Skip to main content

The Transgenic Mouse in Studies of Mammalian Sexual Differentiation

  • Chapter
Transgenics in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

  • 103 Accesses

Abstract

Throughout history, the subject of sex has held an inherent fascination. The musings of Aristotle on the role of “an infinitesimally minute but essential organ” in determining whether “the animal will in one case turn to male (or) in the other to female” (Aristotle, Historia Animalium),offer an early insight into what has become one of the tenets in our understanding of sexual differentiation in mammals: that the sex of the gonad determines the sexual development of the individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burgoyne PS, Buehr M, Koopman P, Rossant J, McLaren A. Cell-autonomous action of the testis-determining gene:Sertoli cells are exclusively XY in XX’XY chimaeric mouse testes. Development 1988; 102: 443–450.

    PubMed  CAS  Google Scholar 

  2. Zamboni L, Upadhyay S. Germ cell differentiation in mouse adrenal glands. J Exp Zool 1983; 228: 173–193.

    PubMed  CAS  Google Scholar 

  3. Palmer S, Burgoyne PS. In situ analysis of fetal, prepuberal and adult XX’XY chimaeric mouse testes:Sertoli cells are predominantly, but not exclusively, XY. Development 1991; 112: 265–268.

    Google Scholar 

  4. Lovell-Badge R, Robertson E. XY female mice resulting from a heritable mutation in the primary testis-determining gene, Tdy. Development 1990; 109: 635–646.

    PubMed  CAS  Google Scholar 

  5. Page DC, Mosher R, Simpson EM, Fisher E, Mardon G, Pollack J, et al. The sex-determining region of the human Y chromosome encodes a finger protein. Cell 1987; 51: 1091–1094.

    PubMed  CAS  Google Scholar 

  6. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990; 346: 240–244.

    PubMed  CAS  Google Scholar 

  7. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, et al. A gene mapping to the sex determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990; 346: 245–250.

    PubMed  CAS  Google Scholar 

  8. Koopman P, Münsterberg A, Capel B, Vivian N, Lovell-Badge R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 1990; 248: 450–452.

    Google Scholar 

  9. Hacker A, Capel B, Goodfellow P, Lovell-Badge R. Expression of Sry, the mouse sex determining gene. Development 1995; 121: 1603–1614.

    PubMed  CAS  Google Scholar 

  10. Just W, Rau W, Vogel W, Akhverdian M, Fredga K, Graves JA, et al. Absence of Sry in species of the vole Ellobius. Nat Genet 1995; 11: 117, 118.

    Google Scholar 

  11. Soullier S, Hanni C, Catzeflis F, Berta P, Laudet V. Male sex determination in the spiny rat Tokudaia osimensis (Rodentia: Muridae) is not Sry dependent. Mamm Genome 1998; 9: 590–592.

    CAS  Google Scholar 

  12. FosterJW, Brennan FE, Hampikian GK, Goodfellow PK, Sinclair AH, Lovell-Badge R, et al. Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 1992; 359: 531–533.

    Google Scholar 

  13. Harley VR, Jackson DI, Hextall PJ, Hawkins JR, Berkovitz GD, Sockanathan S, et al. DNA binding activity of recombinant SRY from normal males and XY females. Science 1992; 255: 453–456.

    PubMed  CAS  Google Scholar 

  14. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature 1991; 351: 117–121.

    PubMed  CAS  Google Scholar 

  15. Capel B. The role of Sry in cellular events underlying mammalian sex determination. Curr Top Dev Biol 1996; 32: 1–37.

    PubMed  CAS  Google Scholar 

  16. Jamieson RV, Zhou SX, Wheatley SC, Koopman P, Tam PP. Seroli cell differentiation and Y-chromosome activity: a developmental study of X-linked transgene activity in sex-reversed X/XSxra mouse embryos. Dev Biol 1998; 199: 235–244.

    PubMed  CAS  Google Scholar 

  17. Eicher EM, Washburn LL, Whitney JB, Morrow KE. Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science 1982; 217: 535–537.

    PubMed  CAS  Google Scholar 

  18. Nagamine CM, Taketo T, Koo GC. Studies on the genetics of tda-1 XY sex reversal in the mouse. Differentiation 1987; 33: 223–231.

    PubMed  CAS  Google Scholar 

  19. Eicher EM, Washburn LL, Schork NJ, Lee BK, Shown EP, Xu X, et al. Sex-determining genes on mouse autosomes identified by linkage analysis of C57BL/6- YPOS sex reversal. Nat Genet 1996; 14: 206–209.

    PubMed  CAS  Google Scholar 

  20. Albrecht KH, Eicher EM. DNA sequence analysis of Sry alleles (subgenus Mus) implicates misregulation as the cause of C57BL/6J-Y(POS) sex reversal and defines the SRY functional unit. Genetics 1997; 147: 1267–1277.

    PubMed  CAS  Google Scholar 

  21. Schedl A, Hastie N. Multiple roles for the Wilms’ tumour suppressor gene, WTI in genitourinary development. Mol Cell Endocrinol 1998; 140: 65–69.

    PubMed  CAS  Google Scholar 

  22. Pelletier J, Schalling M, Buckler AJ, Rogers A, Haber DA, Housman D. Expression of the Wilms’ tumor gene WTI in the murine urogenital system. Genes Dev 1991; 5: 1345–1356.

    PubMed  CAS  Google Scholar 

  23. Armstrong JF, Pritchard-Jones K, Bickmore WA, Hastie ND, Bard JB. The expression of the Wilms’ tumour gene, WTI, in the developing mammalian embryo. Mech Dev 1992; 40: 85–97.

    Google Scholar 

  24. Kreidberg JA, Sariol H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell 1993; 74: 679–691.

    PubMed  CAS  Google Scholar 

  25. Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, Ingraham HA. Wilms’ tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 1998; 93: 445–454.

    PubMed  CAS  Google Scholar 

  26. Little M, Wells C. A clinical overview of WTI gene mutations. Hum Mutat 1997; 9: 209–225.

    PubMed  CAS  Google Scholar 

  27. Patek CE, Little MH, Fleming S, Miles C, Charlieu J-P, Clarke AR, et al. A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys-Drash syndrome. Proc Natl Acad Sci USA 1999; 96: 2931–2936.

    PubMed  CAS  Google Scholar 

  28. Katoh-Fukui Y, Tsuchiya R, Shiroishi T, Nakahara Y, Hashimoto N, Noguchi K. et al. Maleto-female sex reversal in M33 mutant mice. Nature 1998; 393: 688–692.

    PubMed  CAS  Google Scholar 

  29. Karl J, Capel B. Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev Biol 1998; 203: 323–333.

    PubMed  CAS  Google Scholar 

  30. Foster JW, Dominguez-Steglich MA, Guioli S, Kowk G, Weller PA, Stevanovic M, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994; 372: 525–530.

    PubMed  CAS  Google Scholar 

  31. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994; 79: 1111–1120.

    PubMed  CAS  Google Scholar 

  32. Tommerup N, Schempp W, Meinecke P, Pederson S, Bolund L, Brandt CCG, et al. Assignment of an autosomal sex reversal locus (SRA 1) and campomelic dysplasia (CMPD1) to 17g24.3-g25.1. Nat Genet 1993; 4: 170–173.

    PubMed  CAS  Google Scholar 

  33. Mansour S, Hall CM, Pembrey ME, Young ID. A clinical and genetic study of campomelic dysplasia. J Med Genet 1995; 32: 415–420.

    PubMed  CAS  Google Scholar 

  34. Houston CS, Opitz JM, Spranger JW, Macpherson RI, Reed MH, Gilbert EF, et al. The campomelic syndrome: review, report of 17 cases, and follow-up on the currently 17-year-old boy first reported by Maroteaux et al. in 1971. Am J Med Genet 1983; 15: 3–28.

    PubMed  CAS  Google Scholar 

  35. Südbeck P, Schmitz ML, Baeuerle PA, Scherer G. Sex reversal by loss of the C-terminal transactivation domain of human SOX9. Nat Genet 1996; 13: 230–232.

    PubMed  Google Scholar 

  36. Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P. A male-specific role for Sox9 in vertebrate sex determination. Development 1996; 122: 2813–2822.

    PubMed  CAS  Google Scholar 

  37. Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 1996; 14: 62–68.

    Google Scholar 

  38. Oreal E, Pieau C, Mattei M-G, Josso N, Picard J-Y, Carre-Eusebe D, Magre S. Early expression of AMH in chicken embryonic gonads precedes testicular SOX9 expression. Dev Dyn 1998; 212: 522–532.

    PubMed  CAS  Google Scholar 

  39. Spotila LD, Spotila JR, Hall SE. Sequence and expression analysis of WTI and Sox9 in the red-eared slider turtle, Trachemys scripta. J Exp Zool 1998; 281: 417–427.

    PubMed  CAS  Google Scholar 

  40. Western PS, Harry JL, Marshall Graves JA, Sinclair AH. Temperature dependent sex determination in the American alligator:AMH precedes SOX9 expression. Dev Dyn 1999; 216: 411–419.

    PubMed  CAS  Google Scholar 

  41. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet 1999; 22: 85–89.

    PubMed  CAS  Google Scholar 

  42. Bishop CE, Whitworth DJ, Qin Y, Agoulnik A, Harrison W, Agoulnik I, Harrison W, Behringer RR, et al. A transgenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet 2000; 26: 490–494.

    PubMed  CAS  Google Scholar 

  43. Parker KL, Schimmer BP. The roles of the nuclear receptor steroidogenic factor 1 in endocrine differentiation and development. Trends Endocrinol. Metab. 1996; 7: 203–207.

    CAS  Google Scholar 

  44. Ingraham HH, Lala DS, Ikeda Y, Luo X, Shen WH, Nachtigal MW, et al. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev 1994; 8: 2302–2312.

    PubMed  CAS  Google Scholar 

  45. Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994; 77: 481–490.

    PubMed  CAS  Google Scholar 

  46. Sadovsky Y, Crawford PA, Woodson KG, Polish JA, Clements MA, Tourtellotte LM, et al. Mice deficient in the orphan receptor steroidogenic factor I lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Nati Acad Sci USA 1995;92:10, 939–10, 943.

    Google Scholar 

  47. Shinoda K, Lei H, Yoshii H, Nomura M, Nagano M, Shiba H, et al. Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotroph in the Ftz-F1 disrupted mice. Dev Dyn 1995; 204: 22–29.

    PubMed  CAS  Google Scholar 

  48. Ikeda YW, Shen HA, Ingraham HA, Parker KL. Developmental expression of mouse steroidogenic factor 1 an essential regulator of the steroid hydroxylases. Mol Endocrinol 1994; 7: 852–860.

    Google Scholar 

  49. Muscatelli F, Strom TM, Walker AP, Zanaria E, Recan D, Meindl A, et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 1994; 372: 672–676.

    PubMed  CAS  Google Scholar 

  50. Ikeda Y, Swain A, Weber TJ, Hentges KE, Zanaria E, Lalli E, et al. Steroidogenic Factor 1 and Dax-1 co-localize in multiple cell lineages: potential links in endocrine development. Mol Endocrinol 1996; 10: 1261–1272.

    PubMed  CAS  Google Scholar 

  51. Swain A, Zanaria E, Hacker A, Lovell-Badge R, Camerino G. Mouse Dax-1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet 1996; 12: 404–409.

    PubMed  CAS  Google Scholar 

  52. Pilon N, Behdjani R, Daneaul Lussier JG, Silversides DW. Porcine steroidogenic factor-1 gene (pSF-1) expression and analysis of embryonic pig gonads during sexual differentiation. Endocrinology 1998; 139: 3803–3812.

    PubMed  CAS  Google Scholar 

  53. Shen WH, Moore CC, Ikeda Y, Parker KL, Ingraham HA. Nuclear receptor steroidogenic factor 1 regulates the Müllerian inhibiting substance gene: a link to the sex determination cascade. Cell 1994; 77: 651–661.

    PubMed  Google Scholar 

  54. Giuili G, Shen WH, Ingraham HA. The nuclear receptor SF-1 mediates sexually dimorphic expression of Müllerian Inhibiting Substance, in vivo. Development 1997; 124: 1799–1807.

    PubMed  CAS  Google Scholar 

  55. Ito M, Yu RN, Jameson JL. DAX-1 inhibits SF-1 mediated transactivation via a carboxy-termminal domain that is deleted in adrenal hypoplasia congenita. Mol Cell Biol 1997; 17: 1476–1483.

    PubMed  CAS  Google Scholar 

  56. Zazopoulos E, Lalli E, Stocco DM, Sassone-Corsi P. DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis. Nature 1997; 390: 311–315.

    PubMed  CAS  Google Scholar 

  57. Crawford PA, Dorn C, Sadovsky Y, Milbrandt J. Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to Steroidogenic Factor 1. Mol Cell Biol 1998; 18: 2949–2956.

    PubMed  CAS  Google Scholar 

  58. Bardoni B, Zanaria E, Guioli S, Floridia G, Worley KC, Tonini G, et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet 1994; 7: 497–501.

    PubMed  CAS  Google Scholar 

  59. Zanaria E, Bardoni B, Dabovic B, Calvari V, Fraccaro M, Zuffardi O, et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 1994; 372: 635–641.

    PubMed  CAS  Google Scholar 

  60. Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R. Dax] antagonises Sry action in mammalian sex determination. Nature 1998; 391: 761–767.

    PubMed  CAS  Google Scholar 

  61. Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL. Role of Ahch in gonadal development and gametogenesis. Nat Genet 1998; 20: 353–357.

    PubMed  CAS  Google Scholar 

  62. Stevanovic M, Lovell-Badge R, Collignon L, Goodfellow PN. SOX3 is an X-linked gene related to SRY. Hum Mol Genet 1993; 3: 2013–2018.

    Google Scholar 

  63. Collignon J, Sockanathan S, Hacker A, Cohen-Tannoudji M, Norris D, Rastan S, et al. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-land Sox-2. Development 1996; 122: 509–520.

    PubMed  CAS  Google Scholar 

  64. Foster JW, Graves JAM. An SRY-related sequence on the marsupial X chromosome-implications for the evolution of the mammalian testis determining gene. Proc Natl Acad Sci USA 1994; 91: 1927–1931.

    PubMed  CAS  Google Scholar 

  65. Graves JAM. Interactions between SRYand SOX genes in mammalian sex determination. BioEssays 1998; 20: 264–269.

    PubMed  CAS  Google Scholar 

  66. Uwanogho D, Rex M, Cartwright EJ, Pearl G, Healy C, Scotting PJ, Sharpe PT. Embryonic expression of the chicken Sox2, Sox3 and Soxl l genes suggests an interactive role in neuronal development. Mech Dev 1995; 49: 23–36.

    PubMed  CAS  Google Scholar 

  67. Josso N, Cate RL, Picard JY, Vigier B, di Clemente N, Wilson C, et al. Anti-Müllerian hormone: the Jost factor. Recent Prog Horm Res 1993; 48: 1–59.

    PubMed  CAS  Google Scholar 

  68. Tran D, Muesy-Dessolle N, Josso N. Anti-Müllerian hormone is a functional marker of foetal Sertoli cells. Nature 1977; 269: 411, 412.

    Google Scholar 

  69. Münsterberg A, Lovell-Badge R. Expression of the mouse anti-Müllerian hormone gene suggests a role in both male and female sexual differentiation. Development 1991; 113: 613–624.

    PubMed  Google Scholar 

  70. Tran D, Muesy-Dessolle N, Josso N. Waning of anti-Müllerian activity: an early sign of Sertoli cell maturation in the developing pig. Biol.Reprod 1981; 24: 923–931.

    PubMed  CAS  Google Scholar 

  71. Baker ML, Hutson JM. Serum levels of Müllerian inhibiting substance in boys throughout puberty and in the first two years of life. J Clin Endocrinol Metab 1993; 76: 245–247.

    PubMed  CAS  Google Scholar 

  72. Rey R, Lordereau-Richard I, Carel JC, Barbet P, Cate RL, Roger M, et al. Anti-Müllerian hormone and testosterone serum levels are inversely related during normal and precocious pubertal development. J Clin Endocrinol Metab 1993; 77: 1220–1226.

    PubMed  CAS  Google Scholar 

  73. Behringer RR, Cate RL, Froelick GJ, Palmiter RD, Brinster RL. Abnormal sexual development in transgenic mice chronically expressing Müllerian inhibiting substance. Nature 1990; 345: 167–170.

    PubMed  CAS  Google Scholar 

  74. Lyet L, Louis F, Forest MG, Josso N, Behringer RR, Vigier B. Ontogeny of reproductive abnormalities induced by deregulation of anti-Müllerian hormone expression in transgenic mice. Biol Reprod 1995; 52: 444–454.

    PubMed  CAS  Google Scholar 

  75. Racine C, Rey R, Forest MG, Louis F, Ferre A, Huhtaniemi I, et al. Receptors for anti-Müllerian hormone on Leydig cells are responsible for its effects on steroidogenesis and cell differentiation. Proc Natl Acad Sci USA 1998; 95: 594–599.

    PubMed  CAS  Google Scholar 

  76. Behringer RR, Finegold MJ, Cate RL. Müllerian-inhibiting substance function during mammalian sexual development. Cell 1994; 79: 415–425.

    PubMed  CAS  Google Scholar 

  77. Massague J. TGF-beta signal transduction. Annu Rev Biochem 1998; 67: 753–791.

    PubMed  CAS  Google Scholar 

  78. Mishina Y, Tizard R, Deng JM, Pathak BG, Copeland NG, Jenkins NA, et al. Sequence, genomic organization, and chromosomal location of the mouse Müllerian-inhibiting substance type II receptor gene. Biochem Biophys Res Commun 1997; 237: 741–746.

    PubMed  CAS  Google Scholar 

  79. Baarends WM, van Helmond MJL, Post M, van der Schoot PJCM, Hoogerbrugge JW, de Winter JP, et al. A novel member of a transmembrane serine/threonine kinase receptor family is specifically expressed in the gonads and in mesenchymal cells adjacent to the Müllerian duct. Development 1994; 120: 189–197.

    PubMed  CAS  Google Scholar 

  80. Teixeira J, He WW, Shah PC, Morikawa N, Lee MM, Catlin EA, et al. Developmental expression of a candidate Müllerian inhibiting substance type II receptor. Endocrinology 1996; 137: 160–165.

    PubMed  CAS  Google Scholar 

  81. di Clemente N, Wilson C, Faure E, Bouissin L, Carmillo P, Tizard R, et al. Cloning, expression, and alternative splicing of the receptor for anti- Müllerian hormone. Mol Endocrinol 1994; 8: 1006–1020.

    PubMed  Google Scholar 

  82. Imbeaud S, Carre-Eusebe D, Rey R, Belville C, Josso N, Picard J-Y. Molecular genetics of the persistent Müllerian duct syndrome: a study of 19 families. Hum Mol Genet 1994; 3: 125–131.

    PubMed  CAS  Google Scholar 

  83. Mishina Y, Rey R, Finegold MJ, Matzuk MM, Josso N, Cate RL, et al. Genetic analysis of the Müllerian-inhibiting substance signal transduction pathway in mammalian sexual differentiation. Genes Dev 1996; 10: 2577–2587.

    PubMed  CAS  Google Scholar 

  84. Mishina Y, Whitworth DJ, Racine C, Behringer RR. High specificity of Müllerian-inhibiting substance signaling in vivo. Endocrinology 1999; 140: 2084–2088.

    PubMed  CAS  Google Scholar 

  85. Arango NA, Lovell-Badge R, Behringer RR. Targeted mutagenesis of the endogenous mouse Müllerian inhibiting substance gene promoter: in vivo definition of genetic pathways of vertebrate sexual development. Cell 1999; 99: 409–419.

    PubMed  CAS  Google Scholar 

  86. Lyon MF, Hawkes SG. X-linked gene for testicular feminization. Nature 1970; 227: 1217–1219.

    PubMed  CAS  Google Scholar 

  87. Drews U. Direct and mediated effects of testosterone: analysis of sex reversed mosaic mice heterozygous for testicular feminization. Cytogenet Cell Genet 1998; 80: 68–74.

    PubMed  CAS  Google Scholar 

  88. Couse JF, Korach KS. Exploring the role of sex steroids through studies or receptor deficient mice. J Mol Med 1998; 76: 497–511.

    PubMed  CAS  Google Scholar 

  89. Charest NJ, Zhou Z-X, Lubahn DB, Olsen KL, Wilson EM, French FS. A frameshift mutation destabilizes androgen receptor messenger RNA in the Tfm mouse. Mol Endocrinol 1991; 5: 573–581.

    PubMed  CAS  Google Scholar 

  90. Gaspar M-L, Meo T, Bourgarel P, Guenet J-L, Tosi M. A single base deletion in the Tfm androgen receptor gene creates a short-lived messenger RNA that directs internal translation initiation. Proc Natl Acad Sci USA 1991; 88: 8606–8610.

    PubMed  CAS  Google Scholar 

  91. He WW, Kumar MV,Tindall DJ. A frame-shift mutation in the androgen receptor gene causes complete androgen insensitivity in the testicular-feminized mouse. Nucleic Acids Res 1991; 19: 2373–2378.

    PubMed  CAS  Google Scholar 

  92. Wilson JD. Syndromes of androgen resistance. Biol Reprod 1992; 46: 168–173.

    PubMed  CAS  Google Scholar 

  93. Murphy L, O’ Shaughnessy PJ. Testicular steroidogenesis in the testicular feminized (Tfm) mouse: loss of 17a-hydroxylase activity. J Endocrinol 1991; 131: 443–449.

    PubMed  CAS  Google Scholar 

  94. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997; 11: 3286–3305.

    PubMed  CAS  Google Scholar 

  95. Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature 1999; 397: 405–409.

    PubMed  CAS  Google Scholar 

  96. Parr BA, McMahon AP. Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature 1998; 395: 707–710.

    PubMed  CAS  Google Scholar 

  97. Miller C, Sassoon DA. Wnt-7amaintains appropriate uterine patterning during the development of the mouse female reproductive tract. Development 1998; 125: 3201–3211.

    PubMed  CAS  Google Scholar 

  98. Hammerschmidt M, Brook A, McMahon, AP. The world according to hedgehog. Trends Genet 1997; 13: 14–21.

    PubMed  CAS  Google Scholar 

  99. Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 1995; 172: 126–138.

    PubMed  CAS  Google Scholar 

  100. Bitgood MJ, Shen L, McMahon AP. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol 1996; 6: 298–304.

    PubMed  CAS  Google Scholar 

  101. Hayman DL, Martin PG. Sex chromosome mosaicism in the marsupial genera Isoodon and Parameles. Genetics 1965; 52: 1201–1206.

    PubMed  CAS  Google Scholar 

  102. Sharman GB, Robinson ES, Walton SM, Berger PJ. Sex chromosomes and reproductive anatomy of some intersexual marsupials. J Reprod Fertil 1970; 21: 57–68.

    PubMed  CAS  Google Scholar 

  103. W-S, Short RV, Renfree MB, Shaw G. Primary genetic control of somatic sexual differentiation in a mammal. Nature 1988; 331: 716–717.

    Google Scholar 

  104. Renfree MB, Robinson ES, Short RV, VandeBerg JL. Mammary glands in male marsupials: 1. Primordia in neonatal opossums Didelphis virginiansand Monodelphis domestica. Development 1990; 110: 385–390.

    PubMed  CAS  Google Scholar 

  105. Robinson ES, Renfree MB, Short RV, VandeBerg JL. Mammary glands in male marsupials: 2. Development of teat primordia in Didelphis virginiansand Monodelphis domestica. Reprod Fertil Dev 1991; 3: 295–301.

    PubMed  CAS  Google Scholar 

  106. Ullmann SL. Differentiation of the gonads and initiation of mammary gland and scrotum development in the brushtail possum Trichosurus vulpecula (Marsupialia). Anat Embryol 1993; 187: 475–484.

    PubMed  CAS  Google Scholar 

  107. Sharman GB, Hughes RK, Cooper DW. The chromosomal basis of sex differentiation in marsupials. Aust J Zool 1990; 37: 451–456.

    Google Scholar 

  108. Cooper DW, Edwards C, James E, Sharman GB, VandeBerg JL, Graves JAM. Studies on metatherian sex chromosomes. VI. A third state of an X-linked gene: partial activity for the paternally derived Pgk-A allele in cultured fibroblasts of Macropus giganteus and M. parryi. Aust J Biol Sci 1977; 30: 431–443.

    Google Scholar 

  109. Cooper DW, Johnston PG, VandeBerg JL, Robinson ES. X-chromosome inactivation in marsupials. Aust J Zool 1990; 37: 411–417.

    Google Scholar 

  110. Renfree MB, Short RV. Sex determination in marsupials: evidence for a marsupial-eutherian dichotomy. Phil Trans R Soc Lond B 1988; 322: 41–53.

    CAS  Google Scholar 

  111. Shaw G, Renfree MB, Short RV. Primary genetic control of sexual differentiation in marsupials. Aus J Zool 1990; 37: 443–450.

    Google Scholar 

  112. Tyndale-Biscoe CH, Renfree MB. Reproductive Physiology of Marsupials. Cambridge University Press, Cambridge, UK, 1987.

    Google Scholar 

  113. VandeBerg JL, Robinson ES, Samollow PB, Johnston P. X-linked gene expression and X-chromosome inactivation: marsupials, mouse and man compared. In: Isozymes: Current Topics in Biological and Medical Research. Vol 15, Academic Press, San Diego, CA, 1987, pp. 225–253.

    Google Scholar 

  114. Renfree MB. Ontogeny, genetic control, and phylogeny of female reproduction in monotreme and therian mammals. In: Szalay FS, ed. Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-Verlag, Berlin, 1993, pp. 4–20.

    Google Scholar 

  115. McElreavey K, Vilain E, Herskowitz I, Fellous M. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proc Natl Acad Sci USA 1993; 90: 3368–3372.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Whitworth, D.J., Behringer, R.R. (2001). The Transgenic Mouse in Studies of Mammalian Sexual Differentiation. In: Matzuk, M.M., Brown, C.W., Kumar, T.R. (eds) Transgenics in Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-102-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-102-2_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9640-6

  • Online ISBN: 978-1-59259-102-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics