Skip to main content

The Progesterone Receptor Knockout Mouse Model

New Insights into Progesterone Action In Vivo

  • Chapter
Book cover Transgenics in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

During the first decade of the twentieth centry, a series of classic experiments performed by the noted European embryologists Fraenkel, Loeb, Bouin, and Ancel unequivocally demonstrated the essential role of the corpus luteum in the establishment and maintenance of pregnancy (reviewed in 1,2). Subsequent investigations in the 1920s revealed that organic extracts of the corpus luteum were able to elicit the distinctive histological and physiological phenotype of the endometrium (termed “progestational proliferation”), characteristic of early pregnancy in ovariectomized (OVX) rabbits (reviewed in 3). If the animals were mated 1 d prior to ovariectomy, chronic administration of these extracts was sufficient to maintain normal development of the embryo to term. In the early 1930s, the “internal secretion” of the corpus luteum, responsible for these utero-morphic changes was identified and purified by Willard M. Allen at the University of Rochester, NY, which he names “progestrin,” a substance that favors gestation (4). The discovery of progestin, or progesterone, heralded a new era in reproductive medicine, and it was initially envisioned that the hormone would be used to reduce or inhibit such female fertility disorders as spontaneous miscarriages in women at high risk (reviewed in 5). Ironically, during the following decades, the use of progesterone (in derivative form) as a female contraceptive agent (“the pill”) would overshadow its original promise as a fertility drug (6,7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corner GW. Oestrus, ovulation and menstruation. Physiol Rev 1923; 111: 457–482.

    Google Scholar 

  2. Frobenius W. Ludwig Fraenkel: `spiritus rector’ of the early progesterone research. Eur J Obstet Gynocol 1999; 83: 115–119.

    Article  CAS  Google Scholar 

  3. Corner GW, Allen WM. Physiology of the corpus luteum II. Am J Physiol 1929; 88: 326–339.

    CAS  Google Scholar 

  4. Allen WM. Physiology of the corpus luteum V. Am J Physiol 1930; 92: 174–188.

    CAS  Google Scholar 

  5. Csapo A. Progesterone. Sci Am 1958; 198: 40–46.

    Article  Google Scholar 

  6. Pincus G. Steroid labile reproductive processes in mammals. Harvey Lect. 1966–67; 62: 165–189.

    Google Scholar 

  7. Pincus G. Control of fertility in mammals by hormonal steroids. Anat Rec 1967; 157: 53–61.

    Article  PubMed  CAS  Google Scholar 

  8. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 1961; 3: 318–356.

    Article  PubMed  CAS  Google Scholar 

  9. Jensen EV, Jacobson HI. Basic guides to the mechanism of estrogen action. Recent Prog Hormone Res 1962; 18: 387–414.

    CAS  Google Scholar 

  10. Jensen EV, Suzuki T, Kawashima T, Stumpf WE, Jungblut PW, DeSombre ER. A two-step mechanism for the integration of estradiol with rat uterus. Proc Natl Acad Sci USA 1968; 59: 632–638.

    Article  PubMed  CAS  Google Scholar 

  11. Toft D, Gorski J. A receptor molecule for estrogens: isolation from the rat uterus and preliminary characterization. Proc Natl Acad Sci USA 1966; 55: 1574–1581.

    Article  PubMed  CAS  Google Scholar 

  12. O’Malley BW, McGuire WL, Kohler PO, Korenman SG. Studies on the mechanism of steroid hormone regulation of synthesis of specific proteins. Recent Prog Hormone Res 1969; 25: 105–160.

    Google Scholar 

  13. O’Malley BW, Sherman MR, Toft DO. Progesterone “receptors” in the cytoplasm and nucleus of chick oviduct target tissue. Proc Natl Acad Sci USA 1970; 67: 501–508.

    Article  PubMed  Google Scholar 

  14. Schrader WT, O’Malley BW. Progesterone-binding components of chick oviduct. IV. Characterization of purified subunits. J Biol Chem 1972; 247: 51–59.

    PubMed  CAS  Google Scholar 

  15. Horwitz KB, Alexander PS. In situ photolinked nuclear progesterone receptors of human breast cancer cells: subunit molecular weights after transformation and translocation. Endocrinology 1983; 113: 2195–2201.

    Article  PubMed  CAS  Google Scholar 

  16. Tsai M-J, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann Rev Biochem 1994; 63: 451–486.

    Article  PubMed  CAS  Google Scholar 

  17. Mangelsdorf DJ, Thummel C, Beato M, Herrlich G, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    Article  PubMed  CAS  Google Scholar 

  18. Conneely OM, Sullivan WP, Toft DO, Birnbaumer M, Cook RG, Maxwell BL, et al. Molecular cloning of the chicken progesterone receptor. Science 1986; 233: 767–770.

    Article  PubMed  CAS  Google Scholar 

  19. Jeltsch JM, Krozowski Z, Quirin-Stricker C, Gronemyer H, Simpson RJ, Gamier JM, et al. Cloning of the chicken progesterone receptor. Proc Natl Acad Sci USA 1986; 83: 5424–5428.

    Article  PubMed  CAS  Google Scholar 

  20. Kliewer SA, Lehmann JM, Willson TM. Orphan nuclear receptors: shifting endocrinology into reverse. Science 1999; 284: 757–760.

    Article  PubMed  CAS  Google Scholar 

  21. Conneely OM, Maxwell BL, Toft DO, Schrader WT, O’Malley BW. The A and B forms of the chicken progesterone receptor arise by alternate initiation of translation of a unique mRNA. Biochem Biophys Res Commun 1987; 149: 493–501.

    Article  PubMed  CAS  Google Scholar 

  22. Kastner P, Krust A, Turcotte B, Strupp U, Tora L, Gronemeyer H, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J 1990; 9: 1603–1614.

    PubMed  CAS  Google Scholar 

  23. Kraus WL, Montano MM, Katzenellenbogen BS. Identification of multiple, widely spaced estrogen-responsive regions in the rat progesterone receptor gene. Mol Endocrinol 1994; 8: 952–969.

    Article  PubMed  CAS  Google Scholar 

  24. Vegeto E, Shahbaz MM, Wen DX, Goldman ME, O’Malley BW, McDonnell DP. Human progesterone receptor A form is a cell and promoter specific repressor of human progesterone receptor B function. Mol Endocrinol 1993; 7: 1244–1255.

    Article  PubMed  CAS  Google Scholar 

  25. Tung L, Mohamed MK, HoefflerJP, Takimoto GS, Horwitz KB. Antagonist-occupied human progesterone B-receptors activate transcription without binding to progesterone response elements and are dominantly inhibited by A-receptors. Mol Endocrinol 1993; 7: 1256–1265.

    Article  PubMed  CAS  Google Scholar 

  26. Sartorius CA, Groshong SD, Miller LA, Powell RL, Tung L, Takimoto GS, et al. New T47D breast cancer cell lines for the independent study of progesterone B- and A-receptors: only antiprogestinoccupied B-receptors are switched to transcriptional agonists by cAMP. Cancer Res 1994; 54: 3868–3877.

    PubMed  CAS  Google Scholar 

  27. Mulac-Jericivic B, Mullinax RA, DeMayo FJ, Lydon JP, Connelly OM. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-b isoform. Science 2000; 289: 1751–1758.

    Article  Google Scholar 

  28. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery Jr. CA, et al. Mice lacking progesterone receptors exhibit pleiotropic reproductive abnormalities. Genes Dev 1995; 9: 2266–2278.

    Article  PubMed  CAS  Google Scholar 

  29. Hou Q, Gorski J. Estrogen receptor and progesterone receptor genes are expressed differentially in mouse embryos during preimplantation development. Proc Natl Acad Sci USA 1993; 90: 9460–9464.

    Article  PubMed  CAS  Google Scholar 

  30. Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 1993; 11: 162–166.

    Google Scholar 

  31. Freeman ME. The neuroendocrine control of the ovarian cycle of the rat. In: Knobil E, Neill JD, editors. The Physiology of Reproduction. Raven Press, New York, NY, 1994. pp. 613–658.

    Google Scholar 

  32. Hotchkiss J, Knobil E. The menstrual cycle and its neuroendocrine control. In: Knobil E, Neill JD, editors. The Physiology of Reproduction. Raven Press, New York, NY, 1994. pp. 711–750.

    Google Scholar 

  33. Mahesh VB, Brann DW. Regulation of the preovulatory gonadotropin surge by endogenous steroids. Steroids 1998; 63: 616–629.

    Article  PubMed  CAS  Google Scholar 

  34. Krey LC, Tyrey L, Everett JW. The estrogen-induced advance in the cyclic LH surge in the rat: dependency on ovarian progesterone secretion. Endocrinology 1973; 93: 385–390.

    Article  PubMed  CAS  Google Scholar 

  35. DePaolo LV. Attenuation of preovulatory gonadotropin surges by epostane: a new inhibitor of 3 3-hydroxysteroid dehydrogenase. J Endocrinol 1988; 118: 59–68.

    Article  PubMed  CAS  Google Scholar 

  36. Bauer-Dantoin AC, Tabesh B, Norgle JR, Levine JE. RU486 administration blocks neuropeptide Y potentiation of luteinizing hormone (LH)-releasing hormone-induced LH surges in proestrous rats. Endocrinology 1993; 133: 2418–2423.

    Article  PubMed  CAS  Google Scholar 

  37. Chappell PE, Lydon JP, Conneely OM, O’Malley BW, Levine JE. Endocrine defects in mice carrying a null mutation for the progesterone receptor gene. Endocrinology 1997; 138: 4147–4152.

    Article  PubMed  CAS  Google Scholar 

  38. Chappell P, Schneider JS, Kim P, Xu M, Lydon JP, O’Malley BW, et al. Absence of LH surges and GnRH self-priming in ovariectomized (ovx), estrogen (E2)-treated, progesterone receptor knockout (PRKO) mice. Endocrinology 1999; 140: 3653–3658.

    Article  PubMed  CAS  Google Scholar 

  39. Mani SK, Allen JMC, Lydon JP, Mulac-Jericevic B, Blaustein JD, DeMayo FJ, et al. Dopamine requires the unoccupied progesterone receptor to induce sexual behavior in mice. Mol Endocrinol 1996; 10: 1728–1737.

    Article  PubMed  CAS  Google Scholar 

  40. Auger AP, Moffatt CA, Blaustein JD. Progesterone-independent activation of rat brain progestin receptors by reproductive stimuli. Endocrinology 1997; 138: 511–514.

    Article  PubMed  CAS  Google Scholar 

  41. Turgeon JL, Waring DW. Luteinizing hormone-releasing hormone-induced luteininzing hormone secretion in vitro: cyclic changes in responsiveness and self-priming. Endocrinology 1980; 106: 1430–1436.

    Article  PubMed  Google Scholar 

  42. Turgeon JL, Waring DW. Rapid augmentation by progesterone of agonist-stimulated luteinizing hormone secretion by cultured pituitary cells. Endocrinology 1990; 127: 773–780.

    Article  PubMed  CAS  Google Scholar 

  43. Turgeon JL, Waring DW. A pathway for luteinizing hormone releasing-hormone self-potentiation: cross-talk with the progesterone receptor. Endocrinology 1992; 130: 3275–3282.

    Article  PubMed  Google Scholar 

  44. Turgeon JL, Waring DW. Activation of the progesterone receptor by the gonadotropin-releasing hormone self-priming signaling pathway. Mol Endocrinol 1994; 8: 860–869.

    Article  PubMed  CAS  Google Scholar 

  45. Alyer MS, Fink G, Greig F. Changes in the sensitivity of the pituitary gland to luteinizing hormone releasing factor during the oestrous cycle in the rat. J Endocrinol 1974; 60: 47–54.

    Article  Google Scholar 

  46. Phogat JB, Smith RF, Dobson H. Effect of ACTH on gonadotropin releasing hormone-induced luteinizing hormone secretion in vitro. Anim Reprod Sci 1997; 48: 53–65.

    Article  PubMed  CAS  Google Scholar 

  47. Urban RJ, Veldhuis JD, Dufau ML. Estrogen regulates the gonadotropin-releasing hormone-stimulated secretion of biologically active luteinizing hormone. Clin Endocrinol Metab 1991; 72: 660–668.

    Article  CAS  Google Scholar 

  48. MacLuskey NJ, McEwen BS. Oestrogen modulates progestin receptor concentrations in some rat brain regions but not in others. Nature 1978; 274: 276–278.

    Article  Google Scholar 

  49. MacLuskey NJ, McEwen BS. Progestin receptors in rat brain: distribution and properties of cytoplasmic progestin-binding sites. Endocrinology 1980; 106: 192–202.

    Article  Google Scholar 

  50. Parsons B, MacLuskey NJ, Krey L, Pfaff DW, McEwen BS. The temporal relationship between estrogen-inducible progestin receptors in the female rat brain and the time course of estrogen activation of mating behavior. Endocrinology 1980; 107: 774–779.

    Article  PubMed  CAS  Google Scholar 

  51. Romano GJ, Krust A, Pfaff DW. Expression and estrogen regulation of progesterone receptor mRNA in neurons of the mediobasal hypothalamus: an in situ hybridization study. Mol Endocrinol 1989; 3: 1295–1300.

    Article  PubMed  CAS  Google Scholar 

  52. Hagihara K, Hirata S, Osada T, Hirai M, Kato J. Distribution of cells containing progesterone receptor mRNA in the female rat di-and telencephalon: an in situ hybridization study. Mol Brain Res 1992; 14: 239–249.

    Article  PubMed  CAS  Google Scholar 

  53. Fox SR, Harlan R, Shivers B, Pfaff DW. Chemical characterization of neuroendocrine targets for progesterone in the female rat brain and pituitary. Neuroendocrinology 1990; 51: 276–283.

    Article  PubMed  CAS  Google Scholar 

  54. Sahu A, Crowley WR, Kalra SP. An opioid-neuropeptide-Y transmission line to luteinizing hormone(LH)-releasing hormone neurons: a role in the induction of LH surge. Endocrinology 1990; 126: 876–883.

    Article  PubMed  CAS  Google Scholar 

  55. Brann DW, Chorich LP, Mahesh VB. Effect of progesterone on galanin mRNA levels in the hypothalamus and the pituitary: correlation with the gonadotropin surge. Neuroendocrinology 1993; 58: 531–538.

    Article  PubMed  CAS  Google Scholar 

  56. Rossmanith WG, Marks DL, Clifton DK, Steiner RA. Induction of galanin mRNA in GnRH neurons by estradiol and its facilitation by progesterone. J Neuroendocrinol 1996; 8: 185–191.

    Article  PubMed  CAS  Google Scholar 

  57. Leranth C, MacLuskey N, Shanabrough M, Naftolin F. Catecholaminergic innervation of luteini zing hormone-releasing hormone and glutamic acid decarboxylase immunopositive neurons in the rat medial preoptic area. An electron-microscopic double immunostaining and degeneration study. Neuroendocrinology 1988; 48: 591–602.

    Article  PubMed  CAS  Google Scholar 

  58. Brann DW, Mahesh VB. Endogenous excitatory amino acid involvement in preovulatory and steroid-induced surge of gonadotropins in the female rat. Endocrinology 1991; 128: 1541–1547.

    Article  PubMed  CAS  Google Scholar 

  59. Unda R, Brann DW, Mahesh VB. Progesterone suppression of glutamic acid decarboxylase (GAD67) mRNA levels in the preoptic area: correlation to the luteinizing hormone surge. Neuroendocrinology 1995; 62: 562–570.

    Article  PubMed  CAS  Google Scholar 

  60. Rothchild I. The regulation of the mammalian corpus luteum. Recent Prog Hormone Res 1981; 17: 183–298.

    Google Scholar 

  61. Mori T, Suzuki A, Nishimura T, Kambegawa A. Inhibition of ovulation in immature rats by antiprogesterone antiserum. J Endocrinol 1977; 73: 185–186.

    Article  PubMed  CAS  Google Scholar 

  62. Lipner H, Greep RO. Inhibition of steroidogenesis at various sites in the biosynthetic pathway in relation to induced ovulation. Endocrinology 1971; 88: 602–607.

    Article  PubMed  CAS  Google Scholar 

  63. Snyder BW, Beecham GD, Schane HP. Inhibition of ovulation in rats with epostane, an inhibitor of 3b-hydroxysteroid dehydrogenase. Proc Soc Exp Biol Med 1984; 176: 238–242.

    PubMed  CAS  Google Scholar 

  64. Van der Schoot P, Bakker GH, Klijn JGM. Effects of the progesterone antagonist RU486 on ovarian activity in the rat. Endocrinology 1987; 121: 1375–1382.

    Article  PubMed  Google Scholar 

  65. Sanchez JE, Bellido C, Galiot F, Lopez FJ, Gaytan F. A possible mechanism of the anovulatory action of antiprogesterone RU486 in the rat. Biol Reprod 1990; 42: 877–886.

    Article  Google Scholar 

  66. Loutradis D, Bletsa R, Aravantinos L, Kallianidis K, Michalas S, Psychoyos A. Preovulatory effects of the progesterone antagonist mifepristone (RU486) in mice. Hum Reprod 1991; 6: 1238–1240.

    PubMed  CAS  Google Scholar 

  67. Park-Sarge O-K, Mayo K. Transient expression of progesterone receptor messenger RNA in ovarian granulosa cells after the preovulatory luteinizing hormone surge. Mol Endocrinol 1991; 5: 967–978.

    Article  Google Scholar 

  68. Natraj U, Richards JS. Hormonal regulation localization and functional activity of the progesterone receptor in granulosa cells of rat preovulatory follicles. Endocrinology 1993; 133: 761–769.

    Article  PubMed  CAS  Google Scholar 

  69. Espey LL, Lipner H. Ovulation. In: Knobil E, Neill JD, editors. The Physiology of Reproduction. 2nd ed. Raven Press, New York, NY, 1994. pp. 725–780.

    Google Scholar 

  70. Iwamasa J, Shibata S, Tanaka N, Matsuura K, Okamura H. The relationship between ovarian progesterone and proteolytic enzyme activity during ovulation in the gonadotropin-treated immature rat. Biol Reprod 1992; 46: 309–313.

    Article  PubMed  CAS  Google Scholar 

  71. Tanaka N, Espey LL, Stacy S, Okamura H. Epostane and indomethacin actions on ovarian kallikrein and plasminogen activator activities during ovulation in the gonadotropin-primed immature rat. Biol Reprod 1992; 46: 665–670.

    Article  PubMed  CAS  Google Scholar 

  72. Espey LL. Current status of the hypothesis that mammalian ovulation is comparable to an inflammatory reaction. Biol Reprod 1994; 50: 233–238.

    Article  Google Scholar 

  73. Richards JS, Russell DL, Robker RL, Dajee M, Alliston TN. Molecular mechanisms of ovulation and luteinization. Mol Cell Endocrinol 1998; 145: 47–54.

    Article  PubMed  CAS  Google Scholar 

  74. Spitz IM, Croxatto HB, Lahteenmaki P, Heikinheimo O, Bardin CW. Effect of mifepristone on inhibition of ovulation and induction of luteolysis. Hum Reprod 1994; 9: 69–76.

    PubMed  CAS  Google Scholar 

  75. Lauber AH, Romano GJ, Pfaff DW. Sex difference in estradiol regulation of progestin receptor mRNA in rat mediobasal hypothalamus as demonstrated by in situ hybridization. Neuroendocrinology 1991; 53: 608–613.

    Article  PubMed  CAS  Google Scholar 

  76. Pfaff DW, Schwartz-Giblin S, McCarthy MM, Kow L. Cellular and molecular mechanisms of female reproductive behavior. In: Knobil E, Neill JD, editors. The Physiology of Reproduction. Raven Press, New York, NY, 1994. pp. 107–220.

    Google Scholar 

  77. Lauber AH, Romano GJ, Pfaff DW. Steroid control of higher brain functions: gene expression for estrogen and progesterone receptor mRNAs in rat brain and possible relations to sexually dimorphic functions. J Steroid Biochem Mol Biol 1991; 40: 53–62.

    Article  PubMed  CAS  Google Scholar 

  78. McEwen BS, Jones K, Pfaff DW. Hormonal control of sexual behavior in the female rat: molecular, cellular and neurochemical studies. Biol Reprod 1987; 36: 37–45.

    Article  PubMed  CAS  Google Scholar 

  79. Brown TJ, Blaustein JD. Abbreviation of the period of sexual behavior in female guinea pigs by the progesterone receptor antagonist RU38486. Brain Res 1986; 373: 3–113.

    Article  Google Scholar 

  80. Vathy IU, Etgen AM, Barfield RJ. Actions of RU38486 on progesterone facilitation and sequential inhibition of rat estrous behavior: correlation with neural progestin receptors. Horm Behav 1989; 23: 43–56.

    Article  PubMed  CAS  Google Scholar 

  81. Pollio G, Xue P, Zanisi A, Maggi A. Antisense oligonucleotide blocks progesterone-induced lordo-sis behavior in ovariectomized rats. Mol Brain Res 1993; 19: 135–139.

    Article  PubMed  CAS  Google Scholar 

  82. Mani SK, Blaustein JD, Allen JMC. Inhibition of rat sexual behavior by antisense oligonucleotides to the progesterone receptor. Endocrinology 1994; 135: 1409–1414.

    Article  PubMed  CAS  Google Scholar 

  83. Ogawa S, Olazabal UE, Pfaff DW. Effects of intrahypothalamic administration of antisense DNA for progesterone receptor mRNA on reproductive behavior and progesterone immunoreactivity. J Neurosci 1994; 14: 1766–1774.

    PubMed  CAS  Google Scholar 

  84. Power RF, Mani SK, Codina J, Conneely OM, O’Malley BW. Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 1991; 254: 1636–1639.

    Article  PubMed  CAS  Google Scholar 

  85. Foreman MM, Moss RL. Role of hypothalamic dopaminergic receptors in the control of lordosis behavior in the female rat. Physiol Behav 1979; 22: 282–289.

    Article  Google Scholar 

  86. Caggiula AR, Antelman SM, Chiodo LA, Lineberry CG, editors. Brain dopamine and sexual behavior: psychopharmacological and electrophysiological evidence for antagonism between active and passive components. Pergamon Press, New York, NY, 1979.

    Google Scholar 

  87. Pfaus JG, Damsma G, Wenkstern D, Fibiger HC. Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats. Brain Res 1995; 693: 21–30.

    Article  PubMed  CAS  Google Scholar 

  88. Mani SK, Allen JMC, Clark JH, Blaustein JD, O’Malley BW. Convergent pathways for steroid hormone-and neurotransmitter-induced rat sexual behavior. Science 1994; 265: 1246–1249.

    Article  PubMed  CAS  Google Scholar 

  89. O’Malley BW, Schrader WT, Mani S, Smith C, Weigel NL, Conneely OM, et al. An alternative ligand-independent pathway for activation of steroid receptors. Recent Prog Horm Res 1995; 50: 333–347.

    PubMed  Google Scholar 

  90. Smith CL, Onate SA, Tsai M-J, O’Malley BW. CREB binding protein acts synergistically with steroid coactivator-1 to enhance steroid receptor-dependent transcription. Proc Natl Acad Sci USA 1996; 93: 8884–8888.

    Article  PubMed  CAS  Google Scholar 

  91. Arnold AP, Breedlove SM. Organizational, and activational effects of sex steroids on brain and behavior: a reanalysis. Horm Behav 1985; 19: 469–498.

    Article  PubMed  CAS  Google Scholar 

  92. Frankfurt M, Gould E, Woolley C, McEwen BS. Gonadal steroids modify dendritic spine density in ventromedial hypothalamic neurons: a Golgi study in the adult rat. Neuroendocrinology 1990; 51: 530–535.

    Article  PubMed  CAS  Google Scholar 

  93. Erickson CJ, Bruder RH, Komisaruk BR, Lehrman DS. Selective inhibition of androgen-induced behavior in male ring doves (Streptopelia risoria). Endocrinology 1967; 81: 39–44.

    Article  PubMed  CAS  Google Scholar 

  94. Erpino MJ. Hormonal control of courtship behavior in the pigeon (Columba livia). Anim Behav 1969; 1: 401–405.

    Article  Google Scholar 

  95. Erpino MJ. Temporary inhibition by progesterone of sexual behavior in intact male mice. Horm Behav 1973; 4: 335–339.

    Article  CAS  Google Scholar 

  96. Bottoni L, Lucini V, Massa R. Effect of progesterone on the sexual behavior of the male Japanse quail. Gen Comp Endocrinol 1985; 57: 345–351.

    Article  PubMed  CAS  Google Scholar 

  97. Bradford JMW. Treatment of sexual offenders with cyproterone acetate. In: Sitse JMA, editor. The pharmacology and endocrinology of sexual function. Elsevier, New York, 1988, pp. 526–536.

    Google Scholar 

  98. Lehne GK. Treatment of sex offenders with medroxyprogesterone acetate. In: Sitse JMA, editor. The pharmacology and endocrinology of sexual function. Elsevier, New York, 1988, pp. 516–525.

    Google Scholar 

  99. Kalra PS, Kalra SP. Circadian periodicities of serum androgens, progesterone, gonadotropins and luteinizing hormone-releasing hormone in male rats: The effects of hypothalamic deafferentation, castration and adrenalectomy. Endocrinology 1977; 10: 1821–1827.

    Article  Google Scholar 

  100. Vermueulen A, Verdonck L. Radioimmunoassay of 17 b-hydroxy-5a-androstan-3-one,4-androstene-3, 17-dione, dehydroepiandrosterone, 17-hydroxyprogesterone and progesterone and its application to human male plasma. J Steroid Biochem 1976; 7: 1–10.

    Article  Google Scholar 

  101. Lindzey J, Crews D. Hormonal control of courtship and copulatory behavior in male Cnemidophorus inornatus, a direct sexual ancestor of a unisexual, parthenogenetic lizard. Gen Comp Endocrinol 1986; 64: 411–418.

    Article  Google Scholar 

  102. Lindzey J, Crews D. Effects of progestins on sexual behavior in castrated lizards (Cnemidophoru inornatus). J Endocrinol 1988; 119: 265–273.

    Article  PubMed  CAS  Google Scholar 

  103. Young LJ, Greenberg N, Crews D. The effects of progesterone on sexual behavior in male green anole lizards (Anolis carolinensis). Horm Behav 1991; 25: 477–488.

    Article  PubMed  CAS  Google Scholar 

  104. Lindzey J, Crews D. Interactions between progesterone and androgens in the stimulation of sex behaviors in male little striped whiptail lizards, Cnemidophorous inornatus. Gen Comp Endocrinol 1992; 86: 52–58.

    Article  PubMed  CAS  Google Scholar 

  105. Crews D, Godwin J, Hartman V, Grammer M, Prediger E, Sheppherd R. Intrahypothalamic implantation of progesterone in castrated male whiptail lizards (Cnemidophorus inornatus) elicits courtship and copulatory behavior and affects androgen receptor-and progesterone receptor-mRNA expression in the brain. J Neurosci 1996; 16: 7347–7352.

    PubMed  CAS  Google Scholar 

  106. Witt D, Young L, Crews D. Progesterone modulation of androgen-dependent sexual behavior in male rats. Physiol Behav 1995; 57: 307–313.

    Article  PubMed  CAS  Google Scholar 

  107. Witt DM, Reigada LC, Wengroff BE. Intrahypothalamic progesterone regulates androgen-dependent sexual behavior in male rats. Soc Neurosci Abstr 1997; 23: 1357.

    Google Scholar 

  108. Phelps SM, Lydon JP, O’Malley BW, Crews D. Regulation of male sexual behavior by progesterone receptor, sexual experience, and androgen. Horm Behav 1998; 34: 294–302.

    Article  PubMed  CAS  Google Scholar 

  109. Hull EM, Du J, Lorrain DS, Matuszewich L. Extracellular dopamine in the medial preoptic area: implications for sexual motivation and hormonal control of copulation. J Neurosci 1995; 15: 7465–7471.

    PubMed  CAS  Google Scholar 

  110. Hull EM, Du J, Lorrain DS, Matuszewich L. Testosterone, preoptic dopamine, and copulation in male rats. Brain Res Bull 1997; 44: 327–333.

    Article  PubMed  CAS  Google Scholar 

  111. Mani SK, Blaustein JD, O’Malley BW. Progesterone receptor function from a behavioral perspective. Horm Behav 1997; 31: 244–255.

    Article  PubMed  CAS  Google Scholar 

  112. Dey SK. Implantation. Lippincott-Raven, Philadelphia, PA, 1996.

    Google Scholar 

  113. Rothchild I. Role of Progesterone in Initiating and Maintaining Pregnancy. Raven Press, New York, NY, 1983.

    Google Scholar 

  114. Grossman CJ. Interactions between the gonadal steroids and the immune system. Science 1985; 227: 257–261.

    Article  PubMed  CAS  Google Scholar 

  115. Szwkeres-Bartho J, Kinsky R, Chaouat G. The effect of a progesterone-induced immunologic blocking factor on NK-mediated resorption. Am J Reprod Immun Microbiol 1990; 24: 105–107.

    Google Scholar 

  116. Morell V. Zeroing in on how hormones affect the immune response. Science 1995; 269: 773–775.

    Article  PubMed  CAS  Google Scholar 

  117. Finn CA, Martin L. Patterns of cell division in the mouse uterus during early pregnancy. J Endocrinol 1967; 39: 593–597.

    Article  PubMed  CAS  Google Scholar 

  118. Finn CA, Martin L. Hormone secretion during early pregnancy in the mouse. J Endocrinol 1969; 45: 57–65.

    Article  PubMed  CAS  Google Scholar 

  119. Finn CA, Martin L. The role of the oestrogen secreted before oestrus in the preparation of the uterus for implantation in the mouse. J Endocrinol 1970; 47: 431–438.

    Article  PubMed  CAS  Google Scholar 

  120. Finn CA, Martin L. The onset of progesterone secretion during pregnancy in the mouse. J Reprod Fert 1971; 25: 299, 300.

    Google Scholar 

  121. Finn CA, Martin L. The control of implantation. J Reprod Fert 1974; 39: 195–206.

    Article  CAS  Google Scholar 

  122. Yoshinaga K, Adams CE. Delayed implantation in the spayed, progesterone treated adult mouse. J Reprod 1966; 12: 593–595.

    Article  CAS  Google Scholar 

  123. Psychoyos A. Endocrine control of egg implantation. In: Greep RO, Astwood EG, Geiger SR, editors. Handbook of Physiology. American Physiological Society, Washington, DC, 1973, pp. 187–215.

    Google Scholar 

  124. Martin L, Finn CA, Trinder G. Hypertrophy and hyperplasia in the mouse uterus after oestrogen treatment: an autoradiographic study. J Endocr 1973; 56: 133–144.

    Article  PubMed  CAS  Google Scholar 

  125. Martin L, Finn CA, Carter J. Effects of progesterone and oestradiol-17b on the luminal epithelium of the mouse uterus. J Reprod Fert 1970; 21: 461–469.

    Article  CAS  Google Scholar 

  126. Martin L, Finn CA, Trinder G. DNA synthesis in the endometrium of progesterone-treated mice. J Endocrinol 1973; 56: 303–307.

    Article  PubMed  CAS  Google Scholar 

  127. Martin L, Finn CA. The inhibition by progesterone of uterine epithelial proliferation in the mouse. J Endocrinol 1973; 57: 549–554.

    Article  PubMed  CAS  Google Scholar 

  128. Tibbetts TA, Conneely OM, O’Malley BW. Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol Reprod 1999; 60: 1158–1165.

    Article  PubMed  CAS  Google Scholar 

  129. Quarmby VE, Korach KS. The influence of 17b-estradiol on patterns of cell division in the uterus. Endocrinology 1984; 114: 694–702.

    Article  PubMed  CAS  Google Scholar 

  130. Whitehead MI. The effects of estrogen and progesterone on the postmenopausal endometrium. Maturitas 1978; 9: 309–313.

    Google Scholar 

  131. Gelfand MM, Ferenczy A. A prospective 1-year study of estrogen and progestin in postmenopausal women: effects on the endometrium. Obstet Gynecol 1989; 74: 398–402.

    PubMed  CAS  Google Scholar 

  132. Greenblatt RB, Gambrell RD, Stoddard LD. The protective role of progesterone in the prevention of endometrial cancer. Path Res Pract 1982; 174: 297–318.

    Article  PubMed  CAS  Google Scholar 

  133. Jensen EV, DeSombre ER. Mechanism of action of the female sex hormones. Annu Rev Biochem 1972; 41: 203–230.

    Article  PubMed  CAS  Google Scholar 

  134. Hsueh AJW, Peck Jr EJ, Clark JH. Progesterone antagonism of the oestrogen receptor and oestrogen-induced uterine growth. Nature 1975; 254: 337–339.

    Article  PubMed  CAS  Google Scholar 

  135. Katzenellenbogen BS. Dynamics of steroid hormone receptor action. Annu Rev Physiol 1980; 42: 17–36.

    Article  PubMed  CAS  Google Scholar 

  136. Yamashita S, Newbold RR, McLachlan JA, Korach KS. Developmental pattern of estrogen receptor expression in female mouse genital tracts. Endocrinology 1989; 125: 2888–2896.

    Article  PubMed  CAS  Google Scholar 

  137. Murakami R, Shughrue PJ, Stumpf WE, Eiger W, Schulze P-E. Distribution of progestin-binding cells in estrogen-treated and untreated neonatal mouse uterus and oviduct: autoradiographic study with [1251] progestin. Histochemistry 1990; 94: 155–159.

    Article  PubMed  CAS  Google Scholar 

  138. Parczyk K, Madjno R, Michna H, Nishino Y, Schneider M. Progesterone receptor repression by estrogens in rat uterine epithelial cells. J Steroid Biochem Mol Biol 1997; 63: 309–316.

    Article  PubMed  CAS  Google Scholar 

  139. Tibbetts TA, Mendoza-Meneses M, O’Malley BW, Conneely OM. Mutual and intercompartmental regulation of estrogen receptor and progesterone receptor expression in the mouse uterus. Biol Reprod 1998; 59: 1143–1152.

    Article  PubMed  CAS  Google Scholar 

  140. Kurita T, Young P, Brody JR, Lydon JP, O’Malley BW, Cunha GR. Stromal progesterone receptors mediate the inhibitory effects of progesterone on estrogen-induced uterine epithelial cell deoxyribonucleic acid synthesis. Endocrinology 1998; 139: 4708–4713.

    Article  PubMed  CAS  Google Scholar 

  141. Cooke PS, Buchanan DL, Young P, Setiawan T, Brody J, Korach KS, et al. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci USA 1997; 94: 6535–6540.

    Article  PubMed  CAS  Google Scholar 

  142. Das SK, Chakraborty I, Paria BC, Wang XN, Plowman G, Dey SK. Amphiregulin is an implantation-specific and progesterone-regulated gene in the mouse uterus. Mol Endocrinol 1995; 9: 691–705.

    Article  PubMed  CAS  Google Scholar 

  143. Bruner KL, Rodgers WH, Gold LI, Korc M, Hargrove JT, Matrisian LM, et al. Transforming growth factor b mediates the progesterone suppression of an epithelial metalloproteinase by adjacent stroma in the human endometrium. Proc Natl Acad Sci USA 1995; 92: 7362–7366.

    Article  PubMed  CAS  Google Scholar 

  144. Surveyor GA, Gendler SJ, Pemberton L, Das SK, Wegner CC, Dey SK, et al. Expression and steroid hormonal control of muc-1 in the mouse uterus. Endocrinology 1995; 136: 3639–3647.

    Article  PubMed  CAS  Google Scholar 

  145. Iruela-Arispe ML, Porter P, Bornstein P, Sage EH. Thrombospondin-1, an inhibitor of angiogenesis, is regulated by progesterone in the human endometrium. J Clin Invest 1996; 97: 403–412.

    Article  PubMed  CAS  Google Scholar 

  146. Rider V, Carlone DL, Foster RT. Oestrogen and progesterone control basic fibroblast growth factor mRNA in the rat uterus. J Endocrinol 1997; 154: 75–84.

    Article  PubMed  CAS  Google Scholar 

  147. Ma L, Benson GV, Hyunjung L, Dey SK, Mass RL. Abdominal B (AbdB) hoxa genes: regulation in adult uterus by estrogen and progesterone and repression in Mullerian duct by synthetic estrogen diethylstilbestrol (DES). Dev Biol 1998; 197: 141–154.

    Article  PubMed  CAS  Google Scholar 

  148. Chen GTC, Getsios S, MacCalman CD. 17b-Estradiol potentiates the stimulatory effects of progesterone on cadherin-17 expression in cultured human endometrial stromal cells. Endocrinology 1998; 139: 3512–3519.

    Article  PubMed  CAS  Google Scholar 

  149. Zhu L-J, Cullinan-Bove K, Polihronis M, Bagchi MK, Bagchi IC. Calcitonin is a progesterone-regulated marker that forecasts the receptive state of endometrium during implantation. Endocrinology 1998; 139: 3923–3934.

    Article  PubMed  CAS  Google Scholar 

  150. Kumar S, Zhu L-J, Polihronis M, Cameron ST, Baird DT, Schatz F, et al. Progesterone induces calcitonin gene expression in human endometrium within the putative window of implantation. J Clin Endocrinol Meta 1998; 83: 4443–4450.

    Article  CAS  Google Scholar 

  151. Vellios F. Endometrial hyperplasia and carcinoma in situ. Gynecol Oncol 1974; 2: 152–161.

    Article  PubMed  CAS  Google Scholar 

  152. Russo IH, Russo J. Role of hormones in mammary cancer initiation and progression. J Mam Gland Biol Neoplasia 1998; 3: 49–61.

    Article  CAS  Google Scholar 

  153. Hirayama T, Wynder EL. A study of epidemiology of cancer of the breast. II. The influence of hysterectomy. Cancer 1962; 15: 28–38.

    Article  Google Scholar 

  154. Feinleib M. Breast cancer and artificial menopause. J Natl Cancer Inst 1968; 41: 315–329.

    PubMed  CAS  Google Scholar 

  155. Trichopoulos D, MacMahon B, Cole P. Menopause and breast cancer. J Natl Cancer Inst 1972; 48: 605–613.

    PubMed  CAS  Google Scholar 

  156. Henderson BE, Ross RK, Judd HL, Krailo MD, Pike MC. Do regular ovulatory cycles increase breast cancer risk? Cancer 1985; 56: 1206–1208.

    Article  PubMed  CAS  Google Scholar 

  157. Henderson BE, Ross RK, Pike MC. Hormonal chemoprevention of cancer in women. Science 1993; 259: 633–638.

    Article  PubMed  CAS  Google Scholar 

  158. Clarke CL, Sutherland RL. Progestin regulation of cellular proliferation. Endocrine Rev 1990; 11: 266–300.

    Article  CAS  Google Scholar 

  159. Anderson TS, Ferguson JP, Raab GM. Cell turnover in the “resting” human breast: Influence of parity, contraceptive pill, age and laterality. Brit J Cancer 1982; 46: 376–382.

    Article  PubMed  CAS  Google Scholar 

  160. Pike MC, Spicer DV, editors. Contraception. Springer-Verlag, New York, NY, 1993.

    Google Scholar 

  161. Medina D. The mammary gland: a unique organ for the study of development and tumorigenesis. J Mammary Gland Biol Neoplasia 1996; 1: 5–19.

    Article  PubMed  CAS  Google Scholar 

  162. Cardiff RD, Wellings SR. The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia 1999; 4: 105–122.

    Article  PubMed  CAS  Google Scholar 

  163. Hennighausen L, Robinson GW. Think globally, act locally: the making of a mouse mammary gland. Genes Dev 1998; 12: 449–455.

    Article  PubMed  CAS  Google Scholar 

  164. Said TK, Conneely OM, Medina D, O’Malley BW, Lydon JP. Progesterone, in addition to estrogen, induces cyclin D1 expression in the murine mammary epithelial cell, in vivo. Endocrinology 1997; 138: 3933–3939.

    Article  PubMed  CAS  Google Scholar 

  165. Haslam SZ, Shyamala G. Relative distribution of estrogen and progesterone receptors among the epithelial, adipose, and connective tissue components of the normal mammary gland. Endocrinology 1981; 108: 825–830.

    Article  PubMed  CAS  Google Scholar 

  166. Haslam SZ. The ontogeny of mouse mammary gland responsiveness to ovarian steroid hormones. Endocrinology 1989; 125: 2766–2772.

    Article  PubMed  CAS  Google Scholar 

  167. Cunha GR. Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer 1994; 74: 1030–1044.

    Article  PubMed  CAS  Google Scholar 

  168. Cunha GR, Yom YK. Role of mesenchymal-epithelial interactions in mammary gland development. J Mammary Gland Biol Neoplasia 1996; 1: 5–19.

    Article  Google Scholar 

  169. Cunha GR, Young P, Horn YK, Cooke PS, Taylor JA, Lubahn DB. Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J Mammary Gland Biol Neoplasia 1997; 2: 393–402.

    Article  PubMed  CAS  Google Scholar 

  170. Humphreys RC, Lydon JP, O’Malley BW, Rosen JM. Use of PRKO mice to study the role of progesterone in mammary gland development. J Mammary Gland Biol Neoplasia 1997; 2: 343–354.

    Article  PubMed  CAS  Google Scholar 

  171. Brisken C, Park S, Vass T, Lydon JP, O’Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci USA 1998; 95: 5076–5081.

    Article  PubMed  CAS  Google Scholar 

  172. Silberstein GB, Van Horn K, Shyamala G, Daniel CW. Progesterone receptors in the mouse mammary duct: distribution and developmental regulation. Cell Growth Differen 1996; 7: 945–952.

    CAS  Google Scholar 

  173. Shyamala G, Barcellos-Hoff MH, Toft D, Yang X. In situ localization of progesterone receptors in normal mouse mammary glands: absence of receptors in the connective and adipose stroma and a heterogeneous distribution in the epithelium. J Steroid Biochem Mol Biol 1997; 63: 251–259.

    Article  PubMed  CAS  Google Scholar 

  174. Shyamala G. Progesterone signaling and mammary gland morphogenesis. J Mammary Gland Biol Neoplasia 1999; 4: 89–104.

    Article  PubMed  CAS  Google Scholar 

  175. Jull JW. The effects of oestrogens and progesterone on the chemical induction of mammary cancer in mice of the IF strain. J Path Bact 1954; 68: 547–559.

    Article  PubMed  CAS  Google Scholar 

  176. Jabara AG, Harcourt AG. Effects of progesterone, ovariectomy and adrenalectomy on mammary tumors induced by 7, 12-dimethylbenz(a)anthracene in Sprague-Dawley rats. Pathology 1971; 3: 209–214.

    CAS  Google Scholar 

  177. Welsch CW. Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res 1985; 45: 3415–3443.

    PubMed  CAS  Google Scholar 

  178. Robinson SP, Jordan VC. Reversal of antitumor effects of tamoxifen by progesterone in the 7, 12dimethylbenzanthracene-inducedrat mammary carcinoma model. Cancer Res 1987; 47: 5386–5390.

    CAS  Google Scholar 

  179. Russo IH, Russo J. Progestagens and mammary gland development: differentiation versus carcinogenesis. Acta Endocrinol 1991; 125: 7–12.

    PubMed  CAS  Google Scholar 

  180. Lydon JP, Ge G, Kittrell FS, Medina D, O’Malley BW. Murine mammary gland carcinogenesis is critically dependent on progesterone receptor function. Cancer Res 1999; 59: 4276–4284.

    PubMed  CAS  Google Scholar 

  181. Daniel CW, Smith GH. The mammary gland: a model for development. J Mammary Gland Biol Neoplasia 1999; 4: 3–8.

    Article  PubMed  CAS  Google Scholar 

  182. McEwen BS. Genomic regulation of sexual behavior. J Steroid Biochem 1988; 30: 179–183.

    Article  PubMed  CAS  Google Scholar 

  183. Wagner CK, Nakayama AY, De Vries GJ. Potential role of maternal progesterone in the sexual differentiation of the brain. Endocrinology 1998; 139: 3658–3661.

    Article  PubMed  CAS  Google Scholar 

  184. Parsons B, Rainbow TC, Maclusky NJ, McEwen BS. Progestin receptor levels in rat hypothalamus and limbic nuclei. J Neurosci 1982; 12: 2549–2554.

    Google Scholar 

  185. Gould E, Woolley C, Frankfurt M, McEwen BS. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 1990; 10: 1286–1291.

    PubMed  CAS  Google Scholar 

  186. Olton DDS. Memory functions and the hippocampus. In: Seifert W, editor. Neurobiology of the Hippocampus. Academic Press, London, UK, 1983, pp. 335–373.

    Google Scholar 

  187. Williams CL, Meck WH. The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology 1991; 16: 155–176.

    Article  PubMed  CAS  Google Scholar 

  188. Roof RL, Duvdevani R, Braswell L, Stein DG. Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats. Exp Neurol 1994; 129: 64–69.

    Article  PubMed  CAS  Google Scholar 

  189. Akwa Y, Young J, Kaggadj K, Sancho MJ, Zucman D, Vourc’H C, et al. Neurosteroids: biosynthesis, metabolism and function of pregnenolone and dehydroepiandrosterone in the brain. J Steroid Biochem Mol Biol 1991; 40: 71–81.

    Article  PubMed  CAS  Google Scholar 

  190. LeGoascogne C, Robel P, Gouezou M, Waterman M. Neurosteroids: cytochrome p-450scc in rat brain. Science 1987; 237: 1212–1215.

    Article  CAS  Google Scholar 

  191. Koenig HL, Schumacher M, Ferzaz B, DoThi AN, Ressouches A, Guennoun R, et al. Progesterone synthesis and myelin formation by Schwann cells. Science 1995; 268: 1500–1503.

    Article  PubMed  CAS  Google Scholar 

  192. Paul SM, Purdy RH. Neuroactive steroids. FASEB J 1992; 6: 2311–2322.

    PubMed  CAS  Google Scholar 

  193. Betz AL, Coester HC. Effects of steroids on edema and sodium uptake of the brain during focal ischemia in rats. Stroke 1990; 21: 199–204.

    Article  Google Scholar 

  194. Roof RL, Duvdevani R, Stein DG. Progesterone treatment attenuates brain edema following contusion injury in male and female rats. Rest Neurol Neurosci 1992; 4: 425–427.

    CAS  Google Scholar 

  195. Zuccarello M, Anderson D. Interaction between free radicals and excitatory amino acids in the blood-brain barrier disruption after iron injury in the rat. J Neurotrauma 1993; 10: 397–403.

    Article  PubMed  CAS  Google Scholar 

  196. Yu WH. Survival of motoneurons following axotomy is enhanced by lactation or progesterone treatment. Brain Res 1989; 491: 379–382.

    Article  PubMed  CAS  Google Scholar 

  197. Asbury ET, Fritts ME, Horton JE, Isaac WL. Progesterone facilitates the acquisition of avoidance learning and protects against subcortical neuronal death following prefrontal cortex ablation in the rat. Behav Brain Res 1998; 97: 99–106.

    Article  PubMed  CAS  Google Scholar 

  198. Bruckert E, Turpin G. Estrogens and progestins in postmenopausal women: influence on lipid parameters and cardiovascular risk. Horm Res 1995; 43: 100–103.

    Article  PubMed  CAS  Google Scholar 

  199. Godsland IF, Wynn V, Crook D, Miller NE. Sex, plasma lipoproteins, and atherosclerosis-prevailing assumptions and outstanding questions. Am Heart J 1987; 114: 1467–1503.

    Article  PubMed  CAS  Google Scholar 

  200. Stampfer MJ, Colditz GA. Estrogen replacement therapy and coronary heart disease: a quantitative assessment of the epidemiologic evidence. Prey Med 1991; 20: 47–63.

    Article  CAS  Google Scholar 

  201. Barrett-Connor E, Bush TL. Estrogen and coronary heart disease in women. JAMA 1991; 265: 1861–1867.

    Article  PubMed  CAS  Google Scholar 

  202. Sullivan JM, Fowlkes LP. The clinical aspects of estrogen and cardiovascular system. Obstet Gynecol 1996; 87 (suppl.): 36–43.

    Article  Google Scholar 

  203. Wahl PW, Walden CE, Knapp RH, Wallace R, Rifkind B. Effect of estrogen/progesterone potency on lipid/lipoprotein cholesterol. N Engl J Med 1983; 308: 862–867.

    Article  PubMed  CAS  Google Scholar 

  204. Report. C. Estrogen replacement therapy in the menopause. JAMA 1983; 249: 359–361.

    Article  Google Scholar 

  205. Persson I, Adami HO, Bergkvist L, Lindgreen A, Petterson B, Hoover R, et al. Risk of endometrial cancer after treatment with oestrogens alone or in conjunction with progesterone: results of a prospective study. Br Med J 1989; 298: 147–151.

    Article  CAS  Google Scholar 

  206. Hirvonen E, Malkonen M, Manninen V. Effects of different progestogen on lipoproteins during postmenopausal therapy. N Engl J Med 1981; 304: 560–563.

    Article  PubMed  CAS  Google Scholar 

  207. Cheng W, Lau OD, Abumrad NA. Two antiatherogenic effects of progesterone on human macrophages; inhibition of cholesteryl ester synthesis and block of its enhancement by glucocorticoids. J Clin Endo Met 1999; 84: 265–271.

    Article  CAS  Google Scholar 

  208. Grodstein F, Stampfer MJ, Manson JE, al. e. Post menopausal estrogen and progestin use and the risk of cardiovascular disease. N Engl J Med 1996; 335: 453–461.

    Article  PubMed  CAS  Google Scholar 

  209. Ingegno MD, Money SR, Thelmo W, Greene GL, Davidian M, Jaffe BM, et al. Progesterone receptors in the human heart and great vessels. Lab Invest 1988; 59: 353–356.

    PubMed  CAS  Google Scholar 

  210. Knauthe R, Diel P, Hegele-Hartung C, Engelhaupt A, Fritzemeier K-H. Sexual dimorphism of steroid hormone receptor messenger ribonucleic acid expression and hormonal regulation in rat vascular tissue. Endocrinology 1996; 137: 3220–3227.

    Article  PubMed  CAS  Google Scholar 

  211. Lee W-S, Harder JA, Yoshizumi M, Lee M-E, Haber E. Progesterone inhibits arterial smooth muscle cell proliferation. Nat Med 1997; 3: 1005–1008.

    Article  PubMed  CAS  Google Scholar 

  212. Bourassa KP-A, Milos PM, Gaynor BJ, Breslow JL, Aiello RJ. Estrogen reduces atherosclerotic lesion development in apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 1996;93:10, 002–10, 027.

    Google Scholar 

  213. lafrati MD, Karas RH, Aronovitz M, Kim S, Sullivan Jr. TR, Lubahn DB, et al. Estrogen inhibits the vascular injury response in estrogen receptor a-deficient mice. Nat Med 1997; 3: 545–548.

    Article  Google Scholar 

  214. Hutchinson T, Polansky S, Feinstein A. Post-menopausal oestrogens protect against fractures of hip and distal radius: a case-control study. Lancet 1979; 2: 705–709.

    Article  PubMed  CAS  Google Scholar 

  215. Bain SD, Jensen E, Celino DL, Bailey MC, Lantry MM, Edwards MW. High-dose gestagens modulate bone resorption and formation and enhance estrogen-induced endosteal bone formation in the ovariectomized mouse. J Bone Mineral Res 1993; 8: 219–229.

    Article  CAS  Google Scholar 

  216. Prior JC. Progesterone as a bone-trophic hormone. Endocrine Rev 1990; 11: 386–398.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lydon, J.P., Soyal, S., O’Malley, B.W., Ismail, P.M. (2001). The Progesterone Receptor Knockout Mouse Model. In: Matzuk, M.M., Brown, C.W., Kumar, T.R. (eds) Transgenics in Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-102-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-102-2_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9640-6

  • Online ISBN: 978-1-59259-102-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics