Skip to main content

HIV-Specific Neutralizing Antibodies

  • Chapter
  • 150 Accesses

Part of the book series: Infectious Disease ((ID))

Abstract

Infection with human immunodeficiency virus type 1 (HIV-1) generates cellular and humoral immune responses of various magnitudes to multiple virus-specific antigens. Perhaps the most beneficial B cell response is one that is directed against the surface gp120 and transmembrane gp41 envelope glycoproteins of the virus; both glycoproteins are major targets for the antibody-mediated neutralization of HIV-1 infectivity. To ensure its survival, the virus has evolved a number of immune-evasion strategies that limit the potential benefit of neutralizing antibodies. Chief among these is a high degree of genetic and antigenic variation exhibited by the gp120 and gp41, making the virus a constant moving target for immune surveillance. Critical neutralization epitopes may also be masked by N-linked glycans and other structural elements in the native oligomeric envelope glycoprotein complex of the virus. This chapter gives a general overview of how HIV-1 is neutralized by antibody, why the neutralizing antibody response fails to control infection and, finally, what is being done to develop an HIV-1 vaccine that has an effective antibody component.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan JS, Coligan JE, Barin F, McLane MF, Sodroski JG, Rosen CA, et al. Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 1985; 228: 1091–4.

    Article  PubMed  CAS  Google Scholar 

  2. Veronese FM, DeVico AL, Copeland TD, Droszland S, Gallo RC, Sarngadharan MG. Characterization of gp41 as the transmembrane protein coded by the HTLV III/LAV envelope gene. Science 1985; 229: 1402–5.

    Article  PubMed  CAS  Google Scholar 

  3. McCune JM, Rabin LB, Feinberg MB, Lieberman M, Kosek JC, Reyes GR, Weissman IL. Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell 1988; 53: 55–67.

    Article  PubMed  CAS  Google Scholar 

  4. Earl PL, Doms RW, Moss B. Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proc Natl Acad Sci USA 1990; 87: 648–52.

    Article  PubMed  CAS  Google Scholar 

  5. Lu M, Blacklow SC, Kim PS. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 1995; 2: 1075–82.

    Article  PubMed  CAS  Google Scholar 

  6. Weissenhorn W, Wharton SA, Calder LJ, Earl PL, Moss B, Alirandis E, et al. The ectodomain of HIV-1 env subunit gp41 forms a soluble, alpha-helical, rod-like oligomer in the absence of gp120 and the N-terminal fusion peptide. EMBO J 1996; 15: 1507–14.

    CAS  Google Scholar 

  7. Geyer H, Holschbach C, Hunsman C, Schneider J. Carbohydrates of human immunodeficiency virus: structures of oligosaccharides linked to the envelope glycoprotein gp120. J Biol Chem 1988; 263: 11760–8.

    PubMed  CAS  Google Scholar 

  8. Mizouchi T, Spellman MW, Larkin M, Solomon J, Basa LJ, Feizi T. Carbohydrate structures of the human immunodeficiency virus (HIV) recombinant envelope glycoprotein gp120 produced in Chinese hamster ovary cells. Biochem J 1988; 254: 599–605.

    Google Scholar 

  9. Korber BTM, Allen EE, Farmer AD, Myers GL. Heterogeneity of HIV-1 and HIV-2. AIDS 1995; 9:Suppl A:S5–18.

    Google Scholar 

  10. Myers G, Pavlakis GN. Evolutionary potential of complex retroviruses. In: Levy JA. The Retro-viruses. New York: Plenum, 1992; pp. 51–104.

    Google Scholar 

  11. Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988; 242: 1171–3.

    Article  PubMed  CAS  Google Scholar 

  12. Coffin JM. HIV viral dynamics. AIDS 1996; 10:Suppl 3: S75–84.

    Google Scholar 

  13. Ugolini S, Mondor I, Parren PWHI, Burton DR, Tilley SA, Klasse PJ, Sattentau QJ. Inhibition of virus attachment to CD4+ target cells is a major mechanism of T cell line-adapted HIV-1 neutralization. J Exp Med 1997; 186: 1287–98.

    Article  PubMed  CAS  Google Scholar 

  14. Valenzuela A, Blanco J, Krust B, Franco R, Hovanessian AG. Neutralizing antibodies against the V3 loop of human immunodeficiency virus type 1 gp120 block the CD4-dependent and–independent binding of virus to cells. J Virol 1997; 71: 8289–98.

    PubMed  CAS  Google Scholar 

  15. Parren PWHI, Naniche D, Mondor I, et al. Neutralization of HIV-1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J Virol 1998; 72: 3512–9.

    PubMed  CAS  Google Scholar 

  16. Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki C, Patzer E, et al. Delineation of a region of the human immunodeficiency virus gp120 glycoprotein critical for interaction with the CD4 receptor. Cell 1987; 50: 975–85.

    Article  PubMed  CAS  Google Scholar 

  17. Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 1998; 280: 1884–8.

    Article  PubMed  CAS  Google Scholar 

  18. Chan DC, Kim PS. HIV entry and its inhibition. Cell 1998; 93: 681–4.

    Article  PubMed  CAS  Google Scholar 

  19. Montefiori DC, Graham BS, Zhou JT, Zhou JY, Bucco R, Cavacini LA, et al. V3-specific neutralizing antibodies in sera from HIV-1 gp160-immunized volunteers block virus fusion and act synergistically with human monoclonal antibody to the conformation-dependent CD4 binding region of gp120. J Clin Invest 1993; 92: 840–7.

    Article  PubMed  CAS  Google Scholar 

  20. McDougal JS, Kennedy MS, Orloff SL, Nicholson, JKA, Spira TJ: Mechanism of human immunodeficiency virus type 1 (HIV-1) neutralization: irreversible inactivation of infectivity by anti-HIV-1 antibody. J Virol 1996; 70: 5236–45.

    PubMed  CAS  Google Scholar 

  21. Sullivan N, Sun Y, Sattentau Q, Thali M, Wu D, Denisova G, et al. CD4-induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J Virol 1998; 72: 4694–703.

    PubMed  CAS  Google Scholar 

  22. Salzwedel K, Smith ED, Dey B, Berger EA: Sequential CD4-coreceptor interactions in human immunodeficiency virus type 1 Env function: soluble CD4 activates Env for coreceptor-dependent fusion and reveals blocking activities of antibodies against cryptic conserved epitopes on gp120. J Virol 2000; 74: 326–33.

    Article  PubMed  CAS  Google Scholar 

  23. LaCasse RA, Follis KE, Trahey M, Scarborough JD, Littman DR, Nunberg JH. Fusion-competent vaccines: broad neutralization of primary isolates of HIV. Science 1999; 283: 357–62.

    Article  PubMed  CAS  Google Scholar 

  24. Wu L, Gerard N, Wyatt R, et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 1996; 384: 179–83.

    Article  PubMed  CAS  Google Scholar 

  25. Lapham CK, Ouyang J, Chandrasekhar B, Nguyen NY, Dimitrov DS, Golding H. Evidence for cell-surface association between fusion and the CD4-gp120 complex in human cell lines. Science 1996; 274: 602–5.

    Article  PubMed  CAS  Google Scholar 

  26. Berger EA. HIV entry and tropism: the chemokine receptor connection. AIDS 1997; 11:Suppl A:S3-S 16.

    Google Scholar 

  27. Moore JP, Trkola A, Dragic T. Co-receptors for HIV-1 entry. Curr Opin Immunol 1997; 9: 551–62.

    Article  PubMed  CAS  Google Scholar 

  28. Berger EA, Doms RW, Fenyö E-M, Korber BTM, Littman DR, Moore JP, et al. HIV-1 phenotypes classified by co-receptor usage. Nature 1998; 391–240.

    Google Scholar 

  29. Koot M, Vos AHV, Keet RPM, De Goede REY, Dercksen FG, Terpstra MW, et al. HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay. AIDS 1992; 6: 49–54.

    Article  PubMed  CAS  Google Scholar 

  30. Richman DD, Bozzette SA. The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J Infect Dis 1994; 169: 968–74.

    Article  PubMed  CAS  Google Scholar 

  31. van’t Wout AB, Kootstra NA, Mulder-Kampinga GA, Albrecht-van Lent N, Scherpbier HJ, Veenstra J, et al. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. J Clin Invest 1994; 94: 2060–7.

    Article  Google Scholar 

  32. Sawyer LSW, Wrin MT, Crawford-Miksza L, Potts B, Wu Y, Weber PA, et al. Neutralization sensitivity of human immunodeficiency virus type 1 is determined in part by the cell in which the virus is propagated. J Virol 1994; 68: 1342–9.

    PubMed  CAS  Google Scholar 

  33. Wrin T, Loh TP, Vennari JC, Schuitemaker H, Nunberg JH. Adaptation to persistent growth in the H9 cell line renders a primary isolate of human immunodeficiency virus type 1 sensitive to neutralization by vaccine sera. J Virol 1995; 69: 39–48.

    PubMed  CAS  Google Scholar 

  34. Baldinotti F, Matteucci D, Mazzetti P, et al. Serum neutralization of feline immunodeficiency virus is markedly dependent on passage history of the virus and host system. J Virol 1994; 68: 4572–9.

    PubMed  CAS  Google Scholar 

  35. Cook RF, Berger SL, Rushlow KE, et al. Enhnaced sensitivity to neutralizing antibodies in a variant of equine infectious anemia virus is linked to amino acid substitutions in the surface unit envelope glycoprotein. J Virol 1995; 69: 1493–9.

    PubMed  CAS  Google Scholar 

  36. Means RE, Greenough T, Desrosiers RC. Neutralization sensitivity of cell culture-passaged simian immunodeficiency virus. J Virol 1997; 71: 7895–902.

    PubMed  CAS  Google Scholar 

  37. Daar ES, Li XL, Moudgil T, Ho DD. High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proc Natl Acad Sci USA 1990; 87: 6574–8.

    Article  PubMed  CAS  Google Scholar 

  38. Montefiori DC, Zhou J, Barnes B, Lake D, Hersh EM, Masuho Y, Lefkowitz LB Jr. Homotypic antibody responses to fresh clinical isolates of human immunodeficiency virus. Virol 1991; 182: 635–43.

    Article  CAS  Google Scholar 

  39. Moore JP, Cao Y, Qing L, Sattentau QJ, Pyati J, Koduri R, et al. Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. J Virol 1995; 69: 101–9.

    PubMed  CAS  Google Scholar 

  40. Montefiori DC, Collman RG, Fouts TR, Zhou JY, Bilska M, Hoxie JA, et al. Evidence that antibody-mediated neutralization of human immunodeficiency virus type 1 by sera from infected individuals is independent of coreceptor usage. J Virol 1998; 72: 1886–93.

    PubMed  CAS  Google Scholar 

  41. Trkola A, Ketas T, KewalRamani VN, Endorf F, Binley JM, Katinger H, et al. Neutralization sensitivity of human immunodeficiency virus type 1 primary isolates to antibodies and CD4based reagents is independent of their coreceptor usage. J Virol 1998; 72: 1876–85.

    PubMed  CAS  Google Scholar 

  42. LaCasse RA, Follis KE, Moudgil T, Trahey M, Binley JM, Planelles V, et al. Coreceptor utilization by human immunodeficiency virus type 1 is not a primary determinant of neutralization sensitivity. J Virol 1998; 72: 2491–5.

    PubMed  CAS  Google Scholar 

  43. Kwon PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. Structure of an HIV gp 120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998; 393: 648–59.

    Article  CAS  Google Scholar 

  44. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC. Atomic structure of the ectodomain from HIV-1 gp41. Nature 1997; 387: 426–30.

    Article  PubMed  CAS  Google Scholar 

  45. Chan DC, Fass D, Berger JM, Kim PS. Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997; 89: 263–73.

    Article  PubMed  CAS  Google Scholar 

  46. Fouts TR, Binley JM, Trkola A, Robinson JE, Moore JP. Neutralization of the human immunodeficiency virus type 1 primary isolate JR-FL by human monoclonal antibodies correlates with antibody binding to the oligomeric form of the envelope glycoprotein complex. J Virol 1997; 71: 2779–85.

    PubMed  CAS  Google Scholar 

  47. Roben P, Moore JP, Thali M, Sodroski J, Barbas CF, Burton DR. Recognition properties of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus type 1. J Virol 1994; 68: 4821–8.

    PubMed  CAS  Google Scholar 

  48. Sattentau QJ, Moore JP. Human immunodeficiency virus type I neutralization is determined by epitope exposure on the gp120 oligomer. J Exp Med 1995; 182: 185–96.

    Article  PubMed  CAS  Google Scholar 

  49. Stamatatos L, Zolla-Pazner S, Gorny MK, Cheng-Mayer C. Binding of antibodies to virion-associated gp120 molecules of primary-like human immunodeficiency virus type 1 (HIV-1) isolates: effect on HIV-1 infection of macrophages and peripheral blood mononuclear cells. Virology 1997; 229: 360–9.

    Article  PubMed  CAS  Google Scholar 

  50. Moore JP, McKeating JA, Huang Y, Ashkenazi A, Ho DD. Virions of primary human immunodeficiency virus type 1 isolates resistant to soluble CD4 (sCD4) neutralization differ in sCD4 binding and glycoprotein gp120 retention from sCD4-sensitive isolates. J Virol 1992; 66: 235–43.

    PubMed  CAS  Google Scholar 

  51. Moore JP, Burkly LC, Connor RI, Cao Y, Tizard R, Ho DD, Fisher RA. Adaptation of two primary human immunodeficiency virus type 1 isolates to growth in transformed T-cell lines correlates with alterations in the responses of their envelope glycoproteins to soluble CD4. AIDS Res Hum Retrovir 1993; 9: 529–39.

    Article  PubMed  CAS  Google Scholar 

  52. Bou-Habib DC, Roderiquez G, Oravecz T, Berman PW, Lusso P, Norcross MA. Cryptic nature of envelope V3 region epitopes protects primary monocytotropic human immunodeficiency virus type 1 from antibody neutralization. J Virol 1994; 68: 6006–13.

    PubMed  CAS  Google Scholar 

  53. Cocchi F, DeVico AL, Garzino-Demo A, Cara A, Gallo RC, Lusso P. The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nat Med 1996; 2: 1244–7.

    Article  PubMed  CAS  Google Scholar 

  54. Trkola A, Dragic T, Arthos J, Binley JM, Olson WC, Allaway GP, et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 1996; 384: 184–7.

    Article  PubMed  CAS  Google Scholar 

  55. Wu L, Gerard NP, Wyatt R, Choe H, Parolin C, Ruffing N, Borsetti A, et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 1996; 384: 179–83.

    Article  PubMed  CAS  Google Scholar 

  56. VanCott TC, Polonis VR, Loomis LD, Michael NL, Nara PL, Birx DL. Differential role of V3-specific antibodies in neutralization assays involving primary and laboratory-adapted isolates of HIV type 1. AIDS Res Hum Retrovir 1995; 11: 1379–91.

    Article  PubMed  CAS  Google Scholar 

  57. Spenlehauer C, Saragosti S, Fleury HJA, Kirn A, Aubertin A-M, Moog C. Study of the V3 loop as a target epitope for antibodies involved in the neutralization of primary isolates versus T-cellline-adapted strains of human immunodeficiency virus type 1. J Virol 1998; 72: 9855–64.

    PubMed  CAS  Google Scholar 

  58. Back NKT, Smit L, de Jong J-J, Keulen W, Schutten M, Goudsmit J, Tersmette M. An N-glycan within the human immunodeficiency virus type 1 gp120 V3 loop affects virus neutralization. Virology 1994; 199: 431–8.

    Article  PubMed  CAS  Google Scholar 

  59. Schönning K, Jansson B, Olofsson S, Neilsen JO, Hansen J-ES. Resistance to V3-directed neutralization caused by an N-linked oligosaccharide depends on the quanternary structure of the HIV-1 envelope oligomer. Virology 1996; 218: 134–40.

    Article  PubMed  Google Scholar 

  60. Schönning K, Jansson B, Olofsson S, Hansen J-ES. Rapid selection for an N-linked oligosacharide by monoclonal antibodies directed against the V3 loop of human immunodeficiency virus type 1. J Gen Virol 1996; 77: 753–8.

    Article  PubMed  Google Scholar 

  61. Schönning K, Bolmstedt A, Novotny J, Sögaard Lund O, Olofsson S, Hansen J-ES. Induction of antiboides against epitopes inaccessible on the HIV type 1 envelope oligomer by immunization with recombinant monomeric glycoprotein 120. AIDS Res Hum Retrovir 1998; 16: 1451–6.

    Article  Google Scholar 

  62. Reitter JN, Means RE, Desrosiers RC. A role for carbohydrates in immune evasion in AIDS. Nat Med 1998; 4: 679–84.

    Article  PubMed  CAS  Google Scholar 

  63. Chackerian B, Rudensey LM, Overbaugh J. Specific N-linked and 0-linked glycosyaltion modifications in the envelope V1 domain of simian immunodeficiency virus variants that evolve in the host alter recognition by neutralizing antibodies. J Virol 1997; 71: 7719–27.

    PubMed  CAS  Google Scholar 

  64. Rudensey LM, Kimata JT, Long EM, Chackerian B, Overbaugh J. Changes in the extracellular envelope glycotprotein of variants that evolve during the course of simian immunodeficiency vurus SIVM1e infection affect neutralizing antibdoy recognition, syncytium formation, and macrophage tropism but not replication, cytopathicity, or CCR-5 coreceptor recognition. J Virol 1998; 72: 209–17.

    PubMed  CAS  Google Scholar 

  65. Muster T, Guinea R, Trkola A, et al: Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS. J Virol 1994; 68: 4031–4.

    PubMed  CAS  Google Scholar 

  66. D’Souza MP, Livnat D, Bradac JA, Bridges SH. Evaluation of monoclonal antibodies to human immunodeficiency virus type 1 primary isolates by neutralization assays: performance criteria for selecting candidate antibodies for clinical trials. J Infect Dis 1997; 175: 1056–62.

    Article  PubMed  Google Scholar 

  67. Purtscher M, Trkola A, Grassauer A, Schultz PM, Klima A, Döpper S, et al. Restricted antigenic variability of the epitope recognized by the neutralizing gp41 antibody 2F5. AIDS 1996; 10: 587–93.

    Article  PubMed  CAS  Google Scholar 

  68. Jones PL, Korte T, Blumenthal R. Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J Biol Chem 1998; 273: 404–9.

    Article  PubMed  CAS  Google Scholar 

  69. Wild CT, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ. Peptides corresponding to a predicted a-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci USA 1994; 91: 9770–4.

    Article  PubMed  CAS  Google Scholar 

  70. Kilby JM, Hopkins S, Venetta TM, DiMassimo B, Cloud GA, Lee JY, et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 1998; 4: 1302–7.

    Article  PubMed  CAS  Google Scholar 

  71. Albert J, Abrahamsson B, Nagy K, Aurelius E, Gaines H, Nystrom G, Fenyo EM. Rapid development of isolate-specific neutralizing antibodies after primary HIV-1 infection and consequent emergence of virus variants which resist neutralization by autologous sera. AIDS 1990; 4: 107–12.

    Article  PubMed  CAS  Google Scholar 

  72. Tremblay M, Wainberg MA. Neutralization of multiple HIV-1 isolates from a single subject by autologous sequential sera. J Infect Dis 1990; 162: 735–7.

    Article  PubMed  CAS  Google Scholar 

  73. Arendrup M, Nielsen C, Stig Hanson J-E, Pedersen C, Mathiesen L, Nielsen JO. Autologous HIV-1 neutralizing antibodies: emergence of neutralization-resistant escape virus and subsequent development of escape virus neutralizing antibodies. J Acquir Immune Defic Syndr 1992; 5: 303–7.

    PubMed  CAS  Google Scholar 

  74. Wrin T, Crawford L, Sawyer L, Weber P, Sheppard HW, Hanson CV. Neutralizing antibody responses to autologous and heterologous isolates of human immunodeficiency virus. J Acquir Immune Defic Syndr 1994; 7: 211–9.

    PubMed  CAS  Google Scholar 

  75. Pilgrim AK, Pantaleo G, Cohen OJ, Fink LM, Zhou JY, Zhou JT, et al. Neutralizing antibody responses to human immunodeficiency virus type 1 in primary infection and long-term non-progressive infection. J Infect Dis 1997; 176: 924–32.

    Article  PubMed  CAS  Google Scholar 

  76. Moog C, Fleury HJA, Pellegrin I, Kirn A, Aubertin AM. Autologous and heterologous neutralizing antibody responses following initial seroconversion in human immunodeficiency virus type 1-infected individuals. J Virol 1997; 71: 3734–41.

    PubMed  CAS  Google Scholar 

  77. Carotenuto P, Looij D, Keldermans L, de Wolf F, Goudsmit J. Neutralizing antibodies are positively associated with CD4+ T-cell counts and T-cell function in long-term AIDS-free infection. AIDS 1998; 12: 1591–600.

    Article  PubMed  CAS  Google Scholar 

  78. Pellegrin I, Legrand E, Neau D, Bonot P, Masquelier B, Pellegrin J-L, et al. Kinetics of appearance of neutralizing antibodies in 12 patients with primary or recent HIV-1 infection and relationship with plasma and cellular viral loads. J AIDS 1996; 11: 438–47.

    CAS  Google Scholar 

  79. Burton DR, Montefiori DC. The antibody response in HIV-1 infection. AIDS 1997; 11:Suppl A:S87–S98.

    Google Scholar 

  80. Mo H, Stamatatos L, Ip JE, Barbas CF, Parren PWHI, Burton DR, et al. Human immunodeficiency virus type 1 mutants that escape neutralization by human monoclonal antibody IgG1b12. J Virol 1997; 71: 6869–74.

    PubMed  CAS  Google Scholar 

  81. Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, et al. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 1996; 70: 1100–8.

    PubMed  CAS  Google Scholar 

  82. Burton DR. A vaccine for HIV type 1: the antibody perspective. Proc Natl Acad Sci USA 1997; 94: 10018–23.

    Article  PubMed  CAS  Google Scholar 

  83. Letvin NL. Progress in the development of an HIV-1 vaccine. Science 1998; 280: 1875–80.

    Article  PubMed  CAS  Google Scholar 

  84. Haynes BF, Pantaleo G, Fauci AS. Toward an understanding of the correlates of protective immunity to HIV infection. Science 1996; 271: 324–8.

    Article  PubMed  CAS  Google Scholar 

  85. Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, Borkowsky W, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 1994; 68: 4650–5.

    PubMed  CAS  Google Scholar 

  86. Montelaro RC, Cole KS, Hammond SA. Maturation of immune responses to lentivirus infection-implications for AIDS vaccine development. AIDS Res Hum Retrovir 1998; 14:Supp13:S255–9.

    Google Scholar 

  87. Cole KS, Murphey-Corb M, Narayan O, Joag SV, Shaw G, Montelaro RC. Common themes of antibody maturation to simian immunodeficiency virus, simian-human immunodeficiency virus, and human immunodeficiency virus type 1 infections. J Virol 1998; 72: 7852–9.

    PubMed  CAS  Google Scholar 

  88. Nara PL, Garrity R. Deceptive imprinting: a cosmopolitan strategy for complicating vaccination. Vaccine 1998; 16: 1780–7.

    Article  PubMed  CAS  Google Scholar 

  89. Cao Y, Qin L, Zhang L, Safrit J, Ho DD. Virologic and immunologic characterization of longterm survivors of human immunodeficiency virus type 1 infection. N Engl J Med 1995; 332: 201–8.

    Article  PubMed  CAS  Google Scholar 

  90. Pantaleo G, Menzo S, Vaccarezza M, Graziosi C, Cohen OJ, Demarest JF, et al. Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. N Engl J Med 1995; 332: 209–16.

    Article  PubMed  CAS  Google Scholar 

  91. Montefiori DC, Pantaleo G, Fink LM, Zhou JT, Zhou JY, Bilska M, et al. Neutralizing and infection-enhancing antibody responses to human immunodeficiency virus type 1 in long term non-progressors. J Infect Dis 1996; 173: 60–7.

    Article  PubMed  CAS  Google Scholar 

  92. Bradney AP, Scheer S, Crawford JM, Buchbinder SP, Montefiori DC. Neutralization-escape in human immunodeficiency virus type 1-infected long-term nonprogressors. J Infect Dis 1999; 179: 1264–7.

    Article  PubMed  CAS  Google Scholar 

  93. Klein MR, van Baalen CA. Kinetics of Gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: a longitudinal analysis of rapid progressors and longterm asymptomatics. J Exp Med 1995; 181: 1356–72.

    Article  Google Scholar 

  94. Rinaldo C, Huang X-L, Fan Z, Ding M, Beltz L, Panicali D, et al. High levels of anti-human immunodeficiency virus type 1 (HIV-1) memory cytotoxic T-lymphocyte activity and low viral load are associated with lack of disease in HIV-1-infected long-term nonprogressors. J Virol 1995; 69: 5838–42.

    PubMed  CAS  Google Scholar 

  95. Harrer T, Harrer E, Kalams SA, Elbeik T, Staprans SI, Feinberg MB, et al. Strong cytotoxic T cell and weak neutralizing antibody responses in a subset of persons with stable nonprogressing HIV type 1 infection. AIDS Res Hum Retrovir 1996; 12: 585–92.

    Article  PubMed  CAS  Google Scholar 

  96. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 1996; 273: 1856–62.

    Article  PubMed  CAS  Google Scholar 

  97. Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, Lomb DA, et al. Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Science 1997; 277: 959–65.

    Article  PubMed  CAS  Google Scholar 

  98. Kirchoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC. Absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 1995; 332: 228–32.

    Article  Google Scholar 

  99. Alter Hi, Eichberg JW, Masur H, Saxinger WC, Gallo RC, Macher AM, et al. Transmission of HTLV-III infection from human plasma to chimpanzees: an animal model for AIDS Science 1984; 226: 549–52.

    Article  PubMed  CAS  Google Scholar 

  100. Desrosiers RC. The simian immunodeficiency viruses. Annu Rev Immunol 1990; 8: 557–78.

    Article  PubMed  CAS  Google Scholar 

  101. Gardner MB. The history of simian AIDS. J Med Primatol 1996; 25: 148–57.

    Article  PubMed  CAS  Google Scholar 

  102. Shiba R, Adachi A. SIV/HIV recombinants and their use in studying biological properties. AIDS Res Hum Retrovir 1992; 8: 403–9.

    Article  Google Scholar 

  103. Li J, Lord CI, Haseltine W, Letvin NL, Sodroski J. Infection of cynomolgus monkeys with a chimeric HIV-1/SIVmac virus that expresses the HIV-1 envelope glycoproteins. J Acq Immune Def Syndr 1993; 5: 639–46.

    Google Scholar 

  104. Luciw PA, Pratt-Lowe E, Shaw KES, Levy JA, Cheng-Mayer C. Persistent infection of rhesus macaques with T-cell line-tropic and macrophage-tropic clones of simian/human immunodeficiency viruses (SHIV). Proc Natl Acad Sci USA 1995; 92: 7490–4.

    Article  PubMed  CAS  Google Scholar 

  105. Li JT, Halloran M, Lord CI, Watson A, Ranchalis J, Fung M, et al. Persistent infection of macaques with simian-human immunodeficiency viruses. J Virol 1995; 69: 7061–71.

    PubMed  CAS  Google Scholar 

  106. Joag SV, Li Z, Foresman L, Stephens EB, Zhao LJ, Adany I, et al. Chimeric simian human immunodeficiency virus that causes progressive loss of CD4+ T cells and AIDS in pig-tailed macaques. J Virol 1996; 70: 3189–97.

    PubMed  CAS  Google Scholar 

  107. Reimann KA, Li JT, Veazey R, Halloran M, Park I-W, Karlsson GB, et al. A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an AIDS-like disease after in vivo passage in rhesus monkeys. J Virol 1996; 70: 6922–8.

    PubMed  CAS  Google Scholar 

  108. Reimann KA, Li JT, Voss G, Lekutis C, Tenner-Racz K, Racz P, et al. An env gene derived from a primary HIV-1 isolate confers high in vivo replicative capacity to a chimeric simian/human immunodeficiency virus in rhesus monkeys. J Virol 1996; 70: 3198–206.

    PubMed  CAS  Google Scholar 

  109. Karlsson GB, Halloran M, Li J, Park I-W, Gomila R, Reimann KA, et al. Characterization of molecularly cloned simian-human immunodeficiency viruses causing rapid CD4+ lymphocyte depletion in rhesus monkeys. J Virol 1997; 71: 4218–25.

    PubMed  CAS  Google Scholar 

  110. Conley AJ, Kessler JA II, Boots LJ, McKenna PM, Schleif WA, Emini EA, et al. The consequence of passive administration of an anti-human immunodeficiency virus type 1 neutralizing monoclonal antibody before challenge of chimpanzees with a primary virus isolate. J Virol 1996; 70: 6751–8.

    PubMed  CAS  Google Scholar 

  111. Haigwood NL, Watson A, Sutton WF, McClure J, Lewis A, Ranchalis J, et al. Passive immune globulin therapy in the SIV/macaque model: early intervention can alter disease profile. Immunol Lett 1996; 51: 107–14.

    Article  PubMed  CAS  Google Scholar 

  112. Clements JE, Montelaro RC, Zink MC, Amedee AM, Miller S, Trichel AM, et al. Cross-protective immune responses induced in rhesus macaques by immunization with attenuated macrophage-tropic simian immunodeficiency virus. J Virol 1995; 69: 2737–44.

    PubMed  CAS  Google Scholar 

  113. Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC, Hayes D, et al. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 1999; 73: 4009–18.

    PubMed  CAS  Google Scholar 

  114. Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, Hanson CE, et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 2000; 6: 207–10.

    Article  PubMed  CAS  Google Scholar 

  115. Shibata R, Igarashi T, Haigwood N, Buckler-White A, Ogert R, Ross W, et al. Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat Med 1999; 5: 204–10.

    Article  PubMed  CAS  Google Scholar 

  116. Foresman L, Jia F, Li Z, Wang C, Stephens EB, Sahni M, et al. Neutralizing antibodies administered before, but not after, virulent SHIV prevent infection in macaques. AIDS Res Hum Retrovir 1998; 14: 1035–43.

    Article  PubMed  CAS  Google Scholar 

  117. Prince AM, Reesink H, Pascual D, Horowitz B, Hewlett I, Murthy KM, et al. Prevention of HIV infection by passive immunization with HIV immunoglobulin. AIDS Res Hum Retrovir 1991; 7: 971–3.

    Article  PubMed  CAS  Google Scholar 

  118. Emini EA, Schleiff WA, Nunberg JH, Conley AJ, Eda Y, Tokiyoshi S, et al. Prevention of HIV-1 infection in chimpanzees by gp120 V3 domain-specific monoclonal antibody. Nature 1992; 355: 728–30.

    Article  PubMed  CAS  Google Scholar 

  119. Safrit JT, Fung MSC, Andrews CA, Braun DG, Sun WNC, Chang TW, Koup RA. hu-PBLSCID mice can be protected from HIV-1 infection by passive transfer of monoclonal antibody to the principal neutralizing determinant of envelope gp120. AIDS 1993; 7: 15–21.

    Article  PubMed  CAS  Google Scholar 

  120. Gauduin M-C, Safrit JT, Weir R, Fung MSC, Koup RA. Pre-and postexposure protection against human immunodeficiency virus type 1 infection mediated by a monoclonal antibody. J Infect Dis 1995; 171: 1203–9.

    Article  PubMed  CAS  Google Scholar 

  121. Parren PWHI, Ditzel HJ, Gulizia RJ, Binley JM, Barbas CF III, Burton DR, Mosier DE. Protection against HIV-1 infection in hu-PBL-SCID mice by passive immunization with a neutralizing human monoclonal antibody against the gp120 CD4-binding site. AIDS 1995; 9: F1–6.

    Article  PubMed  CAS  Google Scholar 

  122. Gauduin M-C, Parren PWHI, Weir R, Barbas CF, Burton DR, Koup RA. Passive immunization with a human monoclonal antibody protects hu-PBL-SCID mice against challenge by primary isolates of HIV-1. Nat Med 1997; 3: 1389–93.

    Article  PubMed  CAS  Google Scholar 

  123. Graham BS, Wright PF. Candidate AIDS vaccines. J Engl J Med 1995; 333: 1331–9.

    Article  CAS  Google Scholar 

  124. Walker M-C, Fast PE, Graham BS, Belshe R, Dolin R. Phase I/II preventive vaccine trial: conference summary. AIDS Res Hum Retrovir 1995; 11: 1279–85.

    Article  Google Scholar 

  125. Graham BS. Serologic responses to candidate AIDS vaccines. AIDS Res Hum Retrovir 1994; 10:Suppl. 2: S145–8.

    Google Scholar 

  126. Heilman CA, Baltimore D. HIV vaccines-where are we going? Nat Med 1998; 4: 532–4.

    Article  PubMed  CAS  Google Scholar 

  127. Francis DP, Gregory T, McElrath MJ, Belshe RB, Gorse GJ, Migasena S, et al. Advancing AIDSVAXTM to phase 3. Safety, immunogenicity, and plans for phase 3. AIDS Res Hum Retrovir 1998; 14: 5325–31.

    Google Scholar 

  128. Beddows S, Lister S, Cheingsong R, Bruck C, Weber J. Comparison of the antibody repertoire generated in healthy volunteers following immunization with a monomeric recombinant gp120 construct derived from a CCR5/CXCR4-using human immunodeficiency virus type 1 isolate with sera from naturally infected individuals. J Virol 1999; 73: 1740–5.

    PubMed  CAS  Google Scholar 

  129. Bures R, Gaitan, A, Zhu T, Graziosi C, McGrath K, Tartaglia J, et al. Immunization with recombinant canarypox vectors expressing membrane-anchored gp120 followed by soluble gp160 boosting fails to generate antibodies that neutralize R5 primary isolates of human immunodeficiency virus type 1. AIDS Res Hum Retrovir 2000; 16: 2019–35.

    Article  PubMed  CAS  Google Scholar 

  130. Mascola JR, Snyder SW, Weislow OS, Belay SM, Belshe RB, Schwartz DH, et al. Immunization with envelope subunit vaccine products elicits neutralizing antibodies against laboratory-adapted but not primary isolates of human immunodeficiency virus type 1. J Infect Dis 1996; 173: 340–8.

    Article  PubMed  CAS  Google Scholar 

  131. Belshe RB, Gorse GJ, Mulligan MJ, Evans TG, Keefer MC, Excler J-L, et al. Rapid induction of HIV-1 immune responses by canarypox (ALVAC) HIV-1 and gpl 20 SF2 recombinant vaccines in uninfected volunteers. AIDS 1998; 12: 2407–15.

    Article  PubMed  CAS  Google Scholar 

  132. Connor RI, Korber BTM, Graham BS, Hahn BH, Ho DD, Walker BD, et al. Immunological and virological analyses of persons infected by human immunodeficiency virus type 1 while participating in trials of recombinant gp120 subunit vaccines. J Virol 1998; 72: 1552–76.

    PubMed  CAS  Google Scholar 

  133. Graham BS, McElrath MJ, Connor RI, Schwartz DH, Gorse GJ, Keefer MC, et al. Analysis of intercurrent human immunodeficiency virus type 1 infections in phase I and II trials of candidate AIDS vaccines. J Infect Dis 1998; 177: 310–9.

    Article  PubMed  CAS  Google Scholar 

  134. McElrath JM, Corey L, Greenberg PD, Matthews TJ, Montefiori DC, Rowen L, et al. Human immunodeficiency virus type 1 infection despite prior immunization with a recombinant envelope vaccine regimen. Proc Natl Acad Sci USA 1996; 93: 3972–7.

    Article  PubMed  CAS  Google Scholar 

  135. Kahn JO, Steimer KS, Baenziger J, Duliege A-M, Feinberg M, Elbeik T, et al. Clinical, immunologic, and virologie observations related to human immunodeficiency virus (HIV) type 1 infection in a volunteer in an HIV-1 vaccine clinical trial. J Infect Dis 1995; 171: 1343–7.

    Article  PubMed  CAS  Google Scholar 

  136. Montefiori DC, Evans TG. Toward an HIV-1 vaccine that generates potent, broadly cross-reactive neutralizing antibodies. AIDS Res Hum Retrovir 1999; 15: 689–98.

    Article  PubMed  CAS  Google Scholar 

  137. Montefiori DC, Reimann KA, Wyand MS, Manson K, Lewis MG, Collman RG, et al. Neutralizing antibodies in sera from macaques infected with chimeric simian-human immunodeficiency virus containing the envelope glycoproteins of either a laboratory-adapted variant or a primary isolate of human immunodeficiency virus type 1. J Virol 1998; 72: 3427–31.

    PubMed  CAS  Google Scholar 

  138. Binley JM, Sanders RW, Clas B, Schuelke N, Master A, Guo Y, et al. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intramolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J Virol 2000; 74: 627–43.

    Article  PubMed  CAS  Google Scholar 

  139. Yang X, Florin L, Farzan M, Kolchinsky P, Kwong PD, Sodroski J, Wyatt R. Modifications that stabilize human immunodeficiency virus envelope glycoprotein trimers in solution. J Virol 2000; 74: 4746–54.

    Article  PubMed  CAS  Google Scholar 

  140. Louisirirotchanakul S, Beddows S, Cheingsong-Popov R, et al. Characterization of sera from subjects infected with HIV-1 subtypes B and E in Thailand by antibody binding and neutralization. J AIDS Hum Retrovirol 1998; 19: 315–20.

    CAS  Google Scholar 

  141. Mascola JR, Louder MK, Surman SR, et al. Human immunodeficiency virus type 1 neutralizing antibody serotyping using serum pools and an infectivity reduction assay. AIDS Res Hum Retrovir 1996; 12: 1319–28.

    Article  PubMed  CAS  Google Scholar 

  142. Nyambi PN, Nkengasong J, Lewi P, et al. Multivariate analysis of human immunodeficiency virus type 1 neutralization data. J Virol 1996; 70: 6235–43.

    PubMed  CAS  Google Scholar 

  143. Weber J, Fenyö E-M, Beddows S, Kaleebu P, Bjorndal A, the WHO Network for HIV Isolation and Characterization. Neutralization serotypes of human immunodeficiency virus type 1 field isolates are not predicted by genetic subtype. J Virol 1996; 70: 7827–32.

    PubMed  CAS  Google Scholar 

  144. Kostrikis LG, Cao Y, Ngai H, Moore JP, Ho DD. Quantitative analysis of serum neutralization of human immunodeficiency virus type 1 from subtypes A, B, C, D, E, F, and I: lack of direct correlation between neutralization serotypes and genetic subtypes and evidence for prevalent serum-dependent infectivity enhancement. J Virol 1996; 70: 445–58.

    PubMed  CAS  Google Scholar 

  145. Moore JP, Cao Y, Leu J, Qin L, Korber B, Ho DD. Inter-and intraclade neutralization of human immunodeficiency virus type 1: Genetic clades do not correspond to neutralization serotypes but partially correspond to gp120 antigenic serotypes. J Virol 1996; 70: 427–44.

    PubMed  CAS  Google Scholar 

  146. Montefiori DC, Moore JP. Magic of the occult? Science 1999; 283: 336–7.

    Article  PubMed  CAS  Google Scholar 

  147. Ourmanov I, Bilska M, Hirsch VH, Montefiori DC. Recombinant modified vaccinia virus Ankara expressing the surface gp120 of simian immunodeficiency virus (SIV) primes for a rapid neutralizing antibody response to SIV infection in macaques. J Virol 2000; 74: 2960–5.

    Article  PubMed  CAS  Google Scholar 

  148. Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, Lifton MA, et al. CD8+ lymphocytes control viremia in simian immunodeficiency virus infection. Science 1999; 283: 857–60.

    Article  PubMed  CAS  Google Scholar 

  149. Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A, Blanchard J, et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 1999; 189: 991–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Montefiori, D.C. (2001). HIV-Specific Neutralizing Antibodies. In: Pantaleo, G., Walker, B.D. (eds) Retroviral Immunology. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-110-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-110-7_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-128-8

  • Online ISBN: 978-1-59259-110-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics