Skip to main content

Regulation of Adrenocortical Function by the Sympathoadrenal System

Physiology and Pathology

  • Chapter
Adrenal Disorders

Part of the book series: Contemporary Endocrinology ((COE))

  • 222 Accesses

Abstract

In the first complete description of the adrenal gland in 1852, von Kölliker described the adrenal as composed of two different tissues, with the cortex belonging to the “blood-vascular glands” and the medulla, a part of the nervous system, resembling a ganglion (1). The astonishing arrangement of these two tissues justifies the question: What is a ganglion doing inside a gland (2)?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Kölliker A. Handbuch der Gewebelehre des Menschen. Leipzig, 1852.

    Google Scholar 

  2. Carmichael SW. What is a ganglion doing inside a gland? IBRO News 1989; 17: 6.

    Google Scholar 

  3. Axelrod J, Reisine TD. Stress hormones: their interaction and regulation. Science 1984; 224: 452–459.

    Article  PubMed  CAS  Google Scholar 

  4. Hofmann HD, Seidl K, Unsicker K. Development and plasticity of adrenal chromaffin cells: clues based on in vitro studies. J Electron Microsc Tech 1989; 12: 397–407.

    Article  PubMed  CAS  Google Scholar 

  5. Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev 1998; 19: 101–143.

    Article  PubMed  CAS  Google Scholar 

  6. Ottenweller JE, Meier AH. Adrenal innervation may be an extrapituitary mechanism able to regulate adrenocortical rhythmicity in rats. Endocrinology 1982; 111: 1334–1338.

    Article  PubMed  CAS  Google Scholar 

  7. Dijkstra I, Binnekade R, Tilders FJH. Diurnal variation in resting levels of corticosterone is not mediated by variation in adrenal responsiveness to adrenocorticotropin but involves splanchnic nerve integrity. Endocrinology 1996; 137: 540–547.

    Article  PubMed  CAS  Google Scholar 

  8. Jasper MS, Engeland WC. Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats. Neuroendocrinology 1994; 59: 97–109.

    Article  PubMed  CAS  Google Scholar 

  9. Dallman MF. Control of adrenocortical growth in vivo. Endocr Res 1984; 10: 213–242.

    Article  PubMed  CAS  Google Scholar 

  10. Edwards AV, Jones CV. The effect of splanchnic nerve stimulation on adrenocortical activity in conscious calves. J Physiol 1987; 382: 385–396.

    PubMed  CAS  Google Scholar 

  11. Edwards AV, Jones CT, Bloom SR. Reduced adrenal cortical sensitivity to ACTH in lambs with cut splanchnic nerves. J Endocrinol 1986; 110: 81–85.

    Article  PubMed  CAS  Google Scholar 

  12. Bornstein SR, Ehrhart-Bornstein M, Scherbaum WA, Pfeiffer EF, Holst JJ. Effects of splanchnic nerve stimulation on the adrenal cortex may be mediated by chromaffin cells in a paracrine manner Endocrinology 1990; 127: 900–906.

    CAS  Google Scholar 

  13. Ehrhart-Bornstein M, Bornstein SR, Scherbaum WA, Pfeiffer EF, Holst JJ. The role of the vasoactive intestinal peptide in a neuroendocrine regulation of the adrenal cortex. Neuroendocrinology 1991; 54: 623–628.

    Article  PubMed  CAS  Google Scholar 

  14. Ehrhart-Bornstein M, Bornstein SR, Güse-Behling H, Stromeyer H, Scherbaum WA, Adler G, Holst JJ. Sympathoadrenal regulation of adrenal androstenedione release. Neuroendocrinology 1994; 59: 406–412.

    Google Scholar 

  15. Ehrhart-Bornstein M, Bornstein SR, Gonzalez-Hernandez JA, Holst JJ, Waterman MR, Scherbaum WA. Sympathoadrenal regulation of adrenocortical steroidogenesis. Endocr Res 1995; 21: 13–24.

    Article  PubMed  CAS  Google Scholar 

  16. Holzwarth MA, Cunningham LA, Kleitman N. The role of adrenal nerves in the regulation of adrenocortical functions. Ann NY Acad Sci 1987; 512: 442–464.

    Article  Google Scholar 

  17. Kesse WK, Parker TL, Coupland RE. The innervation of the adrenal gland: I. The source of pre-and postganglionic nerve fibers to the rat adrenal gland. J Anat 1988; 157: 33–41.

    PubMed  CAS  Google Scholar 

  18. Ehrhart-Bornstein M, Bornstein SR, Trzeciak WH, Usadel H, Güse-Behling H, Waterman MR, Scherbaum WA. Adrenaline stimulates cholesterol side chain cleavage cytochrome P450 mRNA accumulation in bovine adrenocortical cells. J Endocrinol 1991; 131: R5 - R8.

    Article  PubMed  CAS  Google Scholar 

  19. Güse-Behling H, Ehrhart-Bornstein M, Bornstein SR, Waterman MR, Scherbaum WA, Adler G. Regulation of adrenal steroidogenesis by adrenaline: Expression of cytochrome P450 genes. J Endocrinol 1992; 135: 229–237.

    Article  PubMed  Google Scholar 

  20. Ritzén M, Hammerström L, Ullberg S. Autoradiographic distribution of 5-hydroxytryptamine and 5hydroxytryptophan in the mouse. Biochem Pharmacol 1965; 14: 313–383.

    Article  PubMed  Google Scholar 

  21. Holzwarth MA, Brownfield MS. Serotonin coexists with epinephrine in rat adrenal medulla. Neuroendocrinology 1985; 41: 230–236.

    Article  PubMed  CAS  Google Scholar 

  22. Verhofstad AAJ, Jonsson G. Immunohistochemical and neurochemical evidence for the presence of serotonin in the adrenal medulla of the rat. Neuroscience 1983; 10: 1443–1453.

    Article  PubMed  CAS  Google Scholar 

  23. Delarue C, Leboulenger F, Mona M, Héry F, Verhofstad AAJ, Bérod A, et al. Immunohistochemical and biochemical evidence for the presence of serotinin in amphibian adrenal chromaffin cells. Brain Res 1988; 459: 17–26.

    Article  PubMed  CAS  Google Scholar 

  24. Contesse V, Delarue C, Leboulenger F, Lefebvre H, Héry F, Vaudry H. Serotonin produced in the adrenal gland regulates corticosteroid secretion through a paracrine mode of communication. In: Facchinetti F, Henderson IW, Pieratoni R, Polzonetti-Magni A, eds. Cellular Communication in Reproduction. J Endocrinol Ltd. Bristol, 1993, pp. 187–198.

    Google Scholar 

  25. Lefebvre H, Contesse V, Delarue C, Feuilloley M, Hery F, Grise P, et al. Serotonin-induced stimulation of cortisol secretion from human adrenocortical tissue is mediated through activation of a serotonin4 receptor subtype. Neuroscience 1992; 47: 999–1007.

    Article  PubMed  CAS  Google Scholar 

  26. Lefebvre H, Contesse V, Delarue C, Soubrane C, Legrand A, Kuhn J, et al. Effect of the serotonin4 receptor agonist zacopride on aldosterone secretion from human adrenal cortex: in vivo and in vitro studies. J Clin Endocrinol Metab 1993; 77: 1662–1666.

    Article  PubMed  CAS  Google Scholar 

  27. Fortak W, Kmiec B. [About occurrence of the chromophilic cells in the adrenal cortex of white rats]. Endokrynol Pol 1968; 19: 117–128.

    PubMed  CAS  Google Scholar 

  28. Gallo-Payet N, Pothier P, Isler H. On the presence of chromaffin cells in the adrenal cortex: their possible role in adrenocortical function. Biochem Cell Biol 1987; 65: 588–592.

    Article  PubMed  CAS  Google Scholar 

  29. Bornstein SR, Ehrhart-Bornstein M, Usadel H, Böckmann M, Scherbaum WA. Morphological evidence for a close interaction of chromaffin cells with cortical cells within the adrenal gland. Cell Tissue Res 1991; 265: 1–9.

    Article  PubMed  CAS  Google Scholar 

  30. Berka JL, Kelly DJ, Robinson DB, Alcorn D, Marley PD, Fernley RT, Skinner SL. Adrenaline cells of the rat adrenal cortex and medulla contain renin and prorenin. Mol Cell Endocrinol 1996; 119: 175–184.

    Article  PubMed  CAS  Google Scholar 

  31. Neri G, Andreis PG, Prayer-Galetti T, Rossi GP, Malendowicz LK, Nussdorfer GG. Pituitary adenylatecyclase activating peptide enhances aldosterone secretion of human adrenal gland: evidence for an indirect mechanism, probably involving the local release of catecholamines J Clin Endocrinol Metab 1996; 81: 169–173.

    CAS  Google Scholar 

  32. Hinson JP, Kapas S, Orford CD, Vinson GP. Vasoactive intestinal peptide stimulation of aldosterone secretion by the rat adrenal cortex may be mediated by the local release of catecholamines J Endocrinol 1992; 133: 253–258.

    CAS  Google Scholar 

  33. Bornstein SR, Haidan A, Ehrhart-Bornstein M. Cellular communication in the neuroadrenocortical axis: role of vasoactive intestinal polypeptide (VIP). Endocr Res 1996; 22: 819–829.

    PubMed  CAS  Google Scholar 

  34. Haidan A, Bornstein SR, Glasow A, Uhlmann K, Lübke C, Ehrhart-Bornstein M. Basal steroidogenic activity of adrenocortical cells is increased tenfold by co-culture with chromaffin cells. Endocrinology 1998; 139: 772–780.

    Article  PubMed  CAS  Google Scholar 

  35. Winkler H, Apps DK, Fischer-Colbrie R. The molecular function of adrenal chromaffin granules: established facts and unresolved topics. Neuroscience 1986; 18: 261–290.

    Article  PubMed  CAS  Google Scholar 

  36. Carmichael SW. Cytochemistry of the adrenal medulla. In: Ogawa K and Barka T, eds. Electron Microscopic Cytochemistry and Immunocytochemistry in Biomedicine. CRC Press, Boca Raton, FL, 1993, pp. 562–583.

    Google Scholar 

  37. Siegel RE, Eiden LE, Pruss RM. Multiple populations of neuropeptide-containing cells in cultures of the bovine adrenal medulla. Brain Res 1985; 349: 267–270.

    PubMed  CAS  Google Scholar 

  38. Linnoila RI, Diaugustine RP, Hervonen A, Miller RJ. Distribution of [Mets]- and [Leu5]-enkephalin-, vasoactive intestinal polypeptide-and substance P-like immunoreactivities in human adrenal glands. Neuroscience 1980; 5: 2247–2259.

    Article  PubMed  CAS  Google Scholar 

  39. Vaupel R, Jarry H, Schlomer HT, Wuttke W. Differential response of substance P-containing subtypes of adrenomedullary cells to different stressors. Endocrinology 1988; 123: 2140–2145.

    Article  PubMed  CAS  Google Scholar 

  40. Fischer-Colbrie R, Iacangelo A, Eiden LE. Neural and humoral factors separately regulate neuropeptide Y, enkephalin, and chromogranin A and B mRNA levels in rat adrenal medulla. Proc Natl Acad Sci USA 1988; 85: 3240–3244.

    Article  PubMed  CAS  Google Scholar 

  41. Pruss RM, Mezey E, Forman DS, Eiden LE, Hotchkiss AJ, Di Maggio DA, et al. Enkephalin and neuropeptide Y: two colocalized neur6peptides are independently regulated in primary cultures of bovine chromaffin cells. Neuropeptides 1986; 7: 315–327.

    Article  PubMed  CAS  Google Scholar 

  42. Tschernitz C, Laslop A, Eiter C, Kroesen S, Winkler H. Biosynthesis of large dense-core vesicles in PC12 cells: effects of depolarization and second messengers on the mRNA levels of their constituents. Brain Res Mol Brain Res 1995; 31: 131–140.

    Article  PubMed  CAS  Google Scholar 

  43. Sietzen M, Schober M, Fischer-Colbrie R, Scherman D, Sperk G, Winkler H. Rat adrenal medulla: levels of chromogranins, enkephalins, dopamine beta-hydroxylase and of the amine transporter are changed by nervous activity and hypophysectomy. Neuroscience 1987; 22: 131–139.

    Article  PubMed  CAS  Google Scholar 

  44. Inturrisi CE, Branch AD, Robertson HD, Howells RD, Franklin SO, Shapiro JR, et al. Glucocorticoid regulation of enkephalins in cultured rat adrenal medulla. Mol Endocrinol 1988; 2: 633–640.

    Article  PubMed  CAS  Google Scholar 

  45. Eskay RL, Eiden LE. Interleukin-la and tumor necrosis factor-a differentially regulate enkephalin, vasoactive intestinal polypeptide, neurotensin, and substance P biosynthesis in chromaffin cells. Endocrinology 1992; 130: 2252–2258.

    Article  PubMed  CAS  Google Scholar 

  46. Gonzalez-Hernandez JA, Bornstein SR, Ehrhart-Bornstein M, Geschwend JE, Gwosdow AR, Jirikowski GF, et al. Interleukin 1 is expressed in human adrenal gland in vivo. Possible role in a local immune-adrenal axis. Clin Exp Immunol 1995; 99: 137–141.

    Article  PubMed  CAS  Google Scholar 

  47. Gonzalez-Hernandez JA, Ehrhart-Bornstein M, Späth-Schwalbe E, Scherbaum WA, Bornstein SR. Human adrenal cells express TNFa-mRNA: evidence for a paracrine control of adrenal function. J Clin Endocrinol Metab 1996; 81: 807–813.

    Article  PubMed  CAS  Google Scholar 

  48. Judd AM, Mac Leod RM. Differential release of tumor necrosis factor and II-6 from adrenal zona glomerulosa cells in vitro. Am J Physiol 1995; 268: E114–20.

    PubMed  CAS  Google Scholar 

  49. Landsberg L, Young JB. Williams Textbook of Endocrinology. Saunders, Philadelphia, PA, 1992, p. 624.

    Google Scholar 

  50. Orth DN, Kovacs WJ, DeBold CR. The adrenal cortex. In: Wilson JD and Foster DW, eds. Williams Textbook of Endocrinology. Saunders, Philadelphia, PA, 1992; pp. 489–619.

    Google Scholar 

  51. Rittmaster RS, Cutler GBJ. Morphology of the adrenal cortex and medulla. In: Becker KL, ed. Principles and Practice of Endocrinology and Metabolism. Lippincott, Philadelphia, PA; 1990, pp. 572–579.

    Google Scholar 

  52. Kmiec B. Histologic and histochemical observations on regeneration of the adrenal medulla after enucleation in white rats. Folia Morphol (Warsz) 1968; 27: 238–245.

    Google Scholar 

  53. Nussdorfer GG. Cytophysiology of the adrenal cortex. Int Rev Cytol 1986; 98: 1–395.

    PubMed  CAS  Google Scholar 

  54. Ehrhart-Bornstein M, Breidert M, Guadanucci P, Wozniak W, Bocian-Sobkowska J, Malendowicz LK, et al. 17a-Hydroxylase and chromogranin A in 6th week human fetal adrenals. Horm Metab Res 1997; 29: 30–32.

    Article  PubMed  CAS  Google Scholar 

  55. Molenaar WM, Lee V-M, Trojanowski JQ. Early fetal acquisition of the chromaffin and neuronal immunophenotype by human adrenal medulary cells. An immunohistological study using monoclonal antibodies to chromogranin A, synaptophysin, tyrosin hydroxilase and neuronal cytoskeletal proteins. Exp Neurol 1990; 108: 1–9.

    Article  PubMed  CAS  Google Scholar 

  56. Bornstein SR, Gonzalez-Hernandez JA, Ehrhart-Bornstein M, Adler G, Scherbaum WA. Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions. J Clin Endocrinol Metab 1994; 78: 225–232.

    Article  PubMed  CAS  Google Scholar 

  57. Bornstein SR, Ehrhart-Bornstein M. Ultrastructural evidence for a paracrine regulation of the rat adrenal cortex mediated by the local release of catecholamines from chromaffin cells. Endocrinology 1992; 131: 3126–3128.

    Article  PubMed  CAS  Google Scholar 

  58. Carmichael SW, Stoddard SL, O’Connor DT, Yaksh TL, Tyce GM. The secretion of catecholamines, chromogranin A and neuropeptide Y from the adrenal medulla of the cat via the adrenolumbar vein and thoracic duct: different anatomic routes based on size. Neuroscience 1990; 34: 433–440.

    Article  PubMed  CAS  Google Scholar 

  59. Engeland WC, Gann DS. Splanchnic nerve stimulation modulates steroid secretion in hypophysectomized dogs. Neuroendocrinology 1989; 50: 124–131.

    Article  PubMed  CAS  Google Scholar 

  60. Engeland WC, Lilly MP, Gann DS. Sympathetic adrenal denervation decreases adrenal blood flow without altering the cortisol response to hemorrhage. Endocrinology 1985; 117: 1000–1010.

    Article  PubMed  CAS  Google Scholar 

  61. Hinson JP, Vinson GP, Whitehouse BJ. The relationship between perfusion medium flow rate and steroid secretion in the isolated perfused rat adrenal gland. J Endocrinol 1986; 111: 391–396.

    Article  PubMed  CAS  Google Scholar 

  62. Vinson GP, Hinson JP. Blood flow and hormone secretion in the adrenal gland. In: James VHT, ed. The Adrenal Gland. Raven, New York, 1992; pp. 71–86.

    Google Scholar 

  63. Vizi ES, Toth IE, Szalay KS, Windisch K, Orso E, Szabo D, et al. Catecholamines released from local adrenergic axon terminals are possibly involved in fine-tuning of steroid secretion from zona glomerulosa cells: functional and morphological evidence. J Endocrinol 1992; 135: 551–561.

    Article  PubMed  CAS  Google Scholar 

  64. Vinson GP, Pudney JA, Whitehouse BJ. The mammalian adrenal circulation and the relationship between adrenal blood flow and steroidogenesis. J Endocrinol 1985; 105: 285–294.

    Article  PubMed  CAS  Google Scholar 

  65. Hinson JP, Cameron LA, Purbrick A, Kapas S. The role of neuropeptides in the regulation of adrenal vascular tone: effects of vasoactive intestinal polypeptide, substance P, neuropeptide Y, neurotensin, Met-enkephalin, and Leu-enkephalin on perfusion medium flow rate in the intact perfused rat adrenal. Regul Peptides 1994; 51: 55–61.

    Article  CAS  Google Scholar 

  66. Liddle GW, Estep HL, Kendall Jr JW, Williams Jr WC, Townes AW. Clinical application of a new test of pituitary reserve. J Clin Endocrinol 1959; 19: 875–894.

    Article  CAS  Google Scholar 

  67. Fehm HL, Holl R, Späth-Schwalbe E, Born J, Voigt KH. Ability of corticotropin releasing hormone to simulate cortisol secretion independent from pituitary adrenocorticotropin. Life Sci 1988; 42: 679–686.

    Article  PubMed  CAS  Google Scholar 

  68. Lentle BC, Thomas JP. Adrenal function and the complications of diabetes mellitus. Lancet II; 1964; 544–549.

    Google Scholar 

  69. Krieger DT. Plasma ACTH and corticosteroids. In: Groot LJ, Cahill GF, Martini L, Nelson DH, Odell WD, Potts JT, et al., eds. Endocrinology, vol. 2. Grime and Stratton, New York, 1979; pp. 1139–1156.

    Google Scholar 

  70. Fehm HL, Klein E, Holl R, Voigt KH. Evidence for extrapituitary mechanisms mediating the morning peak of plasma cortisol in man. J Clin Endocrinol Metab 1984; 58: 410–414.

    Article  PubMed  CAS  Google Scholar 

  71. Fehm HL, Steiner K, Klein E, Voigt KH. Evidence for ACTH-unrelated mechanisms in the regulation of cortisol secretion in man Klin Wochenschr 1984; 62: 19–24.

    CAS  Google Scholar 

  72. Parker LN, Odell WD. Control of adrenal androgen secretion. Endocr Rev 1980; 1: 392–410.

    Article  PubMed  CAS  Google Scholar 

  73. Carmichael SW, Stoddard SL, Kelly PJ. Technical aspects of transplantation of the adrenal medulla to the caudate nucleus as a treatment for Parkinson’s disease. Meth Neurosci 1994; 21: 272–277.

    Google Scholar 

  74. LeCompte PM. Cushing’s syndrome with possible pheochromocytoma: report of a case. Am J Pathol 1944; 20: 689–707.

    PubMed  CAS  Google Scholar 

  75. Mathison DA, Waterhouse CA. Cushing’s syndrome with hypertensive crisis and mixed adrenal cortical adenoma-pheochromocytoma (cortico-medullary adenoma). Am J Med 1969; 47: 635–641.

    Article  PubMed  CAS  Google Scholar 

  76. Kovacs K, Horvath E. Ultrastructural features of corticomedullary cells in a human adrenal cortical adenoma and in rat adrenal cortex. Anat Anz 1973; 134: 387–389.

    PubMed  CAS  Google Scholar 

  77. Wajchenberg BL, Mendonca BB, Liberman B, Pereira MAA, Kirschner MA. Ectopic ACTH syndrome. J Steroid Biochem Mol Biol 1995; 53: 139–151.

    Article  PubMed  CAS  Google Scholar 

  78. Khoo DHC, Fok ACK, Tan L, Cheng C, Wong KS. Non-ACTH mediated Cushing’s syndrome in a patient with phaechromocytoma. 10th Int. Congress Endocrinology, San FranciscoP3–582 (Abstract).

    Google Scholar 

  79. Lacroix A, Tremblay J, Rousseau G, Bouvier M, Hamet P. Propranolol therapy for ectopic ß-adrenergic receptors in adrenal Cushing’s syndrome. N Engl J Med 1997; 337: 1429–1434.

    Article  PubMed  CAS  Google Scholar 

  80. Perraudin V, Delarue C, De Keyzer Y, Bertagna X, Kuhn J-M, Contesse V, et al. Vasopressinresponsive adrenocortical tumor in a mild Cushing’s syndrome: in vivo and in vitro studies. J Clin Endocrinol Metab 1995; 80: 2661–2667.

    Article  PubMed  CAS  Google Scholar 

  81. Willenberg HS, Stratakis CA, Marx C, Ehrhart-Bornstein M, Chrousos GP, Bornstein SR. Aberrant interleukin-1 receptor in a cortisol-secreting adrenal adenoma causing Cushing’s syndrome. N Engl J Med 1998; 339: 27–31.

    Article  PubMed  CAS  Google Scholar 

  82. Lacroix A, Bolté E, Tremblay J, Dupré J, Poitras P, Fournier H, et al. Gastric inhibitory polypeptide-dependent cortisol hypersecretion-a new cause of Cushing’s syndrome. N Engl J Med 1992; 327: 974980.

    Google Scholar 

  83. Chrousos GP. Organization and integration of the endocrine system. In: Sperling M, ed. Pediatric Endocrinology. Saunders, Philadelphia, PA 1996, pp. 1–14.

    Google Scholar 

  84. Khoury EL, Greenspan JS, Greenspan FS. Adrenocortical cells of the zona reticularis normally express HLA-DR antigenic determinants. Am J Pathol 1987; 127: 580–591.

    PubMed  CAS  Google Scholar 

  85. Marx C, Wolkersdörfer GW, Brown J, Scherbaum WA, Bornstein SR. MHC class II expression—A new tool to assess dignity in adrenocortical tumours. J Clin Endocrinol Metab 1996; 81: 4488–4491.

    Article  PubMed  CAS  Google Scholar 

  86. Bornstein SR, Stratakis CA, Chrousos GP. Adrenocortical tumors: recent advances in basic concepts and clinical management. Ann Intern Med 1999; 130: 757–765.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ehrhart-Bornstein, M., Bornstein, S.R. (2001). Regulation of Adrenocortical Function by the Sympathoadrenal System. In: Margioris, A.N., Chrousos, G.P. (eds) Adrenal Disorders. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-101-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-101-5_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-029-8

  • Online ISBN: 978-1-59259-101-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics