Skip to main content

The In Vivo Function of Müllerian-Inhibiting Substance During Mammalian Sexual Development

  • Chapter
Transgenics in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

  • 104 Accesses

Abstract

In mammals, both XX and XY individuals develop one pair of undifferentiated gonads and two pairs of genital ducts, the Müllerian ducts and the Wolffian ducts, associated with the mesonephroi during development (Fig. 1). The undifferentiated gonads are bipotent, and will give rise to either testes or ovaries depending on the sex-chromosome genotype. The Müllerian ducts have the potential to give rise to female reproductive organs, including the uterus, oviducts, and upper portion of the vagina. The Wolffian ducts are the primordia of male reproductive organs, which are the vas deferens, epididymis, and seminal vesicles. Therefore, regardless of sex-chromosome genotype, each individual has the potential to develop male and female reproductive systems. The presence of the Y chromosome determines that an individual becomes a male because of a gene termed Sry. There must be a mechanism to select only one duct system, depending on the presence or absence of Sry. Two gonadal hormones—Müllerianinhibiting substance (MIS)—and testosterone, play essential roles during this selection process (Fig. 1) (1–3) This chapter, examines the results of in vivo approaches using transgenic and targeted mutant mice to study MIS function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cate RL, Wilson CA. Müllerian-inhibiting substance. In: Gwatkin, RBL, ed. Genes in Mammalian Reproduction. Wiley-Liss, New York, 1993, pp. 185–205.

    Google Scholar 

  2. Josso N, Cate RL, Picard J-Y, Vigier B, di Clemente N, Wilson C, et al. Anti-Müllerian hormone: the Jost factor. Rec Prog Horm Res 1993; 48: 1–59.

    PubMed  CAS  Google Scholar 

  3. Mishina Y, Behringer, RR. The in vivo function of Müllerian-inhibinting substance during mammalian sexual development. In: Wassarman, PM, ed. Advances in Developmental Biology, vol. 4. JAI Press, Greenwich, CT, 1994, pp. 1–25.

    Google Scholar 

  4. Jost A. Recherches sur la differenciation sexuelle de l’embryon de lapin. Arch Anat Micro Morph Exp 1947; 36: 271–315.

    Google Scholar 

  5. Jost A. Problems of fetal endocrinology: the gonadal and hypophyseal hormones. Rec Prog Horm Res 1953; 8: 379–418.

    Google Scholar 

  6. Hatano O, Takayama K, Imai T, Waterman MR, Takakusu A, Omura T, et al. Sex-dependent expression of a transcription factor, Ad4BP, resulting steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development, Development 1994; 120: 2787–2797.

    PubMed  CAS  Google Scholar 

  7. Shen WH, Moore CCD, Ikeda Y, Parker KL, Ingraham HA. Nuclear receptor steroidgenic factor 1 regulates the Müllerian inhibiting substance gene: a link to the sex determination cascade. Cell 1994; 77: 1–20.

    Article  Google Scholar 

  8. Giuili G, Shen WH, Ingraham HA. The nuclear receptor SF-1 mediates sexually dimorphic expression of Müllerian Inhibiting Substance, in vivo. Development 1997; 124: 1799–1807.

    PubMed  CAS  Google Scholar 

  9. Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, Ingraham, HA. (1998) Wilms’ tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 1998; 93: 445–454.

    Article  Google Scholar 

  10. Kent J, Whitely SC, Andrew JE, Sinclair AH, Koopman P. A male-specific role for SOX9 in vertebrate sex determination. Development 1996; 122: 2813–2822.

    PubMed  CAS  Google Scholar 

  11. Parker KL, Schedi A, Schimmer, BP. Gene interactions in gonadal development. Annu Rev Physiol 1999; 61: 417–433.

    Article  PubMed  CAS  Google Scholar 

  12. Vigier B, Forest MG, Eychenne B, Bézard J, Garrigou O, Robel P, et al. Anti-Müllerian hormone produces endocrine sex-reversal of fetal ovaries. Proc Natl Acad Sci USA 1989; 8: 3684–3688.

    Article  Google Scholar 

  13. di Clemente N, Ghaffari S, Pepinsky RB, Pieau C, Josso N, Cate RL, et al. A quantitative and inter-specific test for biological activity of anti-Müllerian hormone: the fetal ovary aromatase assay. Development 1992; 114: 721–727.

    PubMed  Google Scholar 

  14. Racine C, Rey R, Forest MG, Louis F, Ferre A, Huhtaniemi I, Josso N, di Clemente, N. Receptors for anti-müllerian hormone on Leydig cells are responsible for its effects on steroidogenesis and cell differentiation. Proc Natl Acad Sci USA 1998; 95: 594–599.

    Article  PubMed  CAS  Google Scholar 

  15. Rouiller-Fabre V, Carmona S, Merhi RA, Cate RL, Habert R, Vigier B. Effect of anti-Müllerian hormone on Sertoli and Leydig cell functions in fetal and immature rats. Endocrinology 1998; 139: 1213–1220.

    Article  PubMed  CAS  Google Scholar 

  16. Cate RL, Mattaliano RJ, Hession C, Tizard R, Farber NM, Cheung A, et al. Isolation of the bovine and human genes for Müllerian inhibiting substance and expression of the human gene in animal cells. Cell 1986; 45: 685–698.

    Article  PubMed  CAS  Google Scholar 

  17. Picard JY, Benarous R, Guerrier D, Josso N, Kahn, A. Cloning and expression of cDNA for antiMüllerian hormone. Proc Natl Acad Sci USA 1986; 83: 5464–5468.

    Article  PubMed  CAS  Google Scholar 

  18. Haqq CM, Lee, MM, Tizard R, Wysk M, DeMarinis J, Donahoe PK, et al. Isolation of the rat gene for Müllerian inhibiting substance. Genomics 1992; 12: 665–669.

    Article  PubMed  CAS  Google Scholar 

  19. Münsterberg A, Lovell-Badge R. Expression of the mouse anti-Müllerian hormone gene suggests a role in both male and female sexual differentiation. Development 1991; 113: 613–624.

    PubMed  Google Scholar 

  20. Hogan BLM. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 1996; 10: 1580–1594.

    Article  PubMed  CAS  Google Scholar 

  21. Budzik GP, Powell SM, Kamagata S, Donahoe PK. Müllerian inhibiting substance fractionation by dye affinity chromatography. Cell 1983; 34: 307–314.

    Article  PubMed  CAS  Google Scholar 

  22. Pepinsky RB, Sinclair LK, Chow EP, Mattaliano RJ, Manganaro TF, Donahoe PK, Cate RL. Proteolytic processing of Müllerian inhibiting substance produces a transforming growth factor-G3-like fragment. J Biol Chem 1988;263:18, 961–18, 964.

    Google Scholar 

  23. Cate RL, Donahoe PK, MacLaughlin DT. Müllerian inhibiting substance. In: Sporn MB, Roberts AB, eds. Peptide Growth Factors and Their Receptors II. Springer-Verlag, Berlin, 1990, pp. 179–210.

    Chapter  Google Scholar 

  24. Nachtigal MW, Ingraham HA. Bioactivation of Müllerian inhibiting substance during gonadal development by a kex2/subtilisin-like endoprotease. Proc Natl Acad Sci USA 1996; 93: 7711–7716.

    Article  PubMed  CAS  Google Scholar 

  25. Pircher R, Jullien P, Lawrence DA. b-transforming growth factor is stored in human blood platelets as a latent high molecular weight complex. Biochem Biophys Res Comm 1986; 136: 30–37.

    Article  PubMed  CAS  Google Scholar 

  26. Wilson CA, di Clemente N, Ehrenfels C, Pepinsky RB, Josso N, Vigier B, et al. Müllerian inhibiting substance requires its N-terminal domain for maintenance of biological activity, a novel finding within the transforming growth factor-b superfamily. Mol Endocrinol 1993; 7: 247–257.

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi M, Koide SS, Donahoe PK. Müllerian inhibiting substance as oocyte meiosis inhibitor. Mol Cell Endorinol 1986; 47: 225–234.

    Article  CAS  Google Scholar 

  28. Bézard J, Vigier B, Tran D, Mauléon P, Josso N. Immunocytochemical study of anti-Müllerian hormone in sheep ovarian follicles during fetal and post-natal development. J Reprod Fertil 1987; 80: 509–516.

    Article  PubMed  Google Scholar 

  29. Ueno S, Takahashi M, Manganaro TF, Ragin RC, Donahoe PK. Cellular localization of Müllerian inhibiting substance in the developing rat ovary. Endocrinology 1989; 125: 1060–1066.

    Article  PubMed  CAS  Google Scholar 

  30. Josso N. Anti-Müllerian hormone: new perspectives for a sexist molecule. Endocr Rev 1986; 7: 421–433.

    Article  PubMed  CAS  Google Scholar 

  31. Mathews L, Vale WW. Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 1991; 65: 973–982.

    Article  PubMed  CAS  Google Scholar 

  32. Lin HY, Wang X, Ng-Eaton E, Weinberg RA, Lodish HF. Expression cloning of the TGF-b type II receptor, a functional transmembrane serine/threonine kinase. Cell 1992; 68: 775–785.

    Article  PubMed  CAS  Google Scholar 

  33. Attisano L, Carcamo J, Ventura F, Weis FMB, Massagué J, Wrana JL. Identification of human activin and TGF-b type I receptors that form heterodimeric kinase complexes with type II receptors. Cell 1993; 75: 671–680.

    Article  PubMed  CAS  Google Scholar 

  34. Ebner R, Chen RH, Shum L, Zioncheck TF, Lee AR, Derynck R. Cloning of a type I TGF-b receptor and its effect on TGF-b binding to the type II receptor. Science 1993; 260: 1344–1348.

    Article  PubMed  CAS  Google Scholar 

  35. Franzen P, ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin CH, et al. Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell 1993; 75: 681–692.

    Article  PubMed  CAS  Google Scholar 

  36. Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-ß receptor. Nature 1994; 370: 341–347.

    Article  PubMed  CAS  Google Scholar 

  37. Cârcamo J, Weis FM, Ventura F, Wieser R, Wrana JL, Attisano L, et al. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol Cell Biol 1994; 14: 3810–3821.

    PubMed  Google Scholar 

  38. Baarends WM, van Helmond MJL, Post M, van der Schoot JCM, Hoogerbrugghe JW, de Winter JP, et al. A novel member of the transmembrane serine/threonine kinase receptor family is specifically expressed in the gonads and in mesenchymal cells adjacent to the Müllerian duct. Development 1994; 120: 189–197.

    PubMed  CAS  Google Scholar 

  39. di Clemente N, Wilson C, Faure E, Boussin L, Carmillo P, Tizard R, et al. Cloning, expression and alternative splicing of the receptor for anti-Müllerian hormone. Mol Endocrinol 1994; 8: 1006–1020.

    Article  PubMed  Google Scholar 

  40. Imbeaud S, Faure E, Lamarre I, Mattéi MG, di Clemente N, Tizzad R, et al. Insensitivity to antiMüllerian hormone due to a mutation in the human anti-Müllerian hormone receptor. Nature Genet 1995; 11: 382–388.

    Article  PubMed  CAS  Google Scholar 

  41. Roberts LM, Hirokawa Y, Nachtigal MW, Ingraham HA. Paracrine-mediated apoptosis in reproductive tract development. Dev Biol 1999; 208: 110–122.

    Article  PubMed  CAS  Google Scholar 

  42. Baarends WM, Uilenbroek JTJ, Kramer P, Hoogerbrugghe JW, de Winter JP, Karels B, et al. AntiMüllerian hormone and anti-Müllerian hormone type II receptor messenger ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth. Endocinology 1995; 136: 4951–4962.

    Article  CAS  Google Scholar 

  43. Baarends WM, Hoogerbrugghe JW, Post M, Visser JA, de Rooij DG, Parvinen M, et al. Anti-Müllerian hormone and anti-Müllerian hormone type II receptor messenger ribonucleic acid expression during postnatal testis development and in the adult testis of the rat. Endocinology 1995; 136: 5614–5622.

    Article  CAS  Google Scholar 

  44. Teixeira J, He WW, Shah PC, Morikawa N, Lee MM, Catlin EA, et al. Developmental expression of a candidate Müllerian inhibiting substance type II receptor. Endocrinology 1996; 137: 160–165.

    Article  PubMed  CAS  Google Scholar 

  45. He WW, Gustafson ML, Hirobe S, Donahoe PK. Developmental expression of four novel serine/ threonine kinase receptors homologous to the activin/transforming growth factor-beta type II receptor family. Dev Dyn 1993; 196: 133–142.

    Article  PubMed  CAS  Google Scholar 

  46. Matsuzaki K, Xu J, Wang F, McKeehan WL, Krummen L, Kan M. A widely expressed transmembrane serine/threonine kinase that does not bind activin, inhibin, transforming growth factor 13, or bone morphogenic factor. J Biol Chem 1993;268:12, 718–12, 723.

    Google Scholar 

  47. ten Dijke P, Ichijo H, Franzen P, Schulz P, Saras J, Toyoshima H, et al. Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene 1993; 8: 2879–2887.

    PubMed  CAS  Google Scholar 

  48. Wieser R, Wrana JL, Massague J. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. EMBO J 1995; 15: 2199–2208.

    Google Scholar 

  49. Visser J., eds. Anti-Müllerian Hormone: Molecular Mechanism of Action. Eburon, 1998.

    Google Scholar 

  50. Dyche WJ. A comparative study of the differentiation and involution of the Müllerian duct and Wolffian duct in the male and female fetal mouse. J Morphol 1979; 162: 175–209.

    Article  PubMed  CAS  Google Scholar 

  51. Price JM, Donahoe PK, Ito Y, Hendren WH 3d. Programmed cell death in the Müllerian duct induced by Müllerian inhibiting substance. Am J Anat 1977; 149: 353–375.

    Article  PubMed  CAS  Google Scholar 

  52. Forsberg J, Olivecrona H. Degeneration processes during the development of the Müllerian ducts in alligator and chicken embryos. Z Anat Entwiklungsgesch 1963; 124: 83–96.

    Article  CAS  Google Scholar 

  53. Austin HB. Dil analysis of cell migration during Mullerian duct regression. Dev Biol 1995; 169: 29–36.

    Article  PubMed  CAS  Google Scholar 

  54. Trelstad RL, Hayashi A, Hayashi K, Donahoe PK. The epithelial-mesenchymal interface of the male rate Müllerian duct: loss of basement membrane integrity and ductal regression. Dev Biol 1982; 92: 27–40.

    Article  PubMed  CAS  Google Scholar 

  55. Hayashi A, Donahoe PK, Budzik GP, Trelstad RL. Periductal and matrix glycosaminoglycans in rat Müllerian duct development and regression. Dev Biol 1982; 92: 16–26.

    Article  PubMed  CAS  Google Scholar 

  56. Djehiche B, Segalen J, Chambon Y. Ultrastructure of Müllerian and Wolffian ducts of fetal rabbit in vivo and in organ culture. Tissue Cell 1994; 26: 323–332.

    Article  PubMed  CAS  Google Scholar 

  57. Behringer RR, Cate RL, Froelick GJ, Palmiter RD, Brinster RL. Abnormal sexual development in transgenic mice chronically expressing Müllerian inhibiting substance. Nature 1990; 345: 167–170.

    Article  PubMed  CAS  Google Scholar 

  58. Lyet L, Louis F, Forest MG, Josso N, Behringer RR, Vigier B. Ontogeny of reproductive abnormalities induced by deregulation of anti-Müllerian hormone expression in transgenic mice. Biol Reprod 1995; 52: 444–454.

    Article  PubMed  CAS  Google Scholar 

  59. Josso N, Racine C, di Clemente N, Rey R, Xavier F. The role of anti-Mullerian hormone in gonadal development. Mol Cell Endocrinol 1998; 145: 3–7.

    Article  PubMed  Google Scholar 

  60. Whitworth DJ. XX germ cells: The difference between an ovary and a testis. Trends Endocrinol Metab 1998; 9: 2–6.

    Article  PubMed  CAS  Google Scholar 

  61. Hutson JM, Donahoe PK. The hormonal control of testicular descent. Endocr Rev 1986; 7: 270–283.

    Article  PubMed  CAS  Google Scholar 

  62. Behringer RR, Finegold MJ, Cate RL. Müllerian-inhibiting substance function during mammalian sexual development. Cell 1994; 79: 415–425.

    Article  PubMed  CAS  Google Scholar 

  63. Matzuk MM, Finegold MJ, Su JG, Hsueh AJ, Bradley A. Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 1992; 360: 313–319.

    Article  PubMed  CAS  Google Scholar 

  64. Mishina Y, Tizard R, Deng JM, Pathak BG, Copeland NG, Jenkins NA, et al. Sequence, genomic organization, and chromosomal location of the mouse Mullerian-inhibiting substance type II receptor gene. Biochem Biophys Res Commun 1997; 237: 741–746.

    Article  PubMed  CAS  Google Scholar 

  65. Mishina Y, Rey R, Finegold MJ, Matzuk MM, Josso N, Cate RL, Behringer RR. Genetic analysis of the Müllerian-inhibiting substance signal transduction pathway in mammalian sexual differentiation. Genes Dev 1996; 10: 2577–2587.

    Article  PubMed  CAS  Google Scholar 

  66. Mishina Y, Whitworth DJ, Racine C, Behringer RR. High specificity of Mullerian-inhibiting substance signaling in vivo. Endocrinology 1999; 140: 2084–2088.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang H, Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996; 122: 2977–2986.

    PubMed  CAS  Google Scholar 

  68. Winnier G, Blessing M, Labosky PA, Hogan BLM. Bone morphogenetic protein-4 (BMP-4) is required for mesoderm formation and patterning in the mouse. Genes Dev 1995; 9: 2105–2116.

    Article  PubMed  CAS  Google Scholar 

  69. Furuta Y, Hogan BLM. BMP4 is essential for lens induction in the mouse embryo. Genes Dev 1998; 12: 3764–3775.

    Article  PubMed  CAS  Google Scholar 

  70. Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 1999; 13: 424–436.

    Article  PubMed  CAS  Google Scholar 

  71. Mishina Y, Suzuki A, Ueno N, Behringer RR. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 1995; 9: 3027–3037.

    Article  PubMed  CAS  Google Scholar 

  72. He WW, Kumar MV, Tindall DJ. A frame-shift mutation in the androgen receptor gene causes complete testosterone insensitivity in the testicular-feminized mouse. Nucleic Acids Res 1991; 19: 2373–2378.

    Article  PubMed  CAS  Google Scholar 

  73. Charest NJ, Zhou ZX, Lubahn DB, Olsen KL, Wilson EM, French FS. A frameshift mutation destabilizes androgen receptor messenger RNA in the Tfm mouse. Mol Endocrinol 1991; 5: 573–581.

    Article  PubMed  CAS  Google Scholar 

  74. Matzuk MM, Finegold MJ, Mishina Y, Bradley A, Behringer RR. Synergistic effects of inhibins and Müllerian-inhibiting substance on testicular tumorigenesis. Mol Endocrinol 1995; 9: 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  75. Visser JA, McLuskey A, van Beers T, Weghuis DO, van Kessel AG, Grootegoed JA, Themmen AP. Structure and chromosomal localization of the human anti-mullerian hormone type II receptor gene. Biochem Biophys Res Commun 1995; 215: 1029–1036.

    Article  PubMed  CAS  Google Scholar 

  76. Guerrier D, Tran D, Vanderwinden JM, Hideux S, Van Outryve L, Legeai L, et al. The persistent Müllerian duct syndrome: a molecular approach. J Clin Endocrinol Metab 1989; 68: 46–52.

    Article  PubMed  CAS  Google Scholar 

  77. Imbeaud S, Belville C, Messika-Zeitoun L, Rey R, di Clemente N, Josso N, et al. A 27 base-pair deletion of the anti-mullerian type II receptor gene is the most common cause of the persistent mullerian duct syndrome. Hum Mol Genet 1996; 5: 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  78. Knebelmann B, Boussin L, Guerrier D, Legeai L, Kahn A, Josso N, Picard JY. Anti-Müllerian hormone Bruxelles: a non-sense mutation in the last exon of the anti-Müllerian hormone gene associated with the persistent Müllerian duct syndrome in three brothers. Proc Natl Acad Sci USA 1991; 88: 3767–3771.

    Article  PubMed  CAS  Google Scholar 

  79. Carré-Eusebe, D, Imbeaud S, Harbison M, New MI, Josso N, Picard JY. Variants of the anti-Müllerian hormone gene in a compound heterozygotes with the persistent Müllerian duct syndrome and his family. Hum Genet 1992; 90: 389–394.

    Article  PubMed  Google Scholar 

  80. Imbeaud S, Carré-Eusebe D, Rey R, Belville C, Josso N, Picard JY. Molecular genetics of the persistent Müllerian duct syndrome: a study of 19 families. Hum Mol Genet 1994; 3: 125–131.

    Article  PubMed  CAS  Google Scholar 

  81. Gu Z, Reynolds EM, Song J, Lei H, Feijen A, Yu L, et al. The type I serine/threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. Development 1999; 126: 2551–2561.

    PubMed  CAS  Google Scholar 

  82. Mishina Y, Crombie R, Bradley A, Behringer, RR. Multiple roles for Activin-Like Kinase-2 signaling during mouse embryogenesis. Dev Biol 1999; 213: 314–326.

    Article  PubMed  CAS  Google Scholar 

  83. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signaling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390: 465–471.

    Article  PubMed  CAS  Google Scholar 

  84. Meersseman G, Verschueren K, Nelles L, Blumenstock C, Kraft H, Wuytens G, et al. The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in the Xenopus embryo and transcriptional activation. Mech Dev 1997; 61: 127–140.

    Article  PubMed  CAS  Google Scholar 

  85. Yang X, Castilla LH, Xu X, Li C, Gotay J, Weinstein M, et al. Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development 1999; 126: 1571–1580.

    PubMed  CAS  Google Scholar 

  86. Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A. Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 1999; 126: 1631–1642.

    PubMed  CAS  Google Scholar 

  87. Cohen-Haguenauer, O, Picard, JY, Mattei, MG, Serero, S, Nguyen VC, de Tand MF, et al. Mapping of the gene for anti-Müllerian hormone to the short arm of human chromosome 19. Cytogenet Cell Genet 1987; 44: 2–4.

    Article  PubMed  CAS  Google Scholar 

  88. Sloan WR, Walsh, PC. Familial persistent Müllerian duct syndrome. J Urol 1976; 115: 459–461.

    PubMed  CAS  Google Scholar 

  89. Naguib KK, Teebi AS, Al-Awadi SA, El-Khalifa MY, Mahfouz ES. Familial uterine hernia syndrome: report of an Arab family with four affected males. Am J Hum Genet 1989; 33: 180, 181.

    Google Scholar 

  90. Newbold RR. Influence of estrogenic agents on mammalian male reproductive tract development. In: Korach KS, ed. Reproductive and developmental toxicology, Marcel Dekker, New York, NY, 1998, pp. 531–551.

    Google Scholar 

  91. Newbold RR, Suzuki Y, McLachlan JA. Müllerian duct maintenance in heterotypic organ culture after in vivo exposure to diethylstilbestrol. Endocrinology 1984; 115: 1863–1868.

    Article  PubMed  CAS  Google Scholar 

  92. Visser JA, McLuskey A, Verhoef-Post M, Kramer P, Grootegoed JA, Themmen AP. Effect of prenatal exposure to diethylstilbestrol on Mullerian duct development in fetal male mice. Endocrinology 1998; 139: 4244–4251.

    Article  PubMed  CAS  Google Scholar 

  93. Shimamura R, Fraizer GC, Trapman J, Lau YC, Saunders GF. The Wilms’ tumor gene WT1 can regulate genes involved in sex determination and differentiation: SRY, Müllerian-inhibiting substance, and the androgen receptor. Clin Cancer Res 1997; 12: 2571–2580.

    Google Scholar 

  94. Tremblay, JJ, Viger, RS. Transcription factor GATA-4 enhances Müllerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1. Mol Endcrinol 1999; 13: 1388–1401.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Mishina, Y. (2001). The In Vivo Function of Müllerian-Inhibiting Substance During Mammalian Sexual Development. In: Matzuk, M.M., Brown, C.W., Kumar, T.R. (eds) Transgenics in Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-102-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-102-2_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9640-6

  • Online ISBN: 978-1-59259-102-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics