl radical in complement and neutrophil-dependent injury. J Clin Invest 1983; 72: 369–371.

    Article  Google Scholar 

  94. Ambrosio, G, Zweier JL, Jacobus WE, Weisfeldt ML, Flaherty JT. Improvement of postischemic myocardial function and metabolism induced by administration of deferoxamine at time of reflow: role of iron in the pathogenesis of reperfusion injury. Circulation 1987;76:906–915.

    Article  PubMed  CAS  Google Scholar 

  95. Sadrzadeh SM, Anderson DK, Panter SS, Hallaway PE, Eaton JW. Hemoglobin potentiates central nervous system damage. J Clin Invest 1987; 79: 662–664.

    Article  PubMed  CAS  Google Scholar 

  96. Weiss G, Thuma P, Mabeza G, Werner ER, Herold M, Gordeuk VR. Modulatory potential of iron chelation therapy on nitric oxide formation in cerebral malaria. J Infect Dis 1997; 175: 226–230.

    Article  PubMed  CAS  Google Scholar 

  97. Gordeuk VR, Thuma PE, Brittenham GM, Zulu S, Simwanza G, Mhangu A, et al. Iron chelation with deferoxamine B in adults with asymptomatic Plasmodium falciparum parasitemia. Blood 1992; 79: 308–312.

    PubMed  CAS  Google Scholar 

  98. Thuma PE, Mabeza GF, Biemba G, Bhat GJ, McLaren C, Moyo VM, et al. Effect of iron chelation therapy on mortality in Zambian children with cerebral malaria. Trans R Soc Trop Med Hyg 1998; 92: 214–218.

    Article  PubMed  CAS  Google Scholar 

  99. Huber C, Batchelor JR, Fuchs D, Hausen A, Lang A, Niederwieser D, et al. Immune response associated production of neopterin. J Exp Med 1984; 160: 310–316.

    Article  PubMed  CAS  Google Scholar 

  100. Fuchs D, Hausen A, Reibnegger G, Werner ER, Deitrich MP, Wachter, H. Neopterin as a marker of activated cell-mediated immunity: application on HIV infection. Immunol Today 1988; 9: 150–155.

    Article  PubMed  CAS  Google Scholar 

  101. Weiss G, Fuchs D, Hausen A, Reibnegger G, Werner ER, Werner-Felmayer G, et al. Iron modulates interferon-gamma effects in human myelomonocytic cell line THP-1. Exp Hematol 1992; 20: 605–610.

    PubMed  CAS  Google Scholar 

  102. Halliwell B, Gutteridge JMC, Cross CE. Free radicals, antioxidants and human disease. Where are we now ? J Lab Clin Med 1992; 119: 598–620.

    PubMed  CAS  Google Scholar 

  103. Gordeuk VR, Thuma PE, McLaren CE, Biemba G, Zulu S, Poltera AA, et al. Transferrin saturation and recovery from coma in cerebral malaria. Blood 1995; 85: 3297–3301.

    PubMed  CAS  Google Scholar 

  104. Rosen GM, Pou S, Ramos CL, Cohen MS, Britigan BE. Free radicals and phagocytic cells. FASEB J 1995; 9: 200–209.

    PubMed  CAS  Google Scholar 

  105. Cabantchik ZI, Moody-Haupt S, Gordeuk VR. Iron chelators as anti-infectives; malaria as a paradigm. FEMS Immunol Med Microbiol 1999; 26: 289–298.

    Article  PubMed  CAS  Google Scholar 

  106. Thuma PE, Olivieri NF, Mabeza GF, Biemba G, Parry D, Zulu S, et al. Assessment of the effect of the oral iron chelator deferiprone on asymptomatic Plasmodium falciparum parasitemia in humans. Am J Trop Med Hyg 1998; 58: 358–364.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Loyevsky, M., Gordeuk, V.R. (2001). Iron Chelators. In: Rosenthal, P.J. (eds) Antimalarial Chemotherapy. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-111-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-111-4_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-124-0

  • Online ISBN: 978-1-59259-111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics