Skip to main content

Mineralocorticoid Excess Syndromes

  • Chapter
Adrenal Disorders

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Mincralocorticoid excess syndromes are characterized by overactivity of amiloridesensitive sodium channels (ASSCs) in the distal tubule and collecting duct of the kidney, and presumably in other tissues. Most of the currently recognized, and widely accepted pathophysiological sequels of that overactivity can be explained by overactivity of the renal tubular ASSCs. However, sodium pumps are ubiquitous, and important effects of intrinsically overactive ASSCs or ASSCs activated by stimulated mineralocorticoid receptors (MRs) in other tissues, such as the brain and heart, are currently under investigation (1–4) and likely to be identified and clarified by future studies. Activation of MRs could also lead to important effects other than stimulation of ASSCs, but this is speculative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krowzowski ZS, Funder JW. Mineralocorticoid receptors in rat anterior pituitary: towards redefinition of “mineralocorticoid hormone”. Endocrinology 1981; 109: 1221–1224.

    Article  Google Scholar 

  2. Krowzowski ZS, Funder JW. Renal mineralocorticoid receptors and hippocampal corticosterone binding sites have identical intrinsic steroid specificity. Proc Natl Acad Sci USA 1983; 80: 6056–6060.

    Article  Google Scholar 

  3. Sasano H, Fukushima K, Sasaki I, Matsuno S, Nagura H, Krowzowski Z. Immunolocalization of mineralocorticoid receptor in human kidney, pancreas, salivary, mammary and sweat glands. Light and electron microscopy immunohistochemical studies. J Endocrinol 1992; 132: 305–310.

    Article  PubMed  CAS  Google Scholar 

  4. Funder JW, Krowowski Z, Myles K, Sato A, Sheppard KE, Young M. Mineralocorticoid receptors, salt, and hypertension. Recent Prog Horm Res 1997; 52: 247–260.

    PubMed  CAS  Google Scholar 

  5. Gordon RD, Klemm SA, Tunny Ti, Stowasser M. Primary aldosteronism: hypertension with a genetic basis. Lancet 1992; 340: 159–161.

    Article  PubMed  CAS  Google Scholar 

  6. Gordon RD, Klemm SA, Stowasser M, Tunny TJ, Storie WS, Rutherford JS. How common is primary aldosteronism? Is it the most frequent cause of curable hypertension? J Hypertens 1993; 11 (Suppl 5): 5310–5311.

    Article  Google Scholar 

  7. Gordon RD, Stowasser M, Klemm SA, Tunny TJ. Primary aldosteronism and other forms of mineralocorticoid hypertension. In: Swales JD, ed. Textbook of Hypertension. Blackwell Scientific, Oxford, 1994, pp. 865–892.

    Google Scholar 

  8. Young WF. Primary aldosteronism: update on diagnosis and treatment. The Endocrinologist 1997; 7: 213–221.

    Article  Google Scholar 

  9. Irony I, Kater CE, Biglieri EG, Shackleton CHL. Correctible subsets of primary aldosteronism. Primary adrenal hyperplasia and renin responsive adenoma. Am J Hypertens 1990; 3: 576–582.

    PubMed  CAS  Google Scholar 

  10. Fontes RG, Kater CE, Biglieri EG, Irony I. Reassessment of the predictive value of the postural stimulation test in primary aldosteronism. Am J Hypertens 1991; 4: 786–791.

    PubMed  CAS  Google Scholar 

  11. Gordon RD, Gomez-Sanchez CE, Hamlet SM, Tunny Ti, Klemm SA. Angiotensin-responsive aldosterone-producing adenoma masquerades as idiopathic hyperaldosteronism (IHA: adrenal hyperplasia) or low-renin essential hypertension. J Hypertens 1987; 5 (suppl 5): S103 - S106.

    CAS  Google Scholar 

  12. Tunny TJ, Gordon RD, Klemm SA, Cohn D. Histological and biochemical distinctiveness of atypical aldosterone-producing adenoma responsive to upright posture and angiotensin. Clin Endocrinol 1991; 34: 363–369.

    Article  CAS  Google Scholar 

  13. Gordon RD, Stowasser M, Tunny TJ, Klemm SA, Finn WL, Krek AL. Clinical and pathological diversity of primary aldosteronism including a new familial variety. Clin Exp Pharmacol Physiol 1991; 18: 283–286.

    Article  PubMed  CAS  Google Scholar 

  14. Stowasser M, Gordon RD, Tunny TJ, Klemm SA, Finn WL, Krek AL. Familial Hyperaldosteronism type II: five families with a new variety of primary aldosteronism. Clin Exp Physiol Pharmacol 1992; 19: 319–322.

    Article  CAS  Google Scholar 

  15. Gordon RD, Stowasser M. Familial forms broaden the horizons for primary aldosteronism. Trends Endocrinol Metab 1998; 9: 220–223.

    Article  PubMed  CAS  Google Scholar 

  16. Torpy DJ, Gordon RD, Stratakis CA. Linkage analysis of familial hyperaldosteronism type II-absence of linkage to the gene encoding the angiotensin II receptor Type I. J Clin Endocrinol Metab 1998; 83: 1046.

    Article  PubMed  CAS  Google Scholar 

  17. Davies E, Bonnardeaux A, Plouin PF, Corvol P, Clausser E. Somatic mutations in the angiotensin II (ATI) receptor gene are not present in aldosterone-producing adenoma. J Clin Endocrinol Metab 1997; 82: 611–615.

    Article  PubMed  CAS  Google Scholar 

  18. Torpy DJ, Gordon RD, Lin J-P, Huggard PR, Taymans SE, Stowasser M, et al. Familial hyperaldosterone type II: exclusion of the aldosterone synthase (CYPIIB2) gene. J Clin Endocrinol Metab 1998; 83: 3214–3218.

    Article  PubMed  CAS  Google Scholar 

  19. Sutherland DJA, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Canad Med Assoc J 1996; 95: 1109–1119.

    Google Scholar 

  20. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. A chimaeric 1113-hydroxylase/ aldosterone synthase gene causes glucocorticoid remediable aldosteronism and human hypertension. Nature 1992; 355: 262–265.

    Article  PubMed  CAS  Google Scholar 

  21. Miyahara K, Kawamoto T, Mitsuuchi Y, Toda K, Imura H, Gordon RD, et al. The chimaeric gene linked to glucocorticoid-suppressible hyperaldosteronism encodes a fused P-450 protein possessing aldosterone synthase activity. Biochem Biophys Res Commun 1992; 189: 885–891.

    Article  PubMed  CAS  Google Scholar 

  22. Ulick S, Chiu MD. Hypersecretion of a new corticosteroid, 18 hydroxy cortisol in two types of adrenocortical hypertension. Clin Exp Hypertens 1982; A4: 1771–1777.

    Article  CAS  Google Scholar 

  23. Ulick S, Blumenfeld JD, Atlas SA, Wang JZ, Vaughan ED. The unique steroidogenesis of the aldosteronoma in the differential diagnosis of primary aldosteronism. J Clin Endocrinol Metab 1992; 76: 873–878.

    Article  Google Scholar 

  24. Stowasser M, Gartside MG, Taylor WL, Tunny TJ, Gordon RD. In familial hyperaldosteronism Type I, hybrid gene-induced aldosterone production dominates that induced by wild-type genes. J Clin Endocrinol Metab 1997; 82: 3670–3676.

    Article  PubMed  CAS  Google Scholar 

  25. Jamieson A, Ingram MC, Inglis GC, Davies E, Fraser R, Connell JMC. Altered 1113-hydroxylase activity in glucocorticoid-suppressible hyperaldosteronism. J Clin Endocrinol Metab 1996; 81: 2298 2302.

    Google Scholar 

  26. Rich GM, Ulick S, Cook S, Wang JZ, Lifton RP, Dluhy RG. Glucocorticoid remediable aldosteronism

    Google Scholar 

  27. in a large kindred: clinical spectrum and diagnosis using a characteristic biochemical phenotype. Ann Intern Med 1992; 116:813–820.

    Google Scholar 

  28. Gordon RD, Klemm SA, Tunny TJ, Stowasser M, Rutherford JC. The genetics of primary aldosteronism. In: Vinson GP, Anderson DC, eds. Adrenal Glands, Vascular System and Hypertension. Journal of Endocrinology Ltd., Bristol, 1996, pp. 235–252.

    Google Scholar 

  29. Litchfield WR, Coolidge C, Silva P, Lifton RP, Fallo F, Williams GH, et al. Impaired potassium-stimulated aldosterone production: a possible explanation for normokalemic glucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab 1997; 82: 1607–1610.

    Google Scholar 

  30. Gates LJ, MacConnachie AA, Lifton RP, Haîtes NE, Benjamin N. Variation of phenotype in patients with glucocorticoid remediable Hypertension. J Med Genet 1996; 33: 25–28.

    Article  PubMed  CAS  Google Scholar 

  31. Ulick S, Levine LS, Gunczler P, Zanconata G, Ramirez LC, Rauh W, et al. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolisms of cortisol. J Clin Endocrinol Metab 1979; 49: 757–764.

    Article  PubMed  CAS  Google Scholar 

  32. Stewart PM, Corne JET, Shackleton CHL, Edwards CRW. Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisone shuttle. J Clin Invest 1988; 82: 340–349.

    Article  PubMed  CAS  Google Scholar 

  33. Ulick S, Chan CK, Rao KD, Ledassery J, Mantero F. A new form of the syndrome of apparent mineralocorticoid excess. J Steroid Biochem 1989; 32: 209–212.

    Article  PubMed  CAS  Google Scholar 

  34. Ferrari P, Obeyesekere VR, Li K, Wilson RC, New MI, Funder J, et al. Point mutations abolish 1113-hydroxysteroid dehydrogenase type II activity in three families with the congenital syndrome of apparent mineralocorticoid excess. Mol Cell Endocrinol 1996; 119: 21–24.

    Article  PubMed  CAS  Google Scholar 

  35. Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC Human hypertension caused by mutations in the kidney isoenzyme of 11 beta-hydroxysteroid dehydrogenase. Nature Genet 1995; 10: 394–399.

    Article  PubMed  CAS  Google Scholar 

  36. Latif SA, Sheff MF, Ribeiro CE, Morris DJ. Selective inhibition of sheep kidney 11 beta-hydroxysteroid dehydrogenase isoform 2 activity by 5 alpha-reduced (but not 5 beta) derivates of adrenocortiocosteroids. Steroids 1997; 62: 230–237.

    Article  PubMed  CAS  Google Scholar 

  37. Li A, Li K, Mani S, Krozowski ZS, Batista MC, Whorwood CB, et al. Apparent mineralocorticoid excess in a Brazilian kindred: hypertension in the heterozygous state. J Hypertens 1997; 15: 1397–1402.

    Article  PubMed  CAS  Google Scholar 

  38. Chrousos GP, Vingerhoeds A, Brandon D, Eil C, Pugeat M, De Vroede M, et al. Primary cortisol resistance. J Clin Invest 1982; 69: 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  39. Jida S, Gomi M, Moriwaki K, Yoshiharu I, Hirobe K, Matsuzaura Y, et al. Primary cortisol resistance accompanied by a reduction of glucocorticoid receptors in two members of the same family. J Clin Endocrinol Metab 1985; 60: 967–971.

    Article  Google Scholar 

  40. Malchoff DM, Brufsky A, Reardon G, McDermott P, Javier EC, Bergh CH, et al. A mutation of the glucocorticoid receptor in primary cortisol resistance. J Clin Invest 1993; 91: 1918–1925.

    Article  PubMed  CAS  Google Scholar 

  41. Lamberts SW, Koper JW, Biemond P, den Holder FH, de Jong FH. Cortisol receptor resistance: the variability of its clinical presentation and response to treatment. J Clin Endocrinol Metab 1992; 74: 313–321.

    Article  PubMed  CAS  Google Scholar 

  42. Liddle GW, Bledsoe T, Coppage WS. A familial rendal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Am Assoc Physic 1963; 26: 199–213.

    Google Scholar 

  43. Gordon RD, Klemm SA, Tunny TJ. Renin in Liddle’s syndrome and in the syndrome of apparentmineralocorticoid excess. In: JIS Robertson, MG Nicholls, eds. The Renin-Angiotensin System. Gower Medical, London, UK, 1993, pp. 2:66. 1–66. 9.

    Google Scholar 

  44. Skimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hanssons JH, Schambelan M, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the ß subunit of the epithelial sodium channel. Cell 1994; 79: 407–414.

    Article  Google Scholar 

  45. Bubien JK, Ismailov II, Berdiev BK, Cornwell T, Lifton RD, Fuller CM, et al. Liddle’s disease: abnormal regulation of amiloride-sensitive Na’ channels by beta-subunit mutation. Am J Physiol 1996; 270 (1 pt 1) C208–213.

    PubMed  CAS  Google Scholar 

  46. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle’s Syndrome. Nature Genet 1995; 11: 76–82.

    Article  PubMed  CAS  Google Scholar 

  47. Gordon RD. Heterogeneous hypertension. Nature Genet 1995; 11: 6–9.

    Article  PubMed  CAS  Google Scholar 

  48. Findling JW, Raff H, Hansson JH, Lifton RP. Liddle’s syndrome: prospective genetic screening and suppressed aldosterone secretion in an extended kindred. J Clin Endocrinol Metab 1997; 82: 1071 1079.

    Google Scholar 

  49. Gaddalah MF, Abreo K, Work J. Liddles’s syndrome, an underrecognized entity: a report of four cases, including the first report in black individuals. Am J Kidney Dis 1995; 25: 829–835.

    Article  Google Scholar 

  50. Bubien JK, Warnock DG. Amiloride-sensitive sodium conductance in human B lymphoid cells. Am J Physiol 1993; 265: C1175 - C1183.

    PubMed  CAS  Google Scholar 

  51. Gordon RD, Geddes RA, Pawsey CGK, O’Halloran MW. Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Aust Ann Med 1970; 4: 287–294.

    Google Scholar 

  52. Gordon RD, Ravenscroft PJ, Klemm SA, Tunny TJ, Hamlet SM. A new Australian kindred with the syndrome of hypertension and hyperkalaemia has dysregulation of atrial natriuretic factor. J Hypertens 1998; 6 (suppl 4): S323 - S326.

    Google Scholar 

  53. Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension 1986; 8: 93–102.

    Article  PubMed  CAS  Google Scholar 

  54. Klemm SA, Gordon RD, Tunny TJ, Thompson RE. The syndrome of hypertension and hyperkalemia with normal GFR (Gordon’s Syndrome): is there increased proximal sodium reabsorption? Clin Invest Med 1991; 14: 551–558.

    PubMed  CAS  Google Scholar 

  55. Gordon RD, Klemm SA, Tunny TJ, Stowasser M. Gordon’s syndrome: a sodium-volume-dependent form of hypertension with a genetic basis. In: Laragh JH, Brenner BM, eds. Hypertension: Pathophysioloy, Diagnosis and Management, second Ed. Raven, New York, 1995, pp. 2111–2123.

    Google Scholar 

  56. Mansfield TA, Simon DB, Farfel Z, Bia M, Tucci JR, Lebel M, et al. Multilocus linkage of familial hyperkalemia and hypertension, pseudohyperaldosteronism type II, to chromosomes 1g31–42 and 17p11-q21. Nature Genet 1997; 16: 202–205

    Article  PubMed  CAS  Google Scholar 

  57. ’ Shaughnessy KM, Fu B, Johnson A, Gordon RD Linkage of Gordon’s syndrome to the long arm of chromosome 17 in a region recently linked to familial essential hypertension. J Hum Hypertens 1998.

    Google Scholar 

  58. Hilbert P. Chromosomal mapping of two genetic loci associated with blood pressure regulation in hereditary hypertensive rats. Nature 1991; 353: 521–526.

    Article  PubMed  CAS  Google Scholar 

  59. Julier C, Delepine M, Keavney B, Terwilliger T, Davis S, Weeks DE, et al. Genetic susceptibility to human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum Molec Genet 1997; 6: 2077–2085.

    Article  PubMed  CAS  Google Scholar 

  60. Conn JW, Cohen EL, Rovner DR. Suppression of plasma renin activity in primary aldosteronism: distinguishing primary from secondary aldosteronism in hypertensive disease. J Am Med Assoc. 1964; 190: 213–221.

    Article  CAS  Google Scholar 

  61. Hiramatsu K, Yamada T, Yukimura Y, Komiya I, Ichikawa K, Ishihara M, et al. A screening test to identify aldosterone-producing adenoma by measuring plasma renin activity. Arch Int Med 1981; 141: 1589–1593.

    Article  CAS  Google Scholar 

  62. McKenna TJ, Sequira SJ, Heffernan A, Chambers J, Cunningham S. Diagnosis under random conditions of all disorders of the renin-angiotensin-aldosterone axis, including primary hyperaldosteronism. J Clin Endocrinol Metab 1991; 79: 952–957.

    Article  Google Scholar 

  63. Gordon RD. Primary aldosteronism. J Endocrinol Invest 1995; 18: 495–511.

    PubMed  CAS  Google Scholar 

  64. Jonsson JR, Klemm SA, Tunny TJ, Stowasser M, Gordon RD. A new genetic test for familial hyperaldosteronism type I aids in the detection of curable hypertension. Biochem Biophys Res Commun 1995; 207: 565–571.

    Article  PubMed  CAS  Google Scholar 

  65. Stowasser M, Gartside MG, Gordon RD. A PCR-based method of screening individuals of all ages, from neonates to the elderly, for familial hyperaldosteronism type I. Aust NZ J Med 1997; 27: 685–690.

    Article  CAS  Google Scholar 

  66. Pascoe L, Jeunemaitre X, Lebrethon MC, Curnow KM, Gomez-Sanchez CE, Gase JM, et al. Glucocorticoid-suppressible hyperaldosteronism and adrenal tumours occurring in a single French pedigree. J Clin Invest 1995; 96: 2236–2246.

    Article  PubMed  CAS  Google Scholar 

  67. Huang YY, Hsu BR, Tsai JS. Paralytic myopathy-a leading clinical presentation for primary aldosteronism in Taiwan. J Clin Endocrinol Metab 1996; 81: 4038–4041.

    Article  PubMed  CAS  Google Scholar 

  68. Mantero F, Masini AM, Opocher G, Giovagnetti M, Amaldi G. Adrenal incidentaloma: an overview of hormona data from the National Italian Study Group. Horm Res 1997; 47: 284–289.

    Article  PubMed  CAS  Google Scholar 

  69. Soma R, Miyamori I, Nakagawa A, Matsubara T, Takasaki H, Morise T, et al. Possible association of aldosterone producing adenoma and non-functioning adrenal tumor. J Endocrinology 1989; 12: 183186.

    Google Scholar 

  70. Young WF, Stanson AW, Grant CS, Thompson GB, Van Heerden JA. Primary aldosteronism: adrenal venous sampling. Surgery 1996; 120: 913–920.

    Article  PubMed  Google Scholar 

  71. Vaughan NJA, Jowett TP, Slater JOH. Wiggins RC, Lightman SL, Ma JTC, et al. The diagnosis of primary hyperaldosteronism. Lancet 1981; 1: 120–125.

    Article  PubMed  CAS  Google Scholar 

  72. Rutherford JC, Stowasser M, Tunny TJ, Klemm SA, Gordon GD. Laparoscopic adrenalectomy. World J Surg 1966; 20: 758–761.

    Article  Google Scholar 

  73. Gordon RD. Primary aldosteronism: a new understanding. Clin Exp Hypertens. 1997; 19: 857–870.

    Article  PubMed  CAS  Google Scholar 

  74. Rutherford JR, Taylor WL, Stowasser M, Gordon RD. Success of surgery in primary aldosteronism judged by residual autonomous aldosterone production. World J Surg 1998; 22: 1243–1245.

    Article  PubMed  CAS  Google Scholar 

  75. Skogseid B, Larsson C, Lindgren P-G, Kvanta E, Rastad J, Theodorsson E, et al. Clinical and genetic features of adrenocortical lesions in multiple endocrine neoplasia type I. J Clin Endocrinol Metab 1992; 75: 76–81.

    Article  PubMed  CAS  Google Scholar 

  76. Hamwi GJ, Serbin RA, Kruger FA. Does adrenocortical hyperplasia result in adrenocortical carcinoma? N Engl J Med 1957; 257: 1153–1157.

    Article  PubMed  CAS  Google Scholar 

  77. Gordon RD, Hawkins PG, Hamlet S, Tunny TJ, Klemm SA, Bachmann AW. Reduced adrenal secretory mass after unilateral adrenalectomy for aldosterone-producing adenoma may explain unexpected incidence of hypotension. J Hypertens 1989; 7: S210 - S211.

    CAS  Google Scholar 

  78. McLeod MK, Thompson NW, Gross MD, Grekin RJ. Idiopathic aldosteronism masquerading as discrete aldosterone-secreting adrenal cortical neoplasms among patients with primary aldosteronism. Surgery 1989; 106: 1161–1168.

    PubMed  CAS  Google Scholar 

  79. Beckers A, Abs R, Willems PJ, Van Der Auwera B, Kovacs K, Reznik M, et al. Aldosterone-secreting adrenal adenoma as part of multiple endocrine neoplasia type 1 (MEN I): loss of heterozygosity for polymorphic chromosome 11 deoxyribonucleic acid markers, including the MEN I locus. J Clin Endocrinol Metab 1992; 75: 564–570.

    Article  PubMed  CAS  Google Scholar 

  80. Herd GW. A case of primary hyperparathyroidism, primary aldosteronism and Cushing’s disease. Acta Endocrinol (Copenh) 1984; 107: 371–374.

    CAS  Google Scholar 

  81. Strauch G, Vallotten MB, Touitou Y, Bricaire H. The Renin-angiotensin-aldosterone system in normotensive and hypertensive patients with acromegaly. N Engl J Med 1972; 287: 795–799.

    Article  PubMed  CAS  Google Scholar 

  82. Seki M, Tanaka K, Kikudni-Yanoshita R, Konishi M, Fukunari H, Iwama T, et al. Loss of normal allele of the APC gene in an adrenocortical carcinoma from a patient with familial adenomatous polysposis. Human Genet 1992; 89: 298–300.

    Article  CAS  Google Scholar 

  83. Ballard HS, Frame B, Hartscok RJ. Familial multiple endocrine adenoma-peptic ulcer complex. Medicine 1964 43: 481–516.

    Article  PubMed  CAS  Google Scholar 

  84. Fertig A, Webley M, Lynn JA. Primary hyperparathyroidism in a patient with Conn’s syndrome. Postgrad Med J 1980; 56: 45–47.

    Article  PubMed  CAS  Google Scholar 

  85. Burgess JR, Harle RA, Tucker P, Parameswaran V, Davies P, Greenaway TM, et al. Adrenal lesions in a large kindred with multiple endocrine neoplasia type I. Arch Surg 1996; 131: 699–702.

    Article  PubMed  CAS  Google Scholar 

  86. Yano T, Linehan M, Anglard P, Lerman MI, Daniel LN, Stein CA, et al. Genetic changes in human adrenocortical carcinomas. J Natl Cancer Inst 1989; 81: 518–523.

    Article  PubMed  CAS  Google Scholar 

  87. lida A, Blake K, Tunny T, Klemm S, Stowasser M, Hayward N, et al. Allelic losses on chromosome 11g13 in aldosterone-producing adrenal tumours. Genes Chromosomes and Cancer 1995; 12: 73–75.

    Article  Google Scholar 

  88. Gordon R, Gartside M, Tunny T, Stowasser M. Different allelic patterns of chromosome 11g13 in paired aldosterone-producing tumours and blood DNA. Clin Exp Pharmacol Physiol 1996; 23: 594596.

    Google Scholar 

  89. Chandrasekharappa SC, Guru SC, Manickam P, Olufemi S-E, Collins FS, Emmert-Buck MR, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997; 276: 404–407.

    Article  PubMed  CAS  Google Scholar 

  90. Lammie GA, Peters G. Chromosome 11 q 13 abnormalities in human cancer. Cancer Cells 1991; 3: 413420.

    Google Scholar 

  91. Kirschner MA, Powell RD, Lipsett MB. Cushing’s syndrome: nodular cortical hyperplasia of adrenal glands with clinical and pathological features suggesting adrenocortical tumour. J Clin Endocrinol Metab 1964; 24: 947–955.

    Article  PubMed  CAS  Google Scholar 

  92. Findlay JC, Sheeler LR, Engeland WC, Aron DC. Familial adrenocorticotropin-independent Cushing’s syndrome with bilateral macronodular adrenal hyperplasia. J Clin Endocrinol Metab 1993; 76: 189191.

    Google Scholar 

  93. Hidai H, Fujii H, Otsuka K, Abé K, Shimazu N. Cushing’s syndrome due to huge adrenocortical multinodular hyperplasia. Endocrinol J 1995; 22: 555–560.

    Article  Google Scholar 

  94. Carney JA, Gordon H, Carpenter PC, Shendy BV, Go VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore) 1985; 64: 270–283.

    CAS  Google Scholar 

  95. Young WF, Carney JA, Musa PU, Wulffraat NM, Lens JW, Drexhage HA Familial Cushing’s syndrome due to primary pigmented adrenocortical disease. Reinvestigation 50 years later. N Engl J Med 1989; 321: 1659–1664.

    Article  PubMed  Google Scholar 

  96. Stratakis CA, Carney JA, Lin J-P, Papanicolaou DA, Karl M, Kastner DL, et al. Carney complex

    Google Scholar 

  97. a familial multiple neoplasia and lentigenous syndrome. Analysis of II kindreds and linkage to the short arm of chromosome 2. J Clin Invest 1996; 97: 699–705.

    Article  Google Scholar 

  98. Stratakis CA, Jenkins RB, Pras E, Mitsiadis CS, Raff SB, Stalboerger PG, et al. Cytogenetic and microsatellite alterations in tumors from patients with the syndrome of myxomas, spotty pigmentation, and endocrine overactivity (Carney Complex). J Clin Endocrinol Metab 1996; 81: 3607–3614.

    Article  PubMed  CAS  Google Scholar 

  99. Basson CT, Macrae CA, Korf B, Merliss A. Genetic heterogeneity of familial atrial myxoma syndrome (Carney Complex). Am J Cardiol 1997; 79: 994–995.

    Article  PubMed  CAS  Google Scholar 

  100. Hobma S, Hermus A, Pieters G, Smals A, Kloppenborg P. Concurrent hypercortisolism and hyperaldosteronism due to an adrenal adenoma. Klin Wschr 1990; 68: 981–983.

    Article  PubMed  CAS  Google Scholar 

  101. Nagae A, Murakami E, Hiwada K, Kubota O, Takada Y, Ohmori T. Primary hyperaldosteronism with cortisol overproduction from bilateral multiple adrenal adenomas. Jpn J Med 1991; 30: 26–31.

    Article  PubMed  CAS  Google Scholar 

  102. Baert D, Bobels F, Van Crombrugge P. Combined Conn’s and Cushing’s Syndrome: an unusual presentation of adrenal adenoma. Acta Clin Belgica 1995; 50: 310–313.

    CAS  Google Scholar 

  103. Tunny TJ, Klemm SA, Gordon RD. Some aldosterone-producing adrenal tumours also secrete cortisol, but present clinically as primary aldosteronism. Clin Exp Pharmacol Physiol 1990; 17: 167–171.

    Article  PubMed  CAS  Google Scholar 

  104. Van Renterghem C, Lazdunski M. A new voltage-dependent epithelial-like Na channel in vascular smooth muscle cells. Pflugers Arch 1991; 419: 401–408.

    Article  PubMed  Google Scholar 

  105. Tanabe A, Naruse M, Naruse K, Hase M, Yoshimoto T, Tanaka M, et al. Left ventricular hypertrophy is more prominent in patients with primary aldosteronism than in patients with other types of secondary hypertension. Hypertens Res 1997; 20: 85–90.

    Article  PubMed  CAS  Google Scholar 

  106. Rossi GP, Sacchetto A, Pavan E, Palatini P, Graniero GR, Canali C, et al. Remodelling of the left ventricle in primary aldosteronism due to Conn’s adenoma. Circulation 1997; 95: 1471–1478.

    Article  PubMed  CAS  Google Scholar 

  107. Shigematsu Y, Hamanda, Okayama H, Hara Y, Kodama K, Lohara K, et al. Left ventricular hypertigraphy precedes other target-organ damage in primary aldosteronism. Hypertension. 1997; 29: 723–727.

    Article  PubMed  CAS  Google Scholar 

  108. Rizzoni D, Porten E, Castellano M, Bettoni G, Muiesan ML, Muiesan P, et al. Vascular hypertrophy and remodelling in secondary hypertension. Hypertension 1996; 28: 785–790.

    Article  PubMed  CAS  Google Scholar 

  109. Connel JM, Jamieson AJ, Davies E, Ingram M, Soro A, Fraser R. 11 beta-hydroxylase activity in glucocorticoid suppressible hyperaldosteronism: lessons for essential hypertension? Endocr Res 22: 691–700.

    Google Scholar 

  110. Bamberger CM, Bamberger AM, Wald M, Chrousos GP, Schulte HM. Inhibition of mineralocorticoid activity by the beta-isoforms of the human glucocorticoid receptor. J Steroid Biochem Mol Biol 1997; 60: 43–50.

    Article  PubMed  CAS  Google Scholar 

  111. Brilla CG, Schencking M, Scheer C, Rupp H. Spironolactone: renaissance of anti-aldosterone therapy in heart failure? Schweiz Rundsch Med Prax 1997; 86: 566–574.

    CAS  Google Scholar 

  112. Pitt B, Zannad F, Remme WS, Cody R, Castaigne A, Perez A, et al. (For the Randomized Aldactone Evaluation Study investigators.) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999; 341: 708–717.

    Google Scholar 

  113. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  PubMed  CAS  Google Scholar 

  114. Caro JF, Sinha MK, Kogaczynski JW, Zhang PL, Considine RV. Leptin: the tale of an obesity gene. Diabetes 1996; 45: 1455–1462.

    Article  PubMed  CAS  Google Scholar 

  115. Ozata M, Ozdemir IC, Licinio J Human leptin deficiency caused by missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab 1999; 84: 3586–3695.

    Google Scholar 

  116. Torpy DJ, Bornstein SR, Taylor W, Tauchnitz R, Gordon RD. Leptin levels are suppressed in primary aldosteronism. Horm Metab Res, 1999; 31: 533–536.

    Article  PubMed  CAS  Google Scholar 

  117. Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension 1998; 31: 409–414.

    Article  PubMed  CAS  Google Scholar 

  118. Suter PM, Locer R, Haler E, Vetter W. Is there a role for the ob gene product leptin in essential hypertension? Am J Hypertens 1998; 11: 1305–1311.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gordon, R.D. (2001). Mineralocorticoid Excess Syndromes. In: Margioris, A.N., Chrousos, G.P. (eds) Adrenal Disorders. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-101-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-101-5_27

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-029-8

  • Online ISBN: 978-1-59259-101-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics