Skip to main content

Role of Fibroblast Growth Factor-2 in Astrogliosis

  • Chapter
Neuroglia in the Aging Brain

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 282 Accesses

Abstract

Astrocytes comprise the most numerous cellular element of the brain. Though once thought to merely provide structural support for neurons, astrocytes are now known to participate in many aspects of normal nervous system development and function, including neuronal migration, synaptogenesis, induction of the blood-brain-barrier, metabolic support of neurons, and regulation of extracellular fluid composition. Astrocytes throughout the brain are electrically coupled, forming a glial syncytium that may play a substantial role in signaling within the nervous system (1). In addition to functions in the developing and adult nervous systems, astrocytes respond to changes in the brain caused by aging and injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dermietzel, R. and Spray, D.C. (1998) From neuro-glue (’Nervenkitt’) to glia: a prologue. Glia 24, 1–7.

    Article  PubMed  CAS  Google Scholar 

  2. Eddleston, M. and Mucke, L. (1993) Molecular profile of reactive astrocytes — implications for their role in neurologic disease. Neuroscience 54, 15–36.

    Article  PubMed  CAS  Google Scholar 

  3. Eng, L.F. and Ghirnikar, R.S. (1994) GFAP and astrogliosis. Brain Pathol. 4, 229–237.

    Article  PubMed  CAS  Google Scholar 

  4. Berciano, M.T., Andres, M.A., Calle, E., and Lafarga, M. (1995) Age-induced hypertrophy of astrocytes in rat supraoptic nucleus: a cytological, morphometric, and immunocytochemical study. Anat. Rec. 243, 129–144.

    Article  PubMed  CAS  Google Scholar 

  5. David, J.-P., Ghozali, F., Fallet-Bianco, C., etal. (1997) Glial reaction in the hippocampal formation is highly correlated with aging in human brain. Neurosci. Lett. 235, 53–56.

    Article  PubMed  CAS  Google Scholar 

  6. Kohama, S.G., Goss, J.R., Finch, C.E., and McNeill, T.H. (1995) Increases of glial fibrillary acidic protein in the aging female mouse brain. Neurobiol. Aging 16, 59–67.

    Article  PubMed  CAS  Google Scholar 

  7. Bronson, R.T., Lipman, R.D., and Harrison, D.E. (1993) Age-related gliosis in the white matter of mice. Brain Res. 609, 124–128.

    Article  PubMed  CAS  Google Scholar 

  8. Day, J.R., Frank, A.T., O’Callaghan, J.P., Jones, B.C., and Anderson, J.E. (1998) The effect of age and testosterone on the expression of glial fibrillary acidic protein in the rat cerebellum. Exp. Neurol. 151, 343–346.

    Article  PubMed  CAS  Google Scholar 

  9. Amenta, F., Bronzetti, E., Sabbatini, M., and Vega, J.A. (1998) Astrocyte changes in aging cerebral cortex and hippocampus: a quantitative immunohistochemical study. Microsc. Res. Tech. 43, 29–33.

    Article  PubMed  CAS  Google Scholar 

  10. Björklund, H., Eriksdotter-Nilsson, M., Dahl, D., Rose, G., Hoffer, B., and Olson, L. (1985) Image analysis of GFA-positive astrocytes from adolescence to senescence. Exp. Brain Res. 58, 163–170.

    Article  PubMed  Google Scholar 

  11. Eng, L.F. and Lee, Y.-L. (1995) Intermediate filaments in astrocytes. In: Neuroglia, Kettenmann, H. and Ransom, B.R., ed. Oxford University Press, New York, pp. 650–667.

    Google Scholar 

  12. Nichols, N.R., Day, J.R., Laping, N.J., Johnson, S.A., and Finch, C.E. (1993) GFAP mRNA increases with age in rat and human brain. Neurobiol. Aging 14, 421–429.

    Article  PubMed  CAS  Google Scholar 

  13. Goss, J.R., Finch, C.E., and Morgan, D.G. (1991) Age-related changes in glial fibrillary acidic protein mRNA in the mouse brain. Neurobiol. Aging 12, 165–170.

    Article  PubMed  CAS  Google Scholar 

  14. Laping, N.J., Teter, B., and Anderson, C.P. (1994) Age-related increases in glial fibrillary acidic protein do not show proportionate changes in transcription rates or DNA methylation in the cerebral cortex and hippocampus of male rats. J. Neurosci. Res. 39, 710–717.

    Article  PubMed  CAS  Google Scholar 

  15. Graeber, M.B., Tetzlaff, W., Streit, W.J., and Kreutzberg, G.W. (1988) Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy. Neurosci. Lett. 85, 317–321.

    Article  PubMed  CAS  Google Scholar 

  16. Tetzlaff, W., Graeber, M.B., Bisby, M.A., and Kreutzberg, G.W. (1988) Increased glial fibrillary acidic protein synthesis in astrocytes during retrograde reaction of the rat facial nucleus. Glia 1, 90–95.

    Article  PubMed  CAS  Google Scholar 

  17. Hajós, F., Gerics, B., and Turai, É. (1993) Astroglial reaction following Wallerian degeneration in the rat visual cortex: proliferation or hypertrophy? Neurobiology 1, 123–131.

    Google Scholar 

  18. Janeczko, K. (1989) Spatiotemporal patterns of the astroglial proliferation in rat brain injured at the postmitotic stage of postnatal development: a combined immunocytochemical and autoradiographie study. Brain Res. 485, 236–243.

    Article  PubMed  CAS  Google Scholar 

  19. Miyaki, T., Hattori, T., Fukuda, M., Kitamura, T., and Fujita, S. (1988) Quantitative studies on proliferative changes of reactive astrocytes in mouse cerebral cortex. Brain Res. 451, 133–138.

    Article  Google Scholar 

  20. Menon, V.K. and Landerholm, T.E. (1994) Intralesion injection of basic fibroblast growth factor alters glial reactivity to neural trauma. Exp. Neurol. 129, 142–154.

    Article  PubMed  CAS  Google Scholar 

  21. Hozumi, I., Chiu, F.-C., and Norton, W.T. (1990) Biochemical and immunocytochemical changes in glial fibrillary acidic protein after stab wounds. Brain Res. 524, 64–71.

    Article  PubMed  CAS  Google Scholar 

  22. Hozumi, I., Aquino, D.A., and Norton, W.T. (1990) GFAP mRNA levels following stab wounds in rat brain. Brain Res. 534, 291–294.

    Article  PubMed  CAS  Google Scholar 

  23. Vijayan, V.K., Lee, Y.-L., and Eng, L.F. (1990) Increase in glial fibrillary acidic protein following neural trauma. Mol. Chem. Neuropathol. 13, 107–118.

    Article  PubMed  CAS  Google Scholar 

  24. Mucke, L., Oldstone, M.B.A., Morris, J.C., and Nerenberg, M.I. (1991) Rapid activation of astrocyte-specific expression of GFAP-lacZ transgene by focal injury. New Biologist 3, 465–474.

    PubMed  CAS  Google Scholar 

  25. Gordon, M.N., Schreier, W.A., Ou, X., Holcomb, L.A., and Morgan, D.G. (1997) Exaggerated astrocyte reactivity after nigrostriatal deafferentation in the aged rat. J. Comp. Neurol. 388, 106–119.

    Article  PubMed  CAS  Google Scholar 

  26. Goss, J.R. and Morgan, D.G. (1995) Enhanced glial fibrillary acidic protein RNA response to fornix transection in aged mice. J. Neurochem. 64, 1351–1360.

    Article  PubMed  CAS  Google Scholar 

  27. Baird, A. (1994) Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors. Curr. Opin. Neurobiol. 4, 78–86.

    Article  PubMed  CAS  Google Scholar 

  28. Esch, F., Baird, A., Ling, N., etal. (1985) Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc. Natl. Acad. Sci. USA 82, 6507–6511.

    Article  PubMed  CAS  Google Scholar 

  29. Thomas, K.A., Rios-Candelore, M., and Fitzpatrick, S. (1984) Purification and characterization of acidic fibroblast growth factor from bovine brain. Proc. Natl. Acad. Sci. USA 81, 357–361.

    Article  PubMed  CAS  Google Scholar 

  30. Bohlen, P., Baird, A., Esch, F., Ling, N., and Gospodarowicz, D. (1984) Isolation and partial molecular characterization of pituitary fibroblast growth factor. Proc. Natl. Acad. Sci. USA 81, 5364–5368.

    Article  PubMed  CAS  Google Scholar 

  31. Jaye, M., Howk, R., Burgess, W., etal. (1986) Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization. Science 233, 541–545.

    Article  PubMed  CAS  Google Scholar 

  32. Fernig, D.G. and Gallagher, J.T. (1994) Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog. Growth Factor Res. 5, 353–377.

    Article  PubMed  CAS  Google Scholar 

  33. Acland, P., Dixon, M., Peters, G., and Dickson, C. (1990) Subcellular fate of the int-2 oncoprotein is determined by choice of initiation codon. Nature 343, 662–665.

    Article  PubMed  CAS  Google Scholar 

  34. Arnaud, E., Touriol, C., Boutonnet, C., etal. (1999) A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol. Cell. Biol. 19, 505–514.

    PubMed  CAS  Google Scholar 

  35. Florkiewicz, R.Z. and Sommer, A. (1989) Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc. Natl. Acad. Sci. USA 86, 3978–3981.

    Article  PubMed  CAS  Google Scholar 

  36. Florkiewicz, R.Z., Baird, A., and Gonzalez, A.-M. (1991) Multiple forms of bFGF: differential nuclear and cell surface localization. Growth Factors 4, 265–275.

    Article  PubMed  CAS  Google Scholar 

  37. Myers, R.L., Payson, R.A., Chotani, M.A., Deaven, L.L., and Chiu, I.M. (1993) Gene structure and differential expression of acidic fibroblast growth factor mRNA: identification and distribution of four different transcripts. Oncogene 8, 341–349.

    PubMed  CAS  Google Scholar 

  38. Zuniga Mejia Borja, A., Murphy, C., and Zeller, R. (1996) a1tFGF-2, a novel ER-associated FGF-2 protein isoform: its embryonic distribution and functional analysis during neural tube development. Dey. Biol. 180, 680–692.

    Google Scholar 

  39. Mansour, S.L. (1994) Targeted disruption of int-2 (fgf-3) causes developmental defects in the tail and inner ear. Mol. Rep rod. Dey. 39, 62–68.

    Article  CAS  Google Scholar 

  40. Ozawa, K., Suzuki, S., Asada, M., etal. (1998) An alternatively spliced fibroblast growth factor (FGF)-5 mRNA is abundant in brain and translates into a partial agonist/antagonist for FGF-5 neurotrophic activity. J. Biol. Chem. 273, 29262–29271.

    Article  PubMed  CAS  Google Scholar 

  41. Ghosh, A.K., Shankar, D.B., Shackleford, G.M., etal. (1996) Molecular cloning and characterization of human FGF8 alternative messenger RNA forms. Cell Growth Differ. 7, 1425–1434.

    PubMed  CAS  Google Scholar 

  42. Xu, J., Lawshe, A., MacArthur, C.A., and Ornitz, D.M. (1999) Genomic structure, mapping, activity and expression of fibroblast growth factor 17. Mech. Dey. 83, 165–178.

    Article  CAS  Google Scholar 

  43. Munoz-Sanjuan, I., Smallwood, P.M., and Nathans, J. (2000) Isoform diversity among fibroblast growth factor homologous factors is generated by alternative promoter usage and differential splicing../. Biol. Chem. 275, 2589–2597.

    Article  CAS  Google Scholar 

  44. Mignatti, P., Morimoto, T., and Rifkin, D.B. (1992) Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex. J. Cell. Physiol. 151, 81–93.

    Article  PubMed  CAS  Google Scholar 

  45. Miyake, A., Konishi, M., Martin, F.H., etal. (1998) Structure and expression of a novel member, FGF-16, of the fibroblast growth factor family. Biochem. Biophys. Res. Commun. 243, 148–152.

    Article  PubMed  CAS  Google Scholar 

  46. Miyamoto, M., Naruo, K., Seko, C., Matsumoto, S., Kondo, T., and Kurokawa, T. (1993) Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol. Cell. Biol. 13, 4251–4259.

    PubMed  CAS  Google Scholar 

  47. Ohmachi, S., Watanabe, Y., Mikami, T., etal. (2000) FGF-20, a novel neurotrophic factor, preferentially expressed in the substantia nigra pars compacta of rat brain. Biochem. Biophys. Res. Commun. 277, 355–360.

    Article  PubMed  CAS  Google Scholar 

  48. Shin, J.T., Opalenik, S.R., and Wehby, J.N. (1996) Serum-starvation induces the extracellular appearance of FGF-1. Biochim. Biophys. Acta. 1312, 27–38.

    Article  PubMed  Google Scholar 

  49. Florkiewicz, R.Z., Majack, R.A., Buechler, R.D., and Florkiewicz, E. (1995) Quantitative export of FGF-2 occurs through an alternative, energy-dependent, non-ER/Golgi pathway. J. Cell. Physiol. 162, 388–399.

    Article  PubMed  CAS  Google Scholar 

  50. McNeil, P.L., Muthukrishnan, L., Warder, E., and D’Amore, P.A. (1989) Growth factors are released by mechanically wounded endothelial cells. J. Cell Biol. 109, 811–822.

    Article  PubMed  CAS  Google Scholar 

  51. D’Amore, P.A. (1990) Modes of FGF release in vivo and in vitro. Cancer Metastasis Rev. 9, 227–239.

    Article  Google Scholar 

  52. Bikfalvi, A., Klein, S., Pintucci, G., Quarto, N., Mignatti, P., and Rifkin, D.B. (1995) Differential modulation of cell phenotype by different molecular weight forms of basic fibroblast growth factor: possible intracellular signaling by the high molecular weight forms. J. Cell Biol. 129, 233–243.

    Article  PubMed  CAS  Google Scholar 

  53. Sherman, L., Stocker, K.M., Morrison, R., and Ciment, G. (1993) Basic fibroblast growth factor (bFGF) acts intracellularly to cause the transdifferentiation of avian neural crest-derived Schwann cell precursors into melanocytes. Development 118, 1313–1326.

    PubMed  CAS  Google Scholar 

  54. Powell, P.P., Finklestein, S.P., Dionne, C., Jaye, M., and Klagsbrun, M. (1991) Temporal, differential and regional expression of mRNA for basic fibroblast growth factor in the developing and adult rat brain. Mol. Brain Res. 11,71–77.

    Google Scholar 

  55. Emoto, N., Gonzalez, A.M., Walicke, P.A., etal. (1989) Basic fibroblast growth factor (FGF) in the central nervous system: identification of specific loci of basic FGF expression in the rat brain. Growth Factors 2, 21–29.

    Article  PubMed  CAS  Google Scholar 

  56. Gonzalez, A.M., Berry, M., Maher, P.A., Logan, A., and Baird, A. (1995) A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Res. 701, 201–226.

    Article  PubMed  CAS  Google Scholar 

  57. Ferrara, N., Ousley, F. and Gospodarowicz, D. (1988) Bovine brain astrocytes express basic fibroblast growth factor, a neurotropic and angiogenic mitogen. Brain Res. 462, 223–232.

    Article  PubMed  CAS  Google Scholar 

  58. Vijayan, V.K., Lee, Y.L. and Eng, L.F. (1993) Immunohistochemical localization of basic fibroblast growth factor in cultured rat astrocytes and oligodendrocytes. Int. J. Dev. Neurosci. 11, 257–267.

    Article  PubMed  CAS  Google Scholar 

  59. Frautschy, S.A., Walicke, RA. and Baird, A. (1991) Localization of basic fibroblast growth factor and its mRNA after CNS injury. Brain Res. 553, 291–299.

    Article  PubMed  CAS  Google Scholar 

  60. Logan, A., Frautschy, S.A., Gonzalez, A.-M., and Baird, A. (1992) A time course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptors (fig) following a localized cortical brain injury. J. Neurosci. 12, 3828–3837.

    PubMed  CAS  Google Scholar 

  61. Chadi, G., Cao, Y., Pettersson, R.F., and Fuxe, K. (1994) Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Neuroscience 61, 891–910.

    Article  PubMed  CAS  Google Scholar 

  62. Flores, C., Rodaros, D. and Stewart, J. (1998) Long-lasting induction of astrocytic basic fibroblast growth factor by repeated injections of amphetamine: blockade by concurrent treatment with a glutamate antagonist. J. Neurosci. 18, 9547–9555.

    PubMed  CAS  Google Scholar 

  63. Riva, M.A., Donati, E., Tascedda, F., Zolli, M., and Racagni, G. (1994) Short-and long-term induction of basic fibroblast growth factor gene expression in rat central nervous system following kainate injection. Neuroscience 59, 55–65.

    Article  PubMed  CAS  Google Scholar 

  64. Speliotes, E.K., Caday, C.G., Do, T., Weise, J., Kowall, N.W., and Finklestein, S.P. (1996) Increased expression of basic fibroblast growth factor (bFGF) following focal cerebral infarction in the rat. Mol. Brain Res. 39, 31–42.

    Article  PubMed  CAS  Google Scholar 

  65. Bhatnagar, M., Cintra, A., Chadi, G., etal. (1997) Neurochemical changes in the hippocampus of the brown Norway rat during aging. Neurobiol. Aging 18, 319–327.

    Article  PubMed  CAS  Google Scholar 

  66. Cintra, A., Lindberg, J., Chadi, G., etal. (1994) Basic fibroblast growth factor and steroid receptors in the aging hippocampus of the brown Norway rat: immunocytochemical analysis in combination with stereology. Neurochem. Int. 25, 39–45.

    Article  PubMed  CAS  Google Scholar 

  67. Lolova, I.S. and Lolov, S.R. (1995) Age-related changes in basic fibroblast growth factorimmunoreactive cells of rat substantia nigra. Mech. Ageing Dev. 82, 73–89.

    Article  PubMed  CAS  Google Scholar 

  68. Colangelo, A.M., Follesa, R. and Mocchetti, I. (1998) Differential induction of nerve growth factor and basic fibroblast growth factor mRNA in neonatal and aged rat brain. Mol. Brain Res. 53, 218–225.

    Article  PubMed  CAS  Google Scholar 

  69. Burrus, L.W., Zuber, M.E., Lueddecke, B.A., and Olwin, B.B. (1992) Identification of a cysteine-rich receptor for fibroblast growth factors. Mol. Cell. Biol. 12, 5600–5609.

    PubMed  CAS  Google Scholar 

  70. Zuber, M.E., Zhou, Z., Burrus, L.W., and Olwin, B.B. (1997) Cysteine-rich FGF receptor regulates intracellular FGF-1 and FGF-2 levels. J. Cell. Physiol. 170, 217–227.

    Article  PubMed  CAS  Google Scholar 

  71. Jaye, M., Schlessinger, J. and Dionne, C.A. (1992) Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction. Biochim. Biophys. Acta. 1135, 185–199.

    Article  PubMed  CAS  Google Scholar 

  72. Johnson, D.E. and Williams, L.T. (1993) Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res. 60, 1–41.

    Article  PubMed  CAS  Google Scholar 

  73. Takaishi, S., Sawada, M., Morita, Y., Seno, H., Fukuzawa, H., and Chiba, T. (2000) Identification of a novel alternative splicing of human FGF receptor 4: Soluble-form splice variant expressed in human gastrointestinal epithelial cells. Biochem. Biophys. Res. Commun. 267, 658–662.

    Article  PubMed  CAS  Google Scholar 

  74. Kinoshita, N., Minshull, J. and Kirschner, M.W. (1995) The identification of two novel ligands of the FGF receptor by a yeast screening method and their activity in Xenopus development. Cell 83, 621–630.

    Article  PubMed  CAS  Google Scholar 

  75. Williams, E.J., Furness, J., Walsh, F.S., and Doherty, R. (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron. 13, 583–594.

    Article  PubMed  CAS  Google Scholar 

  76. Doherty, R. and Walsh, F.S. (1996) CAM-FGF receptor interactions: a model for axonal growth. Mol. Cell. Neurosci. 8, 99–111.

    Article  CAS  Google Scholar 

  77. Wanaka, A., Johnson, Jr, E.M. and Milbrandt, J. (1990) Localization of FGF receptor mRNA in the adult rat central nervous system by in situ hybridization. Neuron. 5, 267–281.

    Article  PubMed  CAS  Google Scholar 

  78. Asai, T., Wanaka, A., Kato, H., Masana, Y., Seo, M., and Tohyama, M. (1993) Differential expression of two members of the FGF receptor gene family, FGFR-1 and FGFR-2, in the adult rat central nervous system. Mol. Brain Res. 17, 174–178.

    Google Scholar 

  79. Takami, K., Kiyota, Y., Iwane, M., etal. (1993) Upregulation of fibroblast growth factor-receptor messenger RNA expression in rat brain following transient forebrain ischemia. Exp. Brain Res. 97, 185–194.

    Article  PubMed  CAS  Google Scholar 

  80. Yazaki, N., Hosoi, Y., Kawabata, K., etal. (1994) Differential expression patterns of mRNAs for members of the fibroblast growth factor receptor family, FGFR-1-FGFR-4, in rat brain. J. Neurosci. Res. 37, 445–452.

    Google Scholar 

  81. Itoh, N., Yazaki, N., Tagashira, S., etal. (1994) Rat FGF receptor-4 mRNA in the brain is expressed preferentially in the medial habenular nucleus. Mol. Brain Res. 21, 344–348.

    Article  PubMed  CAS  Google Scholar 

  82. Miyake, A., and Itoh, N. (1996) Rat fibroblast growth factor receptor-4 mRNA in the brain is preferentially expressed in cholinergic neurons in the medial habenular nucleus. Neurosci. Lett. 203, 101–104.

    Article  PubMed  CAS  Google Scholar 

  83. Reilly, J.F., and Kumari, V.G. (1996) Alterations in fibroblast growth factor receptor expression following traumatic brain injury. Exp. Neurol. 140, 139–150.

    Article  PubMed  CAS  Google Scholar 

  84. Montgomery, D.L. (1994) Astrocytes: form, functions, and roles in disease. Vet. Pathol. 31, 145–167.

    Article  PubMed  CAS  Google Scholar 

  85. Alonso, G., and Privat, A. (1993) Reactive astrocytes involved in the formation of lesional scars differ in the mediobasal hypothalamus and in other forebrain regions. J. Neurosci. Res. 34, 523–538.

    Article  PubMed  CAS  Google Scholar 

  86. Hou, Y.-J., Yu, A.C.H., Garcia, J.M.R.Z., etal. (1995) Astrogliosis in culture. IV. Effects of basic fibroblast growth factor. J. Neurosci. Res. 40, 359–370.

    Article  PubMed  CAS  Google Scholar 

  87. Perraud, F., Besnard, F., Pettmann, B., Sensenbrenner, M., and Labourdette, G. (1988) Effects of acidic and basic fibroblast growth factors (aFGF and bFGF) on the proliferation and the glut-amine synthetase expression of rat astroblasts in culture. Glia 1, 124–131.

    Article  PubMed  CAS  Google Scholar 

  88. Petroski, R.E., Grierson, J.P. Choi-Kwon, S. and Geller, H.M. (1991) Basic fibroblast growth factor regulates the ability of astrocytes to support hypothalamic neuronal survival in vitro. Dev. Biol. 147, 1–13.

    CAS  Google Scholar 

  89. Simpson, C.S., and Morris, B.J. (1994) Basic fibroblast growth factor induces c-fos expression in primary cultures of rat striatum. Neurosci. Lett. 170, 281–285.

    Article  PubMed  CAS  Google Scholar 

  90. Flanders, K.C., Lüdecke, G. Renzing, R. Hamm, C. Cissel, D.S. and Unsicker K. (1993) Effects of TGF-f3s and bFGF on astroglial cell growth and gene expression in vitro. Mol. Cell. Neurosci. 4, 406–417.

    CAS  Google Scholar 

  91. Meiners, S., Marone, M. Rittenhouse, J.L. and Geller, H.M. (1993) Regulation of astrocytic tenascin by basic fibroblast growth factor. Dev. Biol. 160, 480–493.

    CAS  Google Scholar 

  92. Eclancher, F., Kehrli, P. Labourdette, G. and Sensenbrenner, M. (1996) Basic fibroblast growth factor (bFGF) injection activates the glial reaction in the injured adult rat brain. Brain Res. 737, 201–214.

    CAS  Google Scholar 

  93. Gómez-Pinilla, F., Vu, L. and Cotman, C.W. (1995) Regulation of astrocyte proliferation by FGF-2 and heparan sulfate in vivo. J. Neurosci. 15, 2021–2029.

    PubMed  Google Scholar 

  94. Presta, M., Urbinati, C. Dell’Era, P. etal. (1995) Expression of basic fibroblast growth factor and its receptors in human fetal microglia cells. Int. J. Dev. Neurosci. 13, 29–39.

    Article  PubMed  CAS  Google Scholar 

  95. Balaci, L., Presta, M. Ennas, M.G. etal. Differential expression of fibroblast growth factor receptors by human neurones, astrocytes and microglia. Neuroreport 6, 197–200.

    Google Scholar 

  96. Araujo, D.M., and Cotman, C.W. (1992) Basic FGF in astroglial, microglial, and neuronal cultures: characterization of binding sites and modulation of release by lymphokines and trophic factors. J. Neurosci. 12, 1668–1678.

    PubMed  CAS  Google Scholar 

  97. Lee, S.C., Liu, W. Brosnan, C.F. and Dickson, D.W. (1994) GM-CSF promotes proliferation of human fetal and adult microglia in primary cultures. Glia 12, 309–318.

    CAS  Google Scholar 

  98. Giulian, D., and Ingeman J E (1988) Colony-stimulating factors as promoters of ameboid microglia. J. Neurosci. 8, 4707–4717.

    PubMed  CAS  Google Scholar 

  99. Ohno, K., Suzumura, A., Sawada, M., and Marunouchi, T. (1990) Production of granulocyte/macrophage colony-stimulating factor by cultured astrocytes. Biochem. Biophys. Res. Commun. 169, 719–724.

    Article  PubMed  CAS  Google Scholar 

  100. Giulian, D., Johnson, B., Krebs, J.F., George, J.K. and Tapscott, M. (1991) Microglial mitogens are produced in the developing and injured mammalian brain. J. Cell Biol. 112, 323–333.

    Article  PubMed  CAS  Google Scholar 

  101. Fuxe, K., Chadi, G., Tinner, B., Agnati, L.F., Pettersson, R., and David, G. (1994) On the regional distribution of heparan sulfate proteoglycan immunoreactivity in the rat brain. Brain Res. 636, 131–138.

    Article  PubMed  CAS  Google Scholar 

  102. Lin, W.-L. (1990) Immunogold localization of basal laminar heparan sulfate proteoglycan in rat brain and retinal capillaries. Brain Res. Bull. 24, 533–536.

    Article  PubMed  CAS  Google Scholar 

  103. Schlessinger, J., Lax, I., and Lemmon, M. (1995) Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83, 357–360.

    Article  PubMed  CAS  Google Scholar 

  104. Gonzalez, A.M., Carman, L.S., Ong, M., etal. (1994) Storage, metabolism, and processing of 125I-fibroblast growth factor-2 after intracerebral injection. Brain Res. 665, 285–292.

    Article  PubMed  CAS  Google Scholar 

  105. Gómez-Pinilla, F., Miller, S., Choi, J., and Cotman, C.W. (1997) Heparan sulfate potentiates the autocrine action of basic fibroblast growth factor in astrocytes: an in vivo and in vitro study. Neuroscience 76, 137–145.

    Article  PubMed  Google Scholar 

  106. Reilly, J.F., Bair, L., and Kumari, V.G. (1997) Heparan sulfate modifies the effects of basic fibroblast growth factor on glial reactivity. Brain Res. 759, 277–284.

    Article  PubMed  CAS  Google Scholar 

  107. Flaumenhaft, R., Moscatelli, D., and Rifkin, D.B. (1990) Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. J. Cell Biol. 111, 1651–1659.

    Article  PubMed  CAS  Google Scholar 

  108. Massagué, J. (1990) The transforming growth factor-I3 family. Annu. Rev. Cell Biol. 6, 597–641.

    Article  PubMed  Google Scholar 

  109. Lawrence, D.A. (1996) Transforming growth factor-(3: a general review. Eur. Cytokine Netw. 7, 363–374.

    PubMed  CAS  Google Scholar 

  110. Laping, N.J., Morgan, T.E., Nichols, N.R., etal. (1994) Transforming growth factor-131 induces neuronal and astrocyte genes: tubulin al, glial fibrillary acidic protein and clusterin. Neuroscience 58, 563–572.

    Article  PubMed  CAS  Google Scholar 

  111. Logan, A., Berry, M., Gonzalez, A.M., Frautschy, S.A., Sporn, M.B., and Baird, A. (1994) Effects of transforming growth factor (31 on scar production in the injured central nervous system of the rat. Eur. J. Neurosci. 6, 355–363.

    Article  PubMed  CAS  Google Scholar 

  112. Wyss-Coray, T., Feng, L., Masliah, E., Ruppe, M.D., Lee, H.S., Toggas, S.M., Rockenstein, E.M., and Mucke, L. (1995) Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-131. Am. J. Pathol. 147, 53–67.

    PubMed  CAS  Google Scholar 

  113. Reilly, J.F., Maher, P.A., and Kumari, V.G. (1998) Regulation of astrocyte GFAP expression by TGF-131 and FGF-2. Glia, 22, 202–210.

    Article  PubMed  CAS  Google Scholar 

  114. Toru-Delbauffe, D., Baghdassarian-Chalaye, D., Gavaret, J.M., Courtin, F., Pomerance, M., and Pierre, M. (1990) Effects of transforming growth factor 131 on astroglial cells in culture. J. Neurochem. 54, 1056–1061.

    Article  PubMed  CAS  Google Scholar 

  115. Baorto, D.M., Mellado, W., and Shelanski, M.L. (1992) Astrocyte process growth induction by actin breakdown. J. Cell Biol. 117, 357–367.

    Article  PubMed  CAS  Google Scholar 

  116. Moffett, J., Kratz, E., Myers, J., Stachowiak, E.K., Florkiewicz, R.Z., and Stachowiak, M.K. (1998) Transcriptional regulation of fibroblast growth factor-2 expression in human astrocytes: implications for cell plasticity. Mol. Biol. Cell 9, 2269–2285.

    PubMed  CAS  Google Scholar 

  117. Charon, I., Zuin-Kornmann, G., Bataille, S., and Schorderet, M., (1998) Protective effect of neurotrophic factors, neuropoietic cytokines and dibutyryl cyclic AMP on hydrogen peroxide-induced cytotoxicity on PC12 cells: a possible link with the state of differentiation. Neurochem. Int. 33, 503–511.

    Article  PubMed  CAS  Google Scholar 

  118. Schubert, D., Ling, N., and Baird, A. (1987) Multiple influences of a heparin-binding growth factor on neuronal development. J. Cell Biol. 104, 635–643.

    Article  PubMed  CAS  Google Scholar 

  119. Unsicker, K., Reichert-Preibsch, H., and Wewetzer, K. (1992) Stimulation of neuron survival by basic FGF and CNTF is a direct effect and not mediated by non-neuronal cells: evidence from single cell cultures. Del). Brain Res. 65, 285–288.

    Article  CAS  Google Scholar 

  120. Vaca, K., and Wendt, E. (1992) Divergent effects of astroglial and microglial secretions on neuron growth and survival. Exp. Neurol. 118, 62–72.

    Article  PubMed  CAS  Google Scholar 

  121. Westermann, R., Grothe, C., and Unsicker, K. (1990) Basic fibroblast growth factor (bFGF), a multifunctional growth factor for neuroectodermal cells. J. Cell Sci. Suppl. 13, 97–117.

    PubMed  CAS  Google Scholar 

  122. Otto, D., and Unsicker, K. (1994) FGF-2 in the MPTP model of Parkinson’s disease: effects on astroglial cells. Glia, 11, 47–56.

    Article  PubMed  CAS  Google Scholar 

  123. Dietrich, W.D., Alonso, O. Busto, R. and Finklestein, S.P. (1996) Posttreatment with intravenous basic fibroblast growth factor reduces histopathological damage following fluid-percussion brain injury in rats. J. Neurotrauma 13, 309–316.

    PubMed  CAS  Google Scholar 

  124. Dreyfus, H., Sahel, J., Heidinger, V. etal. (1998) Gangliosides and neurotrophic growth factors in the retina. Molecular interactions and applications as neuroprotective agents. Ann. New York Acad. Sci. 845, 240–252.

    Article  CAS  Google Scholar 

  125. Rabchevsky, A.G., Fugaccia, I., Fletcher-Turner, A., Blades, D.A., Mattson, M.P., and Scheff, S.W. (1999) Basic fibroblast growth factor (bFGF) enhances tissue sparing and functional recovery following moderate spinal cord injury. J. Neurotrauma 16, 817–830.

    Article  PubMed  CAS  Google Scholar 

  126. Goss, J.R., O’Malley, M.E., Zou, L., Styren, S.D., Kochanek, P.M., and DeKosky, S.T. (1998) Astrocytes are the major source of nerve growth factor upregulation following traumatic brain injury in the rat. Exp. Neurol. 149, 301–309.

    Article  PubMed  CAS  Google Scholar 

  127. Garcia-Estrada, J., Garcia-Segura, L.M., and Torres-Aleman, I. (1992) Expression of insulin-like growth factor I by astrocytes in response to injury. Brain Res. 592, 343–347.

    Article  PubMed  CAS  Google Scholar 

  128. De Groot, C.J.A., Montagne, L., Barten, A.D., Sminia, P., and Van Der Valk, P. (1999) Expression of transforming growth factor (TGF)-(31, -(32, and (33 isoforms and TGF-f3 type I and type II receptors in multiple sclerosis lesions and human adult astrocyte cultures. J. Neuropathol. Exp. Neurol. 58, 174–187.

    Article  PubMed  Google Scholar 

  129. Lee, M.Y., Kim, C.J., Shin, S.L., Moon, S.H., and Chun, M.H. (1998) Increased ciliary neurotrophic factor expression in reactive astrocytes following spinal cord injury in the rat. Neurosci. Lett. 255, 79–82.

    Article  PubMed  CAS  Google Scholar 

  130. Gluckman, P., Klempt, N., Guan, J., etal. (1992) A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochem. Biophys. Res. Commun. 182, 593–599.

    Article  PubMed  CAS  Google Scholar 

  131. Henrich-Noack, P., Prehn, J.H., and Krieglstein, J. (1996) TGF-beta 1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose-response relationship and potential neuroprotective mechanisms. Stroke 27, 1609–1615.

    Article  PubMed  CAS  Google Scholar 

  132. Korsching, S. (1993) The neurotrophic factor concept: a reexamination. J. Neurosci. 13, 2739–2748.

    PubMed  CAS  Google Scholar 

  133. Smith, R., Peters, G., and Dickson, C. (1988) Multiple RNAs expressed from the int-2 gene in mouse embryonal carcinoma cell lines encode a protein with homology to fibroblast growth factors. EMBO J. 7, 1013–1022.

    Google Scholar 

  134. Taira, M., Yoshida, T., Miyagawa, K., Sakamoto, H., Terada, M., and Sugimura, T. (1987) cDNA sequence of human transforming gene hst and identification of the coding sequence required for transforming activity. Proc. Natl. Acad. Sci. USA 84, 2980–2984.

    Google Scholar 

  135. Delli-Bovi, P., Curatola, A.M., Kern, F.G., Greco, A., Ittmann, M., and Basilico, C. (1987) An oncogene isolated by transfection of Kaposi’s sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell 50, 729–737.

    Article  PubMed  CAS  Google Scholar 

  136. Zhan, X., Bates, B., Hu, X.G., and Goldfarb, M. (1988) The human FGF-5 oncogene encodes a novel protein related to fibroblast growth factors. Mol. Cell Biol. 8, 3487–3495.

    PubMed  CAS  Google Scholar 

  137. Maries, I., Adelaide, J., Raybaud, F., etal. (1989) Characterization of the HST-related FGF.6 gene, a new member of the fibroblast growth factor gene family. Oncogene 4, 335–340.

    Google Scholar 

  138. Finch, P.W., Rubin, J.S., Mild, T., Ron, D., and Aaronson, S.A. (1989) Human KGF is FGFrelated with properties of a paracrine effector of epithelial cell growth. Science 245, 752–755.

    Google Scholar 

  139. Tanaka, A., Miyamoto, K., Minamino, N. (1992) Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proc. Natl. Acad. Sci. USA 89, 8928–8932.

    Article  PubMed  CAS  Google Scholar 

  140. Yamasaki, M., Miyake, A., Tagashira, S., and Itoh, N. (1996) Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J. Biol. Chem. 271, 15918–15921.

    Article  PubMed  CAS  Google Scholar 

  141. Coulier, F., Pontarotti, P., Roubin, R., Hartung, H., Goldfarb, M., and Birnbaum, D. (1997) Of worms and men: an evolutionary perspective on the fibroblast growth factor (FGF) and FGF receptor families. J. Mol. Evol. 44, 43–56.

    Article  PubMed  CAS  Google Scholar 

  142. Smallwood, P.M., Munoz-Sanjuan, I., Tong, P., etal. (1996) Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc. Natl. Acad. Sci. USA 93, 9850–9857.

    Article  PubMed  CAS  Google Scholar 

  143. McWhirter, J.R., Goulding, M., Weiner, J.A., Chun, J., and Murre, C. (1997) A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbxl. Development 124, 3221–3232.

    PubMed  CAS  Google Scholar 

  144. Greene, J.M., Li, Y.L., Yourey, P.A., etal. (1998) Identification and characterization of a novel member of the fibroblast growth factor family. Eur. J. Neurosci. 10, 1911–1925.

    Article  PubMed  CAS  Google Scholar 

  145. Hoshikawa, M., Ohbayashi, N., Yonamine, A., etal. (1998) Structure and expression of a novel fibroblast growth factor, FGF-17, preferentially expressed in the embryonic brain. Biochem. Biophys. Res. Commun. 244, 187–191.

    Article  PubMed  CAS  Google Scholar 

  146. Hu, M.C.-T., Qiu, W.R., Wang, Y.-P., etal. (1998) FGF-18, a novel member of the fibroblast growth factor family, stimulates hepatic and intestinal proliferation. Mol. Cell. Biol. 18, 6063–6074.

    PubMed  CAS  Google Scholar 

  147. Ohbayashi, N., Hoshikawa, M., Kimura, S., Yamasaki, M., Fukui, S., and Itoh, N. (1998) Structure and expression of the mRNA encoding a novel fibroblast growth factor, FGF-18. J. Biol. Chem. 273, 18161–18164.

    Article  PubMed  CAS  Google Scholar 

  148. Nishimura, T., Utsunomiya, Y., Hoshikawa, M., Ohuchi, H., and Itoh, N. (1999) Structure and expression of a novel human FGF, FGF-19, expressed in the fetal brain. Biochim. Biophys. Acta 1444, 148–151.

    Article  PubMed  CAS  Google Scholar 

  149. Nishimura, T., Nakatake, Y., Konishi, M., and Itoh, N. (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta. 1492, 203–206.

    Article  PubMed  CAS  Google Scholar 

  150. Yamashita, T., Yoshioka, M., and Itoh, N. (2000) Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem. Biophys. Res. Commun. 277, 494–498.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reilly, J.F. (2002). Role of Fibroblast Growth Factor-2 in Astrogliosis. In: de Vellis, J.S. (eds) Neuroglia in the Aging Brain. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-105-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-105-3_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-088-5

  • Online ISBN: 978-1-59259-105-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics