Skip to main content

Use of Transgenic Animals in Skeleton Biology

  • Chapter
Transgenics in Endocrinology

Abstract

Three areas of skeletal biology that have benefited from the achievements in mouse genetics are skeletal patterning, cell differentiation and physiology. Skeleton patterning, or the position, type, length and shape of each individual skeletal element, is genetically controlled. Many of the genes involved have been implicated from their mutations, as identified through human genetics. However, it is only during recent mouse studies, knockout, misexpression, and overexpression that the actual function of these genes has been confirmed. In addition, a number of genes that act downstream have been identified. In terms of cell differentiation, transcription factors specific for differentiation of osteoblasts, osteoclasts, and chondrocytes (cells of the skeleton) were determined in the last decade, and it is highly probable that the identified genes represent only a small portion of the total genes involved. Finally, mouse genetics has provided clues about the function of structural proteins of the bone matrix that other biological assays could not provide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karsenty G. Genetics of skeletogenesis. Dev Genet 1998; 22: 30–313.

    Article  Google Scholar 

  2. Johnson RL, Tabin CJ. Molecular models for vertebrate limb development. Cell 1997; 90: 979–990.

    Article  PubMed  CAS  Google Scholar 

  3. Zeller R, Braun T. eds. Molecular basis of limb and muscle development. Cell Tissue Res 1999: 296.

    Google Scholar 

  4. Gellon G, McGinnis W. Shaping animal body plans in development and evolution by modulation of Hox expression patterns. Bioessays 1998; 20: 116–125.

    Article  PubMed  CAS  Google Scholar 

  5. Cohn MJ, Pate IK, Krumlauf R, Wilkinson DG, Clarke JD, Tickle C. Hox9 genes and vertebrate limb specification. Nature 1997; 387: 97–101.

    Article  PubMed  CAS  Google Scholar 

  6. Cohn MJ, Tickle C. Developmental basis of limblessness and axial patterning in snakes. Nature 1999; 399: 474–479.

    Article  PubMed  CAS  Google Scholar 

  7. Logan M, Tabin CJ. Role of Pitxl upstream of Tbx4 in specification of hindlimb identity. Science 1999; 283: 1736–1739.

    Article  PubMed  CAS  Google Scholar 

  8. Takeuchi JK, Koshiba-Takeuchi K, Matsumoto K, Vogel-Hopker A, Naitoh-Matsuo M, Ogura K, et al. TbxS and Tbx4 genes determine the wing/leg identity of limb buds. Nature 1999; 398: 810–814.

    Article  PubMed  CAS  Google Scholar 

  9. Rodriguez-Esteban C, Tsukui T, Yonei S, Magallon J, Tamura K, Izpisua-Belmonte JC. The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 1999; 398: 814–818.

    Article  PubMed  CAS  Google Scholar 

  10. Szeto D P, Rodriguez-Esteban C, Ryan AK, O’Connell SM, Liu F, Kioussi C, et al. Role of the Bicoid-related homeodomain factor Pitxl in specifying hindlimb morphogenesis and pituitary development. Genes Dev 1999; 13: 484–494.

    Article  PubMed  CAS  Google Scholar 

  11. Crossley PH, Minowada G, MacArthur CA, Martin GR. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 1996; 84: 127–136.

    Article  PubMed  CAS  Google Scholar 

  12. Vogel A, Rodriguez C, Izpisua-Belmonte JC. Involvement of Fgf-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 1996; 122: 1737–1750.

    PubMed  CAS  Google Scholar 

  13. Ohuchi H, Nakagawa T, Yamamoto A, Araga A, Ohata T, Ishimuru Y, et al. The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 1997; 124: 2235–2244.

    PubMed  CAS  Google Scholar 

  14. Saunders Jr JW. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool 1948; 108: 363–403.

    Article  PubMed  Google Scholar 

  15. Niswander L, Tickle C, Vogel A, Booth I, Martin GR. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 1993; 75: 579–587.

    Article  PubMed  CAS  Google Scholar 

  16. Fallon JF, Lopez A, Ros MA, Savage MP, Olwin BB, Simandl BK. FGF-2: apical ectodermal ridge growth signal for chick limb development. Science 1994; 264: 104–107.

    Article  PubMed  CAS  Google Scholar 

  17. Hall BK, Miyake T. The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat Embryol 1992; 186: 107–124.

    Article  PubMed  CAS  Google Scholar 

  18. Summerbell D, Lewis JH, Wolpert L. Positional information in chick limb morphogenesis. Nature 1973; 244: 492–496.

    Article  PubMed  CAS  Google Scholar 

  19. Loomis CA, Harris E, Michaud J, Wurst W, Hanks M, Joyner AL. The mouse Engrailed-1 gene and ventral limb patterning. Nature 1996; 382: 360–363.

    Article  PubMed  CAS  Google Scholar 

  20. Laufer E, Dahn R, Orozco 0E, Yeo CY, Pisenti J, Henrique D, et al. Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 1997; 386: 366–373.

    Article  PubMed  CAS  Google Scholar 

  21. Rodriguez-Esteban C, Schwabe JW, De La Pena J, Foys B, Eshelman B, Belmonte JC. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 1997; 386: 360–366.

    Article  PubMed  CAS  Google Scholar 

  22. Riddle RD, Ensini M, Nelson C, Tsuchida T, Jessell TM, Tabin C. Induction of the LIM homeobox gene Lmxl by WNT7a establishes dorsoventral pattern in the limb. Cell 1995; 83: 631–640.

    Article  PubMed  CAS  Google Scholar 

  23. Vogel A, Rodriguez C, Warnken W, Izpisua-Belmonte JC. Dorsal cell fate specified by chick Lmxl during vertebrate limb development. Nature 1995; 378: 716–720.

    Article  PubMed  CAS  Google Scholar 

  24. Saunders Jr JW, Gasseling MT. Ectoderm-mesenchymal interaction in the origins of wing symmetry. In: Fleischmajer R, Billingham RE, eds. Epithelial-Mesenchymal Interactions, Williams and Wilkins, Baltimore, MD, 1968, pp. 78–97.

    Google Scholar 

  25. Echelard Y, Epstein DJ, St-Jaques B, Shen L, Mohler J, McMahon JA, et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993; 75: 1417–1430.

    Article  PubMed  CAS  Google Scholar 

  26. Krauss S, Concordet JP, Ingham PW. A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 1993; 75: 1431–1444.

    Article  PubMed  CAS  Google Scholar 

  27. Riddle RD, Johnson RL, Laufer E, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 1993; 75: 1401–1416.

    Article  PubMed  CAS  Google Scholar 

  28. Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz I Altaba A, et al. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 1994; 76: 761–775.

    Article  PubMed  CAS  Google Scholar 

  29. Morgan BA, Izpisua-Belmonte JC, Duboule D, Tabin CJ. Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 1992; 358: 236–239.

    Article  PubMed  CAS  Google Scholar 

  30. Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 1994; 79: 993–1003.

    Article  PubMed  CAS  Google Scholar 

  31. Yang Y, Niswander L. Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell 1995; 80: 939–947.

    Article  PubMed  CAS  Google Scholar 

  32. Schughart K, Kappen C, Ruddle FH. Duplication of large genomic regions during the evolution of vertebrate homeobox genes. Proc Natl Acad Sci USA 1989; 86: 7067–7071.

    Article  PubMed  CAS  Google Scholar 

  33. Zakany J, Duboule D. Synpolydactyly in mice with a targeted deficiency in the Hoxd complex. Nature 1996; 384: 69–71.

    Article  PubMed  CAS  Google Scholar 

  34. Davis AP, Capecchi MR. A mutational analysis of the 5’ Hoxd genes: dissection of genetic interactions during limb development in the mouse. Development 1996; 122: 1175–1185.

    PubMed  CAS  Google Scholar 

  35. Kondo T, Dolle P, Zakany J, Duboule D. Function of posterior Hoxd genes in the morphogenesis of the anal sphincter. Development 1996; 122: 2651–2659.

    PubMed  CAS  Google Scholar 

  36. Knezevic V, De Santo R, Schughart K, Huffstadt U, Chiang C, Mahon KA, et al. Hoxd12 differentially affects preaxial and postaxial chondrogenic branches in the limb and regulates Sonic hedgehog in a positive feedback loop. Development 1997; 124; 4523–4536.

    PubMed  CAS  Google Scholar 

  37. Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostra] domain of expression. Cell 1991; 66: 1105–1119.

    Article  PubMed  CAS  Google Scholar 

  38. Duboule D. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 1994; 10: 358–364.

    Article  PubMed  CAS  Google Scholar 

  39. Zakany J, Fromental-Ramain C, Warot X, Duboule D. Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications. Proc Natl Acad Sci USA 1997;94:13, 695–13, 700.

    Google Scholar 

  40. Davis AP, Capecchi MR. Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of Hoxd 11. Development 1994; 120: 2187–2198.

    PubMed  CAS  Google Scholar 

  41. Favier B, Le Meur M, Chambon P, Dolle P. Axial skeleton homeosis and forelimb malformations in Hoxdll mutant mice. Proc Natl Acad Sci USA 1995; 92: 310–314.

    Article  PubMed  CAS  Google Scholar 

  42. Small KM, Potter SS. Homeotic transformations and limb defects in Hoxal 1 mutant mice. Genes Dev 1993; 7: 2318–2328.

    Article  PubMed  CAS  Google Scholar 

  43. Davis AP, Witte DP, Hsieh-Li HM, Potter SS, Capecchi MR. Absence of radius and ulna in mice lacking Hoxal l and Hoxdll. Nature 1995; 375: 791–795.

    Article  PubMed  CAS  Google Scholar 

  44. Goff DJ, Tabin CJ. Analysis of Hoxd13 and Hoxdll misexpression in chick limb buds reveals that Hox genes affect both bone condensations and growth. Development 1997; 124: 627–636.

    PubMed  CAS  Google Scholar 

  45. Kanzler B, Kuschert SJ, Liu YH, Mallo M. Hoxa2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development 1998; 125: 2587–2597.

    PubMed  CAS  Google Scholar 

  46. Duprez D, Bell EJ, Richardson MK, Archer CW, Wolpert L, Brickell PM, et al. Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech Dev 1996; 57: 145–157.

    Article  PubMed  CAS  Google Scholar 

  47. Macias D, Ganan Y, Sampath TK, Piedra ME, Ros MA, Hurle JM. Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 1997; 124: 1109–1117.

    PubMed  CAS  Google Scholar 

  48. Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, et al. Mechanisms of GDF-5 action during skeletal development. Development 1999: 126; 1305–1315.

    PubMed  CAS  Google Scholar 

  49. Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ. Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature 1994; 368: 639–643.

    Article  PubMed  CAS  Google Scholar 

  50. Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP. A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat Genet 1996; 12: 315–317.

    Article  PubMed  CAS  Google Scholar 

  51. Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa T, et al. Disruption of human limb morphogenesis by a dominant negative mutation in CDMPI. Nat Genet 1997; 17: 58–64.

    Article  PubMed  CAS  Google Scholar 

  52. Polinkovsky A, Robin NH, Thomas JT, Irons M, Lynn A, Goodman FR, et al. Mutations in CDMP 1 cause autosomal dominant brachydactyly type C. Nat Genet 1997; 17: 18, 19.

    Google Scholar 

  53. Zou H, Wieser R, Massague J, Niswander L. Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev 1997; 11: 2191–2203.

    Article  PubMed  CAS  Google Scholar 

  54. Brunet LJ, McMahon JA, McMahon AP, Harland RM. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 1998; 280: 1455–1457.

    Article  PubMed  CAS  Google Scholar 

  55. Pathi S, Rutenberg JB, Johnson RL, Vortkamp A. Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol 1999; 209: 239–253.

    Article  PubMed  CAS  Google Scholar 

  56. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet 1999; 22: 85–89.

    Article  PubMed  CAS  Google Scholar 

  57. Ducy P, Karsenty G. Genetic control of cell differentiation in the skeleton. Curr Opin Cell Biol 1998; 10: 614–619.

    Article  PubMed  CAS  Google Scholar 

  58. Tondravi MM, McKercher SR, Anderson K, Erdmann JM, Quiroz M, Maki R, et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 1997; 386: 81–84.

    Article  PubMed  CAS  Google Scholar 

  59. Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, et al. SOX9 directly regulates the type-II collagen gene. Nat Genet 1997; 16: 174–178.

    Article  PubMed  CAS  Google Scholar 

  60. Wagner T, Wirth J, Meyer J, Zabel B, Held M. Zimmer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994; 79: 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  61. Foster JW, Dominguez-Steglich MA, Guioli S, Kowk G, Weller PA, Stevanovic M, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994; 372: 525–530.

    Article  PubMed  CAS  Google Scholar 

  62. Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 1994; 8: 277–289.

    Article  PubMed  CAS  Google Scholar 

  63. Karaplis AC, He B, Nguyen MT, Young ID, Semeraro D, Ozawa H, et al. Inactivating mutation in the human parathyroid hormone receptor type 1 gene in Blomstrand chondrodysplasia. Endocrinology 1998; 139: 5255–5258.

    Article  PubMed  CAS  Google Scholar 

  64. Schipani E, Kruse K, Jüppner, H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 1995; 268: 98–100.

    Article  PubMed  CAS  Google Scholar 

  65. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 1996; 273: 613–622.

    Article  PubMed  CAS  Google Scholar 

  66. Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 1996; 273: 663–666.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang P, Jobert AS, Couvineau A, Silve C. A homozygous inactivating mutation in the parathyroid hormone/parathyroid hormone-related peptide receptor causing Blomstrand chondrodysplasia. J Clin Endocrinol Metab 1998; 83: 3365–3368.

    Article  PubMed  CAS  Google Scholar 

  68. Jobert AS, Zhang P, Couvineau A, Bonaventure J, Roume J, Le Merrer M, et al. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J Clin Invest 1998; 102: 34–40.

    Article  PubMed  CAS  Google Scholar 

  69. Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 1994; 371: 252–254.

    Article  PubMed  CAS  Google Scholar 

  70. Shiang R, Thompson LM, Zhu YZ, Church DM, Fielder TJ, Bocian M, et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 1994; 78: 335–342.

    Article  PubMed  CAS  Google Scholar 

  71. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996; 12: 390–397.

    Article  PubMed  CAS  Google Scholar 

  72. Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996; 84: 911–921.

    Article  PubMed  CAS  Google Scholar 

  73. Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott MP. Conservation of the hedgehog/ patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev 1996; 10: 301–312.

    Article  PubMed  CAS  Google Scholar 

  74. van den Heuvel M, Ingham PW. Smoothened encodes a receptor-like serpentine protein required for hedgehog signaling. Nature 1996; 382: 547–551.

    Article  PubMed  Google Scholar 

  75. Chen Y, Struhl G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 1996; 87: 553–563.

    Article  PubMed  CAS  Google Scholar 

  76. Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 1996; 384: 129–134.

    Article  PubMed  CAS  Google Scholar 

  77. Naski MC, Colvin JS, Coffin JD, Ornitz DM. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 1998; 125: 4977–4988.

    PubMed  CAS  Google Scholar 

  78. Sahni M, Ambrosetti D-C, Mansukhani A, Gertner R, Levy D, Basilico C. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT–1 pathway. Genes Dev 1999: 13.

    Google Scholar 

  79. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997; 89: 755–764.

    Article  PubMed  CAS  Google Scholar 

  80. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington R S, Mundlos S, Olsen BR, Selby PB, Owen MJ. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997; 89: 765–771.

    Article  PubMed  CAS  Google Scholar 

  81. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, et al. Mutations involving the transcription factor CBFA 1 cause cleidocranial dysplasia. Cell 1997; 89: 773–779.

    Article  PubMed  CAS  Google Scholar 

  82. Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA 1 in cleidocranial dysplasia. Nat Genet 1997; 16: 307–310.

    Article  PubMed  CAS  Google Scholar 

  83. Ducy P, Zhang R, Geoffroy VidaII AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997; 89; 747–754.

    Article  PubMed  CAS  Google Scholar 

  84. Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, et al. A Cbfal-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 1999; 13: 1025–1036.

    Article  PubMed  CAS  Google Scholar 

  85. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990; 345: 442–444.

    Article  PubMed  CAS  Google Scholar 

  86. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 1990; 87: 4828–4832.

    Article  PubMed  CAS  Google Scholar 

  87. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstette RW, Felix R, Fleisch HA, et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994; 266: 443–448.

    Article  PubMed  CAS  Google Scholar 

  88. Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 1997; 234: 137–142.

    Article  PubMed  CAS  Google Scholar 

  89. Tan KB, Harrop J, Reddy M, Young P, Terrett J, Emery J, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene 1997; 204: 35–46.

    Article  PubMed  CAS  Google Scholar 

  90. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–319.

    Article  PubMed  CAS  Google Scholar 

  91. Wong B., Rho J, Arron J, Robinson E, Orlinick J, Chao M, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 1997;272:25, 190–25, 194.

    Google Scholar 

  92. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998; 95: 3597–3602.

    Article  PubMed  CAS  Google Scholar 

  93. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93: 165–176.

    Article  PubMed  CAS  Google Scholar 

  94. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1999; 12: 1260–1268.

    Article  Google Scholar 

  95. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397: 315–323.

    Article  PubMed  CAS  Google Scholar 

  96. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 1999; 96: 3540–3545.

    Article  PubMed  CAS  Google Scholar 

  97. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997; 390: 175–179.

    Article  PubMed  CAS  Google Scholar 

  98. Wong BR, Josien R, Lee SY, Vologodskaia M, Steinman RM, Choi Y. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J Biol Chem 1998;273:28, 355–28, 359.

    Google Scholar 

  99. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Met al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999; 13: 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  100. May MJ, Ghosh S. Signal transduction through NF-kappa B. Immunol Today 1998; 19: 80–82.

    Article  PubMed  CAS  Google Scholar 

  101. Franzoso G, Carlson L, Xing L, Polj ak L, Shores EW, Brown KD,et al. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 1997; 11: 3482–3496.

    Article  PubMed  CAS  Google Scholar 

  102. lotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R. Osteopetrosis in mice lacking NF-kappaB 1 and NF-kappaB2. Nat Med 1997; 3: 1285–1289.

    Article  Google Scholar 

  103. Li Y, Olsen BR. Murine models of human genetic skeletal disorders. Matrix Biol 1997; 16: 49–52.

    Article  PubMed  Google Scholar 

  104. Li Y, Lacerda DA, Warman ML, Beier DR, Yoshioka H, Ninomiya Y, et al. A fibrillar collagen gene, Col llal, is essential for skeletal morphogenesis. Cell 1995; 80: 423–430.

    Article  PubMed  CAS  Google Scholar 

  105. Vikkula M, Mariman EC, Lui VC, Zhidkova NI, Tiller GE, Goldring MB, et al. Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell 1995; 80: 431–437.

    Article  PubMed  CAS  Google Scholar 

  106. Watanabe H, Kimata K, Line S, Strong D, Gao LY, Kozak CA, et al. Mouse cartilage matrix deficiency (cmd) caused by a 7 bp deletion in the aggrecan gene. Nat Genet 1994; 7: 154–157.

    Article  PubMed  CAS  Google Scholar 

  107. Warman ML, Abbott M, Apte SS, Hefferon T, McIntosh I, Cohn DH, et al. A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat Genet 1993; 5: 79–82.

    Article  PubMed  CAS  Google Scholar 

  108. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998; 93: 411–422.

    Article  PubMed  CAS  Google Scholar 

  109. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997; 386: 78–81.

    Article  PubMed  CAS  Google Scholar 

  110. Kocher MS, Shapiro F. Osteogenesis imperfecta. J Am Acad Orthop Surg 1998; 6: 225–236.

    PubMed  CAS  Google Scholar 

  111. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996; 382: 448–452.

    Article  PubMed  CAS  Google Scholar 

  112. Danielson KG, Baribault H, Holmes DF, Graham H, Kadler K E, Iozzo RV. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 1997; 136: 729–743.

    Article  PubMed  CAS  Google Scholar 

  113. Gilmour DT, Lyon GJ, Carlton MB, Sanes JR, Cunningham JM, Anderson JR, et al. Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO J 1998; 17: 1860–1870.

    Article  PubMed  CAS  Google Scholar 

  114. Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, et al. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 1998; 20: 78–82.

    Article  PubMed  CAS  Google Scholar 

  115. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 1996; 273: 1236–1238.

    Article  PubMed  CAS  Google Scholar 

  116. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 1997;95:13, 453–13, 458.

    Google Scholar 

  117. Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, et al. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 1996; 122: 3151–3162.

    PubMed  CAS  Google Scholar 

  118. Rittling SR, Matsumoto HN, McKee MD, Nanci A, An XR, Novick KE, et al. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 1998; 13: 1101–1111.

    Article  PubMed  CAS  Google Scholar 

  119. Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BL. Altered wound healing in mice lacking a functional osteopontin gene. J Clin Invest 1998; 101 (Suppl. 1): 1468–1478.

    PubMed  CAS  Google Scholar 

  120. Yoshitake H, Rittling SR, Denhardt DT, Noda M. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci USA 1999; 96: 8156–8160.

    Article  PubMed  CAS  Google Scholar 

  121. Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991; 64: 693–702.

    Article  PubMed  CAS  Google Scholar 

  122. Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 1992; 90: 1622–1627.

    Article  PubMed  CAS  Google Scholar 

  123. Packer SO. The eye and skeletal effects of two mutant alleles at the microphthalmia locus of Mus musculus. J Exp Zool 1967; 165: 21–45.

    Article  PubMed  CAS  Google Scholar 

  124. Walker DG. Spleen cells transmit osteopetrosis in mice. Science 1975; 190: 785–787.

    Article  PubMed  CAS  Google Scholar 

  125. Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA, et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 1993; 74: 395–404.

    Article  PubMed  CAS  Google Scholar 

  126. Corral DA, Amling M, Priemel M, Loyer E, Fuchs S, Ducy P, et al. Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc Natl Acad Sci USA 1998;95:13, 835–13, 840.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Günther, T., Doherty, M.J., Karsenty, G. (2001). Use of Transgenic Animals in Skeleton Biology. In: Matzuk, M.M., Brown, C.W., Kumar, T.R. (eds) Transgenics in Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-102-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-102-2_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9640-6

  • Online ISBN: 978-1-59259-102-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics