Skip to main content

Glycoprotein Hormones

Transgenic Mice as Tools to Study Regulation and Function

  • Chapter
Transgenics in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

  • 107 Accesses

Abstract

Members of the glycoprotein hormone family include the gonadotropins: luteinizing hormone (LH), follicle-stimulating hormone (FSH), and chorionic gonadotropin (CG), and thyroid-stimulating hormone (TSH). These hormones are essential for the proper development and function of additional endocrine glands, and ultimately affect reproduction and metabolism. Each family member is comprised of a shared α-subunit that combines with unique β-subunits to form heterodimeric hormones. Thus, it is the β-subunit that confers biological specificity to each hormone (1). All mammals synthesize and secrete the three pituitary glycoprotein hormones (LH, FSH, and TSH). LH and FSH are produced in gonadotropes, while TSH is produced by thyrotropes of the anterior pituitary. In contrast, CG is synthesized and secreted from placental syncytiotrophoblasts only in primates and equids (2). LH and FSH act in concert to stimulate gonadal growth, gametogenesis, and steroidogenesis in males and females (3,4). Similarly, CG acts at the level of the ovary by binding to the same receptor as LH (5). This binding event is necessary for maintenance of the corpus luteum during early pregnancy in humans (6). In contrast to the gonadotropins, TSH stimulates thyroid growth as well as synthesis and secretion of thyroid hormone (7). Expression and secretion of the pituitary glycoprotein hormones are stimulated by trophic factors from the hypothalamus, and inhibited by hormones secreted from their respective end-organs. An overview of the glycoprotein hormone axes is presented in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fiddes JC, Talmadge K. Structure, expression, and evolution of the genes for the human glycoprotein hormones. Rec Prog Horm Res 1984; 40: 43–78.

    PubMed  CAS  Google Scholar 

  2. Jameson JL, Hollenberg AN. Regulation of chorionic gonadotropin gene expression. Endocr Rev 1993; 14: 203–221.

    PubMed  CAS  Google Scholar 

  3. Griffen JE, Wilson JD. Disorders of the testes and the male reproductive tract. In: Wilson JD, Foster DW, eds., Williams Textbook of Endocrinology, 8th ed., W.B. Saunders Company, Philadelphia, PA, 1992, pp. 799–852.

    Google Scholar 

  4. Carr BR. Disorders of the ovary and female reproductive tract. In: Wilson JD, Foster DW, eds., Williams Textbook of Endocrinology, 8th ed., W.B. Saunders Company, Philadelphia, PA, 1992, pp. 733–798.

    Google Scholar 

  5. Ascoli M, Segaloff DL. On the structure of the luteinizing hormone/chorionic gonadotropin receptor. Endocr Rev 1989; 10: 27–44.

    Article  PubMed  CAS  Google Scholar 

  6. Zeleznik AJ, Benyo DF. Control of follicular development, corpus luteum function, and the recognition of pregnancy in higher primates. In: Knobil E, Neill J, eds., The Physiology of Reproduction, 2nd ed, Raven Press, New York, NY, 1994, pp. 751–782.

    Google Scholar 

  7. Larson PR, Ingbar SH. The thyroid gland, In: Wilson JD, Foster DW, eds., Williams Textbook of Endocrinology, 8th ed., W.B. Saunders Company, Philadelphia, PA, 1992, pp. 357–487.

    Google Scholar 

  8. Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 1994; 372: 182–186.

    Article  PubMed  CAS  Google Scholar 

  9. Nishimori K, Young LJ, Guo Q, Wang Z, Insel TR, Matzuk MM. Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci USA 1996;93:11, 699–11, 704.

    Google Scholar 

  10. Garry DJ, Ordway GA, Lorenz JN, Radford NB, Chin ER, Grange RW, et al. Mice without myoglobin. Nature 1998; 395: 905–908.

    Article  PubMed  CAS  Google Scholar 

  11. Kendall SK, Samuelson LC, Saunders TL, Wood RI, Camper SA. Targeted disruption of the pituitary glycoprotein hormone alpha-subunit produces hypogonadal and hypothyroid mice. Genes Dev 1995; 9: 2007–2019.

    Article  PubMed  CAS  Google Scholar 

  12. Huhtaniemi I. Molecular aspects of the ontogeny of the pituitary-gonadal axis. Reprod Fertil Dev 1995; 7: 1025–1035.

    Article  PubMed  CAS  Google Scholar 

  13. O’ Shaughnessy PJ, Baker P, Sohnius U, Haavisto AM, Charlton HM, Huhtaniemi I. Fetal development of Leydig cell activity in the mouse is independent of pituitary gonadotroph function. Endocrinol. 1998; 139: 1141–1146.

    Article  Google Scholar 

  14. Monastirsky R, Laurence KA, Tovar E. The effects of gonadotropin immunization of prepubertal rabbits on gonadal development. Fertil Steril 1971; 22: 318–324.

    PubMed  CAS  Google Scholar 

  15. Catt KJ, Dufau ML, Neaves WB, Walsh PC, Wilson JD. LH-hCG receptors and testosterone content during differentiation of the testis in the rabbit embryo. Endocrinology 1975; 97: 1157–1165.

    Article  PubMed  CAS  Google Scholar 

  16. Stahl JH, Kendall SK, Brinkmeier ML, Grecos TL, Watkins-Chow DE, Campos-Banos A, et al. Thyroid hormone is essential for pituitary somatotropes and lactotropes. Endocrinology 1999; 140: 1884–1892.

    Article  PubMed  CAS  Google Scholar 

  17. Begeot M, Hemming FJ, Dubois PM, Combarnous Y, Dubois MP, Aubert ML. Induction of pituitary lactotrope differentiation by luteinizing hormone alpha subunit. Science 1984; 226: 566–568.

    Article  PubMed  CAS  Google Scholar 

  18. Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 1997; 15: 201–204.

    Article  PubMed  CAS  Google Scholar 

  19. Aittomäki K, Lucena JLD, Pakarinen P, Sistonen P, Tapanainen J, Gromoll J, et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 1995; 82: 959–968.

    Article  PubMed  Google Scholar 

  20. Tapanainen JS, Aittomaki K, Min J, Vaskivmo T, Huhtaniemi I. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat. Genet. 1997; 15: 205, 206.

    Google Scholar 

  21. Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, Sassone-Corsi P. Impairing follicle-stimulating hormone (FSH) signaling in vivo: Targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci USA 1998;95:13, 612–13, 617.

    Google Scholar 

  22. Kumar TR, Low MJ, Matzuk MM. Genetic rescue of follicle-stimulating hormone (3-deficient mice. Endocrinology 1998; 139: 3289–3295.

    Article  PubMed  CAS  Google Scholar 

  23. Dente L, Ruther U, Tripodi M, Wagner EF, Cortese R. Expression of human alpha 1-acid glycoprotein genes in cultured cells and in transgenic mice. Genes Dev 1988; 2: 259–266.

    Article  PubMed  CAS  Google Scholar 

  24. Vassar R, Rosenberg M, Ross S, Tyner A, Fuchs E. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc Natl Acad Sci USA 1989; 86: 1563–1567.

    Article  PubMed  CAS  Google Scholar 

  25. Zimmerman K, Legouy E, Stewart V, Depinho R, Alt FW. Differential regulation of the N-myc gene in transfected cells and transgenic mice. Mol. Cell. Biol. 1990; 10: 2096–2103.

    PubMed  CAS  Google Scholar 

  26. Keri RA, Wolfe MW, Saunders TL, Anderson I, Kendall SK, Wagner T, et al. The proximal promoter of the bovine luteinizing hormone [3-subunit gene confers gonadotrope-specific expression and regulation by gonadotropin-releasing hormone, testosterone, and 17(3-estradiol in transgenic mice. Mol Endocrinol 1994; 8: 1807–1816.

    Article  PubMed  CAS  Google Scholar 

  27. Bokar JA, Keri RA, Farmerie TA, Fenstermaker RA, Andersen BA, Hamernik DL, et al. Expression of the glycorprotein homone a-subunit gene in the placenta requires a function cyclic AMP response element, whereas a different cis-acting element mediates pituitary-specific expression. Mol Cell Biol 1989; 9: 5113–5122.

    PubMed  CAS  Google Scholar 

  28. Keri RA, Andersen BA, Kennedy GC, Hamernik DL, Clay CM, Brace AD, et al. Estradiol inhibits transcription of the human glycoprotein hormone a-subunit gene despite the absence of a high affinity binding site for estrogen receptor. Mol Endocrinol 1991; 5: 725–733.

    Article  PubMed  CAS  Google Scholar 

  29. Clay CM, Keri RA, Finicle AB, Heckert LL, Hamernik DL, Marshke KM, et al. Transcriptional repression of the glycoprotein homone a subunit gene by androgen may involve direct binding of androgen receptor to the proximal promoter. J Biol Chem 1993;268:13, 556–13, 564.

    Google Scholar 

  30. Hamernik DL, Keri RA, Clay CM, Clay JN, Sherman GB, Sawyer HR, Jr, et al. Gonadotrope-and thyrotrope-specific expression of the human and bovine glycoprotein hormone a-subunit gene is regulated by distinct cis-acting elements. Mol Endocrinol 1992; 6: 1745–1755.

    Article  PubMed  CAS  Google Scholar 

  31. Windle JJ, Weiner RI, Mellon PL. Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice. Mol Endocrinol 1990; 4: 597–603.

    Article  PubMed  CAS  Google Scholar 

  32. Heckert LL, Wilson EM, Nilson JH. Transcriptional repression of the a-subunit gene by androgen receptor occurs independently of DNA binding but requires the DNA-binding and ligand-binding domains of the receptor. Mol Endocrinol 1997; 11: 1497–1506.

    Article  PubMed  CAS  Google Scholar 

  33. Schoderbek WE, Roberson MS, Maurer RA. Two different DNA elements mediate gonadotropin releasing hormone effects on expression of the glycoprotein hormone alpha-subunit gene. J Biol Chem 1993; 268: 3903–3910.

    PubMed  CAS  Google Scholar 

  34. Abbud R, Ameduri R, Rao S, Nett TM, Nilson JH. Chronic hypersecretion of luteinizing hormone in transgenic mice selectively alters responsiveness of the a-subunit gene to gonadotropin-releasing hormone and estrogens. Mol Endocrinol 1999; 13: 1449–1459.

    Article  PubMed  CAS  Google Scholar 

  35. Yamaizumi M, Mekada E, Uchida T, Okada Y. One molecule of diptheria toxin fragment A introduced into a cell can kill the cell. Cell 1978; 15: 245–250.

    Article  PubMed  CAS  Google Scholar 

  36. Kendall SK, Saunders TL, Jin L, Lloyd R, Glode LM, Nett TM, et al. Targeted ablation of pituitary gonadotropes in transgenic mice. Mol Endocrinol 1991; 5: 2025–2036.

    Article  PubMed  CAS  Google Scholar 

  37. Kendall SK, Gordon DF, Birkmeier TS, Petrey D, Sarapura VD, O’Shea KS, et al. Enhancer-mediated high level expression of mouse pituitary glycoprotein hormone a-subunit transgene in thyrotropes, gonadotropes, and developing pituitary gland. Mol Endocrinol 1994; 8: 1420–1433.

    Article  PubMed  CAS  Google Scholar 

  38. Burrows HL, Birkmeier TS, Seasholtz AF, Camper SA. Targeted ablation of cells in the pituitary primordia of transgenic mice. Mol Endocrinol 1996; 10: 1467–1477.

    Article  PubMed  CAS  Google Scholar 

  39. Brinkmeier ML, Gordon DF, Dowding JM, Saunders TL, Kendall SK, Sarapura VD, et al. Cell-specific expression of the mouse glycoprotein hormone a-subunit gene requires multiple interacting DNA elements in transgenic mice. Mol Endocrinol 1998; 12: 622–633.

    Article  PubMed  CAS  Google Scholar 

  40. Wood WM, Dowding JM, Sarapura VD, McDermott MT, Gordon DF, Ridgway EC. Functional interactions of an upstream enhancer of the mouse glycoprotein hormone a-subunit gene with proximal promoter sequences. Mol Cell Endocrinol 1998; 142: 141–152.

    Article  PubMed  CAS  Google Scholar 

  41. Heckert LL, Schultz K, Nilson JH. Different composite regulatory elements direct expression of the human a subunit gene to pituitary and placenta. J. Biol. Chem. 1995;270:26, 497–26, 504.

    Google Scholar 

  42. Jackson SM, Gutierrez-Hartman A, Hoeffler JP. Upstream stimulatory factor, a basic-helix-loophelix-zipper protein, regulates the activity of the a-glycoprotein hormone subunit gene in pituitary cells. Mol Endocrinol 1995; 9: 278–291.

    Article  PubMed  CAS  Google Scholar 

  43. Barnhart KM, Mellon PL. The orphan nuclear receptor, steroidogenic factor-1, regulates the glycoprotein hormone alpha-subunit gene in pituitary gonadotropes. Mol Endocrinol 1994; 8: 878–885.

    Article  PubMed  CAS  Google Scholar 

  44. Silver BJ, Bokar JA, Virgin JB, Vallen EA, Milsted A, Nilson JH. Cyclic AMP regulation of the human glycoprotein hormone a-subunit gene is mediated by an 18-base-pair element. Proc Nati Acad Sci USA 1987; 84: 2198–2202.

    Article  CAS  Google Scholar 

  45. Jameson JL, Powers AC, Gallagher GD, Habener JF. Enhancer and promoter element interactions dictate cyclic adenosine monophosphate mediated and cell-specific expression of the glycoprotein hormone a gene. Mol Endocrinol 1989; 3: 763–772.

    Article  PubMed  CAS  Google Scholar 

  46. Kumar TR, Fairchild-Huntress V, Low MJ. Gonadotrope-specific expression of the human follicle-stimulating hormone (3-subunit gene in pituitaries of transgenic mice. Mol Endocrinol 1992; 6: 81–90.

    Article  PubMed  CAS  Google Scholar 

  47. Kumar TR, Low MJ. Gonadal steroid hormone regulation of human and mouse follicle stimulating hormone 13-subunit gene expression. Mol Endocrinol 1993; 7: 898–906.

    Article  PubMed  CAS  Google Scholar 

  48. Kumar TR, Low MJ. Hormonal regulation of human follicle-stimulating hormone-(3 subunit gene expression: GnRH stimulation and GnRH-independent androgen inhibition. Neuroendocrinology 1995; 61: 628–637.

    Article  PubMed  CAS  Google Scholar 

  49. Sheckter CB, Matsumoto AM, Bremner WJ. Testosterone administration inhibits gonadotropin secretion by an effect directly on the human pituitary. J Clin Endocrinol Metab 1989; 68: 397–401.

    Article  PubMed  CAS  Google Scholar 

  50. Finkelstein JS, Whitcomb RW, O’Dea ISL, Longcope C, Schoenfeld DA, Crowley JWF. Sex steroid control of gonadotropin secretion in the human male. I. Effects of testosterone administration in normal and gonadotropin-releasing hormone-deficient men. J Clin Endocrinol Metab 1991; 73: 609–620.

    Article  PubMed  CAS  Google Scholar 

  51. Markkula M, Hämäläinen TM, Loune E, Huhtaniemi I. The follicle-stimulating hormone (FSH) 3- and common a-subunits are expressed in mouse testis, as determined in wild-type mice and those transgenic for the FSH f3-subunit/herpes simplex virus thymidine kinase fusion gene. Endocrinology 1995; 136: 4769–4775.

    Article  PubMed  CAS  Google Scholar 

  52. Markkula M, Kananen K, Klemi P, Huhtaniemi I. Pituitary and ovarian expression of the endogenous follicle-stimulating hormone (FSH) subunit genes and an FSHj3-subunit promoter-driven herpes simplex virus thymidine kinase gene in transgenic mice; specific partial ablation of FSH-producing cells by antiherpes treatment. J Endocrinol 1996; 150: 265–273.

    Article  PubMed  CAS  Google Scholar 

  53. Markkula M, Kananen K, Paukku T, Loune E, Pelliniemi LJ, Huhtaniemi I. Induced ablation of gonadotropins in transgenic mice expressing Herpes simplex virus thymidine kinase under the FSH 13-subunit promoter. Mol Cell Endocrinol 1995; 108: 1–9.

    Article  PubMed  CAS  Google Scholar 

  54. al-Shawi R, Burke J, Wallace H, Jones C, Harrison S, Buxton D, Maley S, Chandley A, Bishop JO. The herpes simples virus type 1 thymidine kinase is expressed in the testes of transgenic mice under the control of a cryptic promoter. Mol Cell Biol 1991; 11: 4207–4216.

    PubMed  CAS  Google Scholar 

  55. Wallace H, Ledent C, Vassart G, Bishop JO, al-Shawi R. Specific ablation of thyroid follicle cells in adult transgenic mice. Endocrinol. 1991; 129: 3217–3226.

    Article  CAS  Google Scholar 

  56. Brown P, McNeilly JR, Wallace RM, McNeilly AS, Clark AJ. Characterization of the ovine LH 13-subunit gene: the promoter directs gonadotrope-specific expression in transgenic mice. Mol Cell Endocrinol 1993; 93: 157–165.

    Article  PubMed  CAS  Google Scholar 

  57. McNeilly JR, Brown P, Mullins J, Clark AJ, McNeilly AS. Characterization of the ovine LH f3-subunit gene: the promoter is regulated by GnRH and gonadal steroids in transgenic mice. J Endocrinol 1996; 151: 481–489.

    Article  PubMed  CAS  Google Scholar 

  58. Fallest PC, Trader GL, Darrow JM, Shupnik MA. Regulation of rat luteinizing hormone 13 gene expression in transgenic mice by steroids and a gonadotropin-releasing hormone antagonist. Biol Reprod 1995; 53: 103–109.

    Article  PubMed  CAS  Google Scholar 

  59. Turgeon JL, Kimura Y, Waring DW, Mellon PL. Steroid and pulsatile gonadotropin-releasing hormone (GnRH) regulation of luteinizing hormone and GnRH receptor in a novel gonadotrope cell line. Mol Endocrinol 1996; 10: 439–450.

    Article  PubMed  CAS  Google Scholar 

  60. Keri RA, Nilson JH. A steroidogenic factor-1 binding site is required for activity of the luteinizing hormone ß subunit promoter in gonadotropes of transgenic mice. J Biol Chem 1996;271:10, 782–10, 785.

    Google Scholar 

  61. Halvorson LM, Kaiser U, Chin WW. Stimulation of luteinizing hormone f3 gene promoter activity by the orphan nuclear receptor, steroidogenic factor-1. J Biol Chem 1996; 271: 6645–6650.

    Article  PubMed  CAS  Google Scholar 

  62. Halvorson LM, Ito M, Jameson JL, Chin WW. Steroidogenic factor-1 and early growth response protein 1 act through two composite DNA binding sites to regulate luteinizing hormone 0-subunit gene expression. J Biol Chem 1998;273:14, 712–14, 720.

    Google Scholar 

  63. Halvorson LM, Kaiser U, Chin WW. The protein kinase C system acts through the early growth response protein 1 to increase LH0 gene expression in synergy with steroidogenic factor-1. Mol Endocrinol 1999; 13: 106–116.

    Article  PubMed  CAS  Google Scholar 

  64. Ingraham HA, Lala DS, Ikeda Y, Luo X, Shen WH, Nachtigal MW, et al. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev 1994; 8: 2302–2312.

    Article  PubMed  CAS  Google Scholar 

  65. Ikeda Y, Luo X, Abbud R, Nilson JH, Parker KL. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol 1995; 9: 478–486.

    Article  PubMed  CAS  Google Scholar 

  66. Tremblay JJ, Lanctot C, Drouin J. The pan-pituitary activator of transcription, Ptxl (pituitary homeobox 1) acts in synergy with SF-1 and Pitt and is an upstream regulator of the Limhomeodomain gene Lim3/Lhx3. Mol Endocrinol 1998; 12: 428–441.

    Article  PubMed  CAS  Google Scholar 

  67. Tremblay JJ, Drouin J. Egr-1 is a downstream effector of GnRH and synergizes by direct interaction with Ptxl and SF-1 to enhance luteinizing hormone beta gene transcription. Mol Cell Biol 1999; 19: 2567–2576.

    PubMed  CAS  Google Scholar 

  68. Szeto DP, Rodriguez-Esteban C, Ryan AK, O’ Connell SM, Liu F, Kioussi C, et al. Role of the bicoidrelated homeodomain factor Pitxl in specifying hindlimb morphogenesis and pituitary development. Genes Dev. 1999; 13: 484–494.

    Article  PubMed  CAS  Google Scholar 

  69. Acampora D, Mazan S, Tuorto F, Avantaggiato V, Tremblay JJ, Lazzaro D, et al. Transient dwarfism and hypogonadism in mice lacking Otx1 reveal prepubescent stage-specific control of pituitary levels of GH, FSH, and LH. Development 1998; 125: 1229–1239.

    PubMed  CAS  Google Scholar 

  70. Lee SL, Sadovsky Y, Swirnoff A. H, Polish JA, Goda P, Gavrilina G, Milbrandt J. Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 1996; 273: 1219–1221.

    Article  PubMed  CAS  Google Scholar 

  71. Topilko P, Schneider-Maunoury S, Levi G, Trembleau A, Gourdji D, Driancourt MA, et al. Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)-targeted mice. Mol Endocrinol 1997; 12: 107–122.

    Article  Google Scholar 

  72. Wolfe MW, Call GB. Early growth response protein 1 binds to the luteinizing hormone-(3 promoter and mediates gonadotropin-releasing hormone-stimulated gene expression. Mol Endocrinol 1999; 13: 752–763.

    Article  PubMed  CAS  Google Scholar 

  73. Dorn C, Ou Q, Svaren J, Crawford PA, Sadovsky Y. Activation of luteinizing hormone beta gene by gonadotropin-releasing hormone requires the synergy of early growth response-1 and steroidgenic factor-1. J Biol Chem 1999;274:13, 870–13, 876.

    Google Scholar 

  74. Keri RA, Bachman DJ, Behrooz A, et al. An NF-Y binding site is important for basal, but not gonadotropin-releaseing hormone-stimulated, expression of the luteinizing hormone beta subunit gene. J Biol Chem 2000;275:13, 082–13, 088.

    Google Scholar 

  75. Alarid ET, Windle JJ, Whyte DB, Mellon PL. Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Development 1996; 122: 3319–3329.

    PubMed  CAS  Google Scholar 

  76. Low MJ, Goodman RH, Ebert KM. Cryptic human growth hormone gene sequences direct gonadotroph-specific expression in transgenic mice. Mol Endocrinol 1989; 3: 2028–2033.

    Article  PubMed  CAS  Google Scholar 

  77. Haugen BR, Wood WM, Gordon DF, Ridgway EC. A thyrotrope-specific variant of Pit-1 transactivates the thyrotropin beta promoter. J. Biol. Chem. 1993;268:20, 818–20, 824.

    Google Scholar 

  78. Mason ME, Friend KE, Copper J, Shupnik MA. Pit-1/GHF-1 binds to TRH-sensitive regions of the rat thyrotropin beta gene. Biochemistry 1993; 32: 8932–8938.

    Article  PubMed  CAS  Google Scholar 

  79. Gordon DF, Haugen BR, Sarapura VD, Nelson AR, Wood WM, Ridgway EC. Analysis of Pit-1 in regulating mouse TSH a promoter activity in thyrotropes. Mol Cell Endocrinol 1993; 96: 75–84.

    Article  PubMed  CAS  Google Scholar 

  80. Haugen BR, Gordon DF, Nelson AR, Wood WM, Ridgway EC. The combination of Pit-1 and Pit- T have a synergistic stimulatory effect on the thyrotropin 0-subunit promoter but not the growth hormone or prolactin promoters. Mol Endocrinol 1994; 8: 1574–1582.

    Article  PubMed  CAS  Google Scholar 

  81. Wondisford FE, Farr EA, Radovick SA, Steinfelder Hi, Moates JM, McClaskey JH, Weintraub BD. Thyroid hormone inhibition of human thyrotropin [3-subunit gene expression is mediated by a cis-acting element located in the first exon. J Biol Chem 1989;264:14, 601–14, 604.

    Google Scholar 

  82. Wood WM, Kao MY, Gordon DF, Ridgway EC. Thyroid hormone regulates the mouse thyrotropin 13-subunit gene promoter in transfected primary thyrotropes. J Biol Chem 1989;264:14, 840–14, 847.

    Google Scholar 

  83. Carr FE, Wong NC. Characterisitics of a negative thyroid hormone response element. J Biol Chem 1994; 269: 4175–4179.

    PubMed  CAS  Google Scholar 

  84. Hollenberg AN, Monden T, Flynn TR, Boers ME, Cohen O, Wondisford FE. The human thyrotropin-releasing hormone gene is regulated by thyroid hormone through two distinct classes of negative thyroid hormone response elements. Mol Endocrinol 1995; 9: 540–550.

    Article  PubMed  CAS  Google Scholar 

  85. Kim MK, McClaskey JH, Bodenner DL, Weintraub BD. An AP-1-like factor and the pituitary-specific factor Pit-1 are both necessary to mediate hormonal induction of human thyrotropin beta gene expression. J Biol Chem 1993;268:23, 366–23, 375.

    Google Scholar 

  86. Haugen BR, Brown NS, Wood WM, Gordon DF, Ridgway EC. The thyrotrope-restricted isoform of the retinoid-X receptor-gammal mediates 9-cis-retinoic acid suppression of thyrotropin-ß promoter activity. Mol Endocrinol 1997; 11: 481–489.

    Article  PubMed  CAS  Google Scholar 

  87. Kim MK, Lesoon-Wood LA, Weintraub BD, Chung JH. A soluble transcription factor, Oct-1, is also found in the insoluble nuclear matrix and possesses silencing activity in its alanine-rich domain. Mol Cell Biol 1996; 16: 4366–4377.

    PubMed  CAS  Google Scholar 

  88. Gordon DF, Lewis SR, Haugen BR, James RA, McDermott MT, Wood WM, Ridgway EC. Pit-1 and GATA-2 interact and functionally cooperate to activate the thyrotropin (3-subunit promoter. J Biol Chem 1997;272:24, 339–24, 347.

    Google Scholar 

  89. Hayashi Y, Xie J, Weiss RE, Pohlenz J, Refetoff S. Selective pituitary resistance to thyroid hormone produced by expression of a mutant thyroid hormone receptor [3 gene in the pituitary gland of transgenic mice. Biochem Biophys Res Commun 1998; 245: 204–210.

    Article  PubMed  CAS  Google Scholar 

  90. Abel ED, Kaulbach HC, Campos-Barros A, Ahima RS, Boers ME, Hashimoto K, Forrest D, Wondisford FE. Novel insight from transgenic mice into thyroid hormone resistance and the regulation of thyrotropin. J Clin Invest 1999; 103: 271–279.

    Article  PubMed  CAS  Google Scholar 

  91. Maki K, Miyoshi I, Kon Y, Yamashita T, Sasaki N, Aoyama S, Takahashi E, Namioka S, Hayashizaki Y, Kasai N. Targeted pituitary tumorigenesis using the human thyrotropin (3-subunit chain promoter in transgenic mice. Mol Cell Endocrinol 1994; 105: 147–154.

    Article  PubMed  CAS  Google Scholar 

  92. Dasen JS, O’Connell SM, Flynn SE, Treier M, Gleiberman AS, Szeto DP, et al. Reciprocal interactions of Pitt and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell 1999; 97: 587–598.

    Article  PubMed  CAS  Google Scholar 

  93. Strauss BL, Pittman R, Pixley MR, Nilson JH, Boime I. Expression of the [3 subunit of chorionic gonadotropin in transgenic mice. J Biol Chem 1994; 269: 4968–4973.

    PubMed  CAS  Google Scholar 

  94. Talmadge K, Vamvakopoulos NC, Fiddes JC. Evolution of the genes for the 13 subunits of human chorionic gonadotropin and luteinizing hormone. Nature 1984; 307: 37–40.

    Article  PubMed  CAS  Google Scholar 

  95. Hostetler G, Eaton A, Carnes M, Gildner J, Brownfield MS. Immunocytochemical localization of luteinizing hormone in rat central nervous system. Neuroendocrinology 1987; 46: 185–193.

    Article  Google Scholar 

  96. Pelletier J, Counis R, de Reviers MM, Tillet Y. Localization of luteinizing hormone 13-mRNA by in situ hybridization in the sheep pars tuberalis. Cell Tissue Res 1992; 267: 301–306.

    Article  PubMed  CAS  Google Scholar 

  97. Mason AJ, Hayflick JS, Zoeller T, Young WSI, Phillips HS, Nikolics K, Seeburg PH. A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse. Science 1986; 234: 1366–1371.

    Article  PubMed  CAS  Google Scholar 

  98. Williamson P, Lang J, Boyd Y. The gonadotropin-releasing hormone (GnRH) gene maps to mouse chromosome 14 and identifies a homologous region on human chromosome 8. Somat. Cell Mol Genet 1991; 17: 609–615.

    Article  PubMed  CAS  Google Scholar 

  99. Saade G, London DR, Clayton RN. The interaction of gonadotropin-releasing hormone and estradiol on luteinizing hormone and prolactin gene expression in female hypogonadal (hpg) mice. Endocrinology 1989; 124: 1744–1753.

    Article  PubMed  CAS  Google Scholar 

  100. Cattanach BM, Iddon CA, Charlton HM, Chiappa SA, Fink G. Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 1977; 269: 338–340.

    Article  PubMed  CAS  Google Scholar 

  101. Schwanzel-Fukuda M, Bick D, Pfaff DW. Luteinizing hormone-releasing hormone (LHRH)expressing cells do not migrate normally in an inherited hypogonadal (Kallman) syndrome. Mol Brain Res 1989; 6: 311–319.

    Article  PubMed  CAS  Google Scholar 

  102. Fink G, Sheward WJ, Charlton HM. Priming effect of luteinizing hormone releasing hormone in the hypogonadal mouse. J Endocrinol 1982; 94: 283–287.

    Article  PubMed  CAS  Google Scholar 

  103. McDowell IF, Morris JF, Charlton HM. Characterization of the pituitary gonadotroph cells of hypogonadal (hpg) male mice: comparison with normal mice. J Endocrinol 1982; 95: 321–330.

    Article  PubMed  CAS  Google Scholar 

  104. Gibson MJ, Krieger DT, Charlton HM, Zimmerman EA, Silverman AJ, Perlow MJ. Mating and pregnancy can occur in genetically hypogonadal mice with preoptic area brain grafts. Science 1984; 225: 949–951.

    Article  PubMed  CAS  Google Scholar 

  105. Mason AJ, Pitts SL, Nikolics K, Szonyi E, Wilcox JN, Seeburg PH, et al. The hypogonadal mouse: reproductive functions restored by gene therapy. Science 1986; 234: 1372–1378.

    Article  PubMed  CAS  Google Scholar 

  106. Yamada M, Saga Y, Shibusawa N, Hirato J, Murakami M, Iwasaki T, et al. Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proc Natl Acad Sci USA 1997;94:10, 862–10, 867.

    Google Scholar 

  107. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell 1999; 83: 835–839.

    Article  Google Scholar 

  108. Forman BM, Tzameli I, Choi HS, Chen J, Simha D, Seol W, et al. Androstane metabolites bind to and deactivate the nuclear receptor CAR-(3. Nature 1999; 395: 612–615.

    Article  CAS  Google Scholar 

  109. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3: 543–553.

    Article  PubMed  CAS  Google Scholar 

  110. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science 1999; 284: 1362–1365.

    Article  PubMed  CAS  Google Scholar 

  111. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284: 1365–1368.

    Article  PubMed  CAS  Google Scholar 

  112. l 1. Lala DS, Rice DA, Parker KL. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol 1992; 6: 1249–1258.

    Article  Google Scholar 

  113. Ikeda Y, Lala DS, Luo X, Kim E, Moisan MP, Parker KL. Characterization of the mouse FTZ-Fl gene, which encodes a key regulator of steroid hydroxylase gene expression. Mol Endocrinol 1993; 7: 852–860.

    Article  PubMed  CAS  Google Scholar 

  114. Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994; 77: 481–490.

    Article  PubMed  CAS  Google Scholar 

  115. Muscatelli F, Strom TM, Walker AP, Zanaria E, Récan D, Meindl A, et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 1994; 372: 672–676.

    Article  PubMed  CAS  Google Scholar 

  116. Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, et al. An unusual member of the nuclear hormone receptor superfamily responsible forX-linked adrenal hypoplasia congenita. Nature 1994; 372: 635–641.

    Article  PubMed  CAS  Google Scholar 

  117. Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL. Role of Ahch in gonadal development and gametogenesis. Nat Genet 1998; 20: 353–357.

    Article  PubMed  CAS  Google Scholar 

  118. Habiby RL, Boepple P, Nachtigall L, Sluss PM, Crowley Jr WF, Jameson JL. Adrenal hypoplasia congenita with hypogonadotropic hypogonadism: evidence that DAX-1 mutations lead to combined hypothalamic and pituitary defects in gonadotropin production. J Clin Invest 1996; 98: 1055–1062.

    Article  PubMed  CAS  Google Scholar 

  119. Thorner MO, Vance ML, Horvath E, Kovacs K. The anterior pituitary. In: Wilson JD, Foster DW, eds., Williams Textbook of Endocrinology, 8th ed., W.B. Saunders Company, Philadelphia, PA, 1992, pp. 221–310.

    Google Scholar 

  120. Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 1993;90:11, 162–11, 166.

    Google Scholar 

  121. Mosselman S, Polman J, Dijkema R. ER(3: Identification and characterization of a novel human estrogen receptor. FEBS Lett 1996; 392: 49–53.

    Article  PubMed  CAS  Google Scholar 

  122. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 1996; 93: 5925–5930.

    Article  PubMed  CAS  Google Scholar 

  123. Tremblay GB, Tremblay A, Copeland NG, Gilbert DJ, Jenkins NA, Labrie F, et al. Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor-(3. Mol Endocrinol 1997; 11: 353–365.

    Article  PubMed  CAS  Google Scholar 

  124. Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. Tissue distribution and quantitative analysis of estrogen receptor-a (ERa) and estrogen receptor-13 (ER3) messenger ribonucleic acid in the wild -type and ERa-knockout mouse. Endocrinology 1997; 138: 4613–4621.

    Article  PubMed  CAS  Google Scholar 

  125. Shupnik MA, Pitt LK, Soh AY, Anderson A, Lopes MB, Laws ER, Jr. Selective expression of estrogen receptor-a and -ß isoforms in human pituitary tumors. J Clin Endocrinol Metab 1998; 83: 3965–3972.

    Article  PubMed  CAS  Google Scholar 

  126. Mitchner NA, Garlick C, Ben-Jonathan N. Cellular distribution and gene regulation of estrogen receptors-a and -(3 in the rat pituitary gland. Endocrinology 1998; 139: 3976–983.

    Article  PubMed  CAS  Google Scholar 

  127. Wilson ME, Price Jr RH, Handa RJ. Estrogen receptor-(3 messenger ribonucleic acid expression in the pituitary gland. Endocrinology 1998; 139: 5151–5156.

    Article  PubMed  CAS  Google Scholar 

  128. Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, et al. Generation and reproductive phenotypes of mice lacking estrogen receptor-(3. Proc Natl Acad Sci USA 1998;95:15, 677–15, 682.

    Google Scholar 

  129. Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they take us? Endocr Rev 1999; 20: 358–417.

    Article  PubMed  CAS  Google Scholar 

  130. Gharib SD, Wierman ME, Shupnik MA, Chin WW. Molecular biology of the pituitary gonadotropins. Endocr Rev 1990; 11: 177–199.

    Article  PubMed  CAS  Google Scholar 

  131. Lindzey J, Wetsel WC, Couse JF, Stoker T, Cooper R, Korach KS. Effects of castration and chronic steroid treatments on hypothalamic gonadotropin-releasing hormone content and pituitary gonadotropins in male wild-type and estrogen receptor-a knockout mice. Endocrinology 1998; 139: 4092–4101.

    Article  PubMed  CAS  Google Scholar 

  132. Scully KM, Gleiberman AS, Lindzey J, Lubahn DB, Korach KS, Rosenfeld MG. Role of estrogen receptor-a in the anterior pituitary gland. Mol Endocrinol 1997; 11: 674–681.

    Article  PubMed  CAS  Google Scholar 

  133. Fisher CR, Graves KH, Parlow AF, Simpson ER. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc Natl Acad Sci USA 1998; 95: 6965–6970.

    Article  PubMed  CAS  Google Scholar 

  134. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery Jr CA, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 1995; 9: 2266–2278.

    Article  PubMed  CAS  Google Scholar 

  135. Lydon JP, DeMayo FJ, Conneely OM, 0’ Malley BW. Reproductive phenotypes of the progesterone receptor null mutant mouse. J Steroid Biochem Mol Biol 1996; 56: 67–77.

    Article  PubMed  CAS  Google Scholar 

  136. Chappell PE, Lydon JP, Conneely OM, O’Malley BW, Levine JE. Endocrine defects in mice carrying a null mutation for the progesterone receptor gene. Endocrinol. 1997; 138: 4147–4152.

    Article  CAS  Google Scholar 

  137. Chappell PE, Schneider JS, Kim P, Xu M, Lydon JP, O’Malley BW, et al. Absence of gonadotropin surges and gonadotropin-releasing hormone self-priming in ovariectomized (OVX), estrogen (E2)-treated, progesterone receptor knockout (PRKO) mice. Endocrinology 1999; 140: 3653–3658.

    Article  PubMed  CAS  Google Scholar 

  138. Brown TJ, Clark AS, MacLusky NJ. Regional sex differences in progestin receptor induction in the rat hypothalamus: effects of various doses of estradiol benzoate. J Neurosci 1987; 7: 2529–2536.

    PubMed  CAS  Google Scholar 

  139. Calderon JJ, Muldoon TG, Mahesh VB. Receptor-mediated interrelationships between progesterone and estradiol action on the anterior pituitary-hypothalamic axis of the ovariectomized immature rat. Endocrinology 1987; 120: 2428–2435.

    Article  PubMed  CAS  Google Scholar 

  140. Bethea CL, Brown NA, Kohama SG. Steroid regulation of estrogen and progestin receptor messenger ribonucleic acid in monkey hypothalamus and pituitary. Endocrinology 1996; 137: 4372–4383.

    Article  PubMed  CAS  Google Scholar 

  141. He WW, Kumar MV, Tindall DJ. A frame-shift mutation in the androgen receptor gene causes complete androgen insensitivity in the testicular feminized mouse. Nucleic Acids Res 1991; 19: 2373–2378.

    Article  PubMed  CAS  Google Scholar 

  142. Charest NJ, Zhou ZX, Lubahn DB, Olsen KL, Wilson EM, French FS. A frameshift mutation destabilizes androgen receptor messenger RNA in the Tfm mouse. Mol Endocrinol 1991; 5: 573–581.

    Article  PubMed  CAS  Google Scholar 

  143. Lyon MF, Hawkes SG. X-linked gene for testicular feminization in the mouse. Nature 1970; 227: 1217–1219.

    Article  PubMed  CAS  Google Scholar 

  144. Migeon BR, Brown TR, Axelman J, Migeon CJ. Studies of the locus for androgen receptor: localization on the human X chromosome and evidence for homology with the Tfm locus in the mouse. Proc Natl Acad Sci USA 1981; 78: 6339–6343.

    Article  PubMed  CAS  Google Scholar 

  145. Scott IS, Bennett MK, Porter-Goff AE, Harrison CJ, Cox BS, Grocock CA, et al. Effects of the gonadotropin-releasing hormone agonist Zoladex’ upon pituitary and gonadal function in hypogonadal (hpg) male mice: comparison with normal male and testicular feminized (tfm) mice. J Mol Endocrinol 1991; 8: 249–258.

    Article  Google Scholar 

  146. Kaetzel DM, Nilson JH. Methotrexate-induced amplification of the bovine lutropin genes in Chinese hamster ovary cells. Relative concentration of the alpha and beta subunits determines the extent of heterodimer assembly. J. Biol. Chem. 1988; 263: 6344–6351.

    PubMed  CAS  Google Scholar 

  147. Chatterjee VK, Lee JK, Rentoumic A, Jameson JL. Negative regulation of the thyroid-stimulating hormone a gene by thyroid hormone: receptor interaction adjacent to the TATA box. Proc Natl Acad Sci USA 1989; 86: 9114–9118.

    Article  PubMed  CAS  Google Scholar 

  148. Sarapura VD, Wood WM, Gordon DF, Ocran KW, Kao MY, Ridgway EC. Thyrotrope expression and thyroid hormone inhibition map to different regions of the mouse glycoprotein hormone a-subunit gene promoter. Endocrinology 1990; 127: 1352–1361.

    Article  PubMed  CAS  Google Scholar 

  149. Carr FE, Burnside J, Chin WW. Thyroid hormones regulate rat thyrotropin ß gene promoter activity expressed in GH3 cells. Mol Endocrinol 1989; 3: 709–716.

    Article  PubMed  CAS  Google Scholar 

  150. Koller KJ, Wolff RS, Warden MK, Zoeller RT. Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus. Proc Natl Acad Sci USA 1987; 84: 7329–7333.

    Article  PubMed  CAS  Google Scholar 

  151. Guissouma H, Ghorbel MT, Seugnet I, Ouatas T, Demeneix BA. Physiological regulation of hypothalamic TRH transcription in vivo is T3 receptor isoform specific. FASEB J 1989; 12: 1755–1764.

    Google Scholar 

  152. Reginato MZJ, Lazar M. DNA-dependent and DNA-independent mechanisms regulate the differential heterodimerization of the isoforms of the thyroid hormone receptor with retinoid X receptor. J Biol Chem 1996;271:28, 199–28, 205.

    Google Scholar 

  153. Tsai MJ, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 1994; 63: 451–486.

    Article  PubMed  CAS  Google Scholar 

  154. Forrest D, Sjoberg M, Vennstrom B. Contrasting developmental and tissue-specific expression of alpha and beta thyroid hormone receptor genes. EMBO J 1990; 9: 1519–1528.

    PubMed  CAS  Google Scholar 

  155. Strait KA, Schwartz HL, Perez-Castillo A, Oppenheimer JH. Relationship of c-erbA mRNA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats. J Biol Chem 1990;265:10, 514–10, 521.

    Google Scholar 

  156. Forrest D, Erway LC, Ng L, Altschuler R, Curran T.Thyroid hormone receptor 13 is essential for development of auditory function. Nat Genet 1996; 13: 354–357.

    Article  PubMed  CAS  Google Scholar 

  157. Forrest D, Hanebuth E, Smeyne RJH, Everds N, Stewart CL, Wehner JM, Curran T. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor 3: evidence for tissue-specific modulation of receptor function. EMBO J 1996; 15: 3006–3015.

    PubMed  CAS  Google Scholar 

  158. Fraichard A, Chassande O, Plateroti M, Roux JP, Trouillas J, Dehay C, et al. The T3Ra gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J 1997; 16: 4412–4420.

    Article  PubMed  CAS  Google Scholar 

  159. Wikström L, Johansson C, Salto C, Barlow C, Campos Barros A, et al. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor al. EMBO J 1998; 17: 455–461.

    Article  PubMed  Google Scholar 

  160. Göthe S, Wang Z, Ng L, Kindblom JM, Campos Barros A, Ohlsson C, et al. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev 1999; 13: 1329–1341.

    Article  PubMed  Google Scholar 

  161. de Jong FH, Sharpe RM. Evidence for inhibin-like activity in bovine follicular fluid. Nature 1976; 263: 71, 72.

    Google Scholar 

  162. Welschen R, Hermans WP, Dullart J, de Jong FH. Effects of an inhibin-like factor present in bovine and porcine follicular fluid on gonadotrophin levels in ovariectomized rats. J Reprod Fertil 1977; 50: 129–131.

    Article  PubMed  CAS  Google Scholar 

  163. Ling N, Ying SY, Ueno N, Shimasaki S, Esch F, Hotta M, Guillemin R. A homodimer of the (3-subunits of inhibin A stimulates the secretion of pituitary follicle stimulating hormone. Biochem Biophys Res Commun 1996; 138: 1129–1137.

    Article  Google Scholar 

  164. Ling N, Ying SY, Ueno N, Shimasaki S, Esch F, Hotta M, Guillemin R. Pituitary FSH is released by a heterodimer of the (3-subunit from the two forms of inhibin. Nature 1986; 321: 779–782.

    Article  PubMed  CAS  Google Scholar 

  165. de Kretser DM, Robertson DM. The isolation and physiology of inhibin and related peptides. Biol Reprod 1989; 40: 33–47.

    Article  PubMed  Google Scholar 

  166. Matzuk MM, Finegold MJ, Su JG, Hsueh AJ, Bradley A. a-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 1992; 360: 313–319.

    Article  PubMed  CAS  Google Scholar 

  167. Matzuk MM, Finegold MJ, Mather JP, Krummen L, Lu H, Bradley A. Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc Natl Acad Sci USA 1994; 91: 8817–8821.

    Article  PubMed  CAS  Google Scholar 

  168. Kumar TR, Wang Y, Matzuk MM. Gonadotropins are essential modifier factors for gonadal tumor development in inhibin-deficient mice. Endocrinology 1996; 137: 4210–4216.

    Article  PubMed  CAS  Google Scholar 

  169. Coerver KA, Woodruff TK, Finegold MJ, Mather J, Bradley A, Matzuk MM. Activin signaling through activin receptor type II causes the cachexia-like symptoms in inhibin-deficient mice. Mol Endocrinol 1996; 10: 534–543.

    Article  PubMed  CAS  Google Scholar 

  170. Matzuk MM, Kumar TR, Vassalli A, Bickenbach JR, Roop DR, Jaenisch R, et al. Functional analysis of activins during mammalian development. Nature 1995; 374: 354–356.

    Article  PubMed  CAS  Google Scholar 

  171. Vassalli A, Matzuk MM, Gardner HAR, Lee KF, Jaenisch R. Activin/inhibin Bp subunit gene disruption leads to defects in eyelid development and female reproduction. Genes Dev. 1994; 8: 414–427.

    Article  PubMed  CAS  Google Scholar 

  172. Matzuk MM, Kumar TR, Bradley A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 1995; 374: 356–359.

    Article  PubMed  CAS  Google Scholar 

  173. Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H. Activin-binding protein from rat ovary is follistatin. Science 1990; 247: 836–838.

    Article  PubMed  CAS  Google Scholar 

  174. Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A. Multiple defects and perinatal death in mice deficient in follistatin. Nature 1995; 374: 360–363.

    Article  PubMed  CAS  Google Scholar 

  175. Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev 1993; 14: 348–399.

    PubMed  CAS  Google Scholar 

  176. Stein SA, Oates EL, Hall CR, Grumbles RM, Fernandez LM, Taylor NA, et al. Identification of a point mutation in the thyrotropin receptor of the hyt/hyt hypothyroid mouse. Mol Endocrinol 1994; 8: 129–138.

    Article  PubMed  CAS  Google Scholar 

  177. Stein SA, Shanklin DR, Krulich L, Roth MG, Chubb CM, Adams PM. Evaluation and characterization of the hyt/hyt hypothyroid mouse. II. Abnormalities of TSH and the thyroid gland. Neuroendocrinology 1989; 49: 509–519.

    CAS  Google Scholar 

  178. Yusta B, Alarid ET, Gordon DF, Ridgway EC, Mellon PL. The thyrotropin (3-subunit gene is repressed by thyroid hormone in a novel thyrotrope cell line, mouse ToTI cells. Endocrinology 1998; 139: 4476–4482.

    Article  PubMed  CAS  Google Scholar 

  179. Kumar TR, Graham KE, Asa SL, Low MJ. Simian virus 40 T antigen-induced gonadotroph adenomas: a model of human null cell adenomas. Endocrinology 1998; 139: 3342–3351.

    Article  PubMed  CAS  Google Scholar 

  180. Risma KA, Clay CM, Nett TM, Wagner T, Yun J, Nilson JH. Targeted overexpression of luteinizing hormone in transgenic mice leads to infertility, polycystic ovaries, and ovarian tumors. Proc Natl Acad Sci USA 1995; 92: 1322–1336.

    Article  PubMed  CAS  Google Scholar 

  181. Ken RA, Lozada KL, Abdul-Karim FW, Nadean JH, Nilson JH. Luteinizing hormone induction of ovarian tumors: oligogenic differences between mouse strains dictates tumor disposition. Proc Natl Acad Sci USA 2000; 97: 383–387.

    Article  Google Scholar 

  182. Risma KA, Hirshfield AN, Nilson JH. Elevated luteinizing hormone in prepubertal transgenic mice causes hyperandrogenemia, precocious puberty, and substantial ovarian pathology. Endocrinology 1997; 138: 3540–3547.

    Article  PubMed  CAS  Google Scholar 

  183. Mann RJ, Keri RA, Nilson JH. Transgenic mice with chronically elevated luteinizing hormone are infertile due to anovulation, defects in uterine receptivity, and midgestation pregnancy failure. Endocrinology 1999; 140: 2592–2601.

    Article  PubMed  CAS  Google Scholar 

  184. Flaws A, Abbud R, Mann RJ, Nilson JH, Hirshfield AN. Chronically elevated luteinizing hormone depletes primordial follicles in the mouse ovary. Biol Reprod 1997; 57: 1233–1237.

    Article  PubMed  CAS  Google Scholar 

  185. Kumar TR, Palapattu G, Wang P, Woodruff TK, Boime I, Byrne MC, Matzuk MM. Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis. Mol Endocrinol 1999; 13: 851–865.

    Article  PubMed  CAS  Google Scholar 

  186. Yano H, Readhead C, Nakashima M, Ren SG, Melmed S. Pituitary-directed leukemia inhibitory factor transgene causes Cushing’s syndrome: Neuro-immune-endocrine modulation of pituitary development. Mol Endocrinol 1998; 12: 1708–1720.

    CAS  Google Scholar 

  187. Bousquet C, Ray DW, Melmed SA. Common pro-opiomelanocortin-binding element mediates leukemia inhibitory factor and corticotropin-releasing hormone transcriptional synergy. J Biol Chem 1997;272:10, 551–10, 557.

    Google Scholar 

  188. Wang Z, Ren SG, Melmed S. Hypothalamic, pituitary leukemia inhibitory factor gene expression in vivo: a novel endotoxin-inducible neuro-endocrine interface. Endocrinology 1996; 137: 2947–2953.

    Article  PubMed  CAS  Google Scholar 

  189. Akita S, Readhead C, Stefaneanu L, Fine J, Tampanaru-Sarmesiu A, Kovacs K, et al. Pituitary-directed leukemia inhibitory factor transgene forms Rathke’s cleft cysts and impairs adult pituitary function. A model for human pituitary Rathke’s cysts. J Clin Invest 1997; 99: 2462–2469.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Keri, R.A., Nilson, J.H. (2001). Glycoprotein Hormones. In: Matzuk, M.M., Brown, C.W., Kumar, T.R. (eds) Transgenics in Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-102-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-102-2_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9640-6

  • Online ISBN: 978-1-59259-102-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics