Skip to main content

Pseudo-Cushing Syndrome

  • Chapter
Adrenal Disorders

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Cushing’s syndrome is a rare disorder that can severely affect the patient. It is the result of prolonged exposure to high levels of exogenous or endogenous glucocorticoids. Symptoms of patients with Cushing’s syndrome include weight gain, easy bruising, menstrual irregularities, increased appetite, trouble sleeping, depression or mood swings, anxiety, fatigue and altered mentation (trouble concentrating or decreased memory) (1–3). Physical abnormalities include new onset obesity (primarily in the abdominal and buttock regions), buffalo hump, filling in of the regions above the collarbone, thinning of the extremities, rounding and reddening of the face, thin skin, decreased muscle strength, high blood pressure, stretch marks, and excess hair growth in women. Although some patients may have most or all of these signs and symptoms so that the diagnosis of Cushing’s syndrome may be easy to make, other patients may have mild Cushing’s syndrome and go to their health care providers at an early stage of the disease. This is especially true as Cushing’s syndrome has been publicized in the lay literature, (4) and with the proliferation of Internet-related information sites and Cushing’s support groups, more patients are aware that Cushing’s syndrome may explain their medical problems. Thus, patients are seeking medical attention earlier. However, other medical conditions may also result in some of the signs, symptoms, and laboratory abnormalities seen in patients with Cushing’s syndrome, without the patient actually having Cushing’s syndrome. These conditions are called pseudo-Cushing’s states and include conditions such as severe stresses (illness or emotional stress), alcoholism or alcohol withdrawal, and psychiatric conditions such as depression, panic disorders, and psychotic conditions. The pathophysiology leading to increased cortisol production in alcoholism and depression is discussed later. Pseudo-Cushing’s states are classically defined as those conditions associated with increased cortisol production [usually measured by urinary-free cortisol (UFC) measurements], but with less clinical signs and symptoms than true Cushing’s syndrome. Resolution of the underlying primary condition leads to disappearance of the signs and symptoms of Cushing’s syndrome. In this chapter, we will also discuss conditions that mimic the clinical stigmata of Cushing’s syndrome, but lack elevated cortisol production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yanovski JA, Cutler G, Jr. Glucocorticoid action and the clinical features of Cushing’s syndrome. Endocrinol Metab Clin North Am 1994; 23: 487–509.

    PubMed  CAS  Google Scholar 

  2. Orth DN. Cushing’s syndrome. N Engl J Med 1995; 332: 791–803.

    Article  PubMed  CAS  Google Scholar 

  3. Ross El, Linch DC. Cushing’s syndrome-killing disease: discriminatory value of signs and symptoms aiding early diagnosis. Lancet 1982; 2: 646–649.

    Google Scholar 

  4. Missed Diagnosis. Family Circle February 2nd 1993; 68–73.

    Google Scholar 

  5. Rosmond R, Dallman MF, Bjorntorp P. Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities [see comments]. J Clin Endocrinol Metab 1998; 83: 1853–1859.

    Article  PubMed  CAS  Google Scholar 

  6. Rees LH, Besser GM, Jeffcoate WJ, Goldie DJ, Marks V. Alcohol-induced pseudo-Cushing’s syndrome. Lancet 1977; 1: 726–728.

    Article  PubMed  CAS  Google Scholar 

  7. Smalls AG, Kloppenborg PW, Njo KT, Knoben JM, Ruland CM. Alcohol-induced Cushing’ s syndrome. Br Med J 1976; 2: 1298.

    Article  PubMed  CAS  Google Scholar 

  8. Besser GM, Edwards CRW. Cushing’s syndrome. Clin Endocrinol Metab 1972; 1: 451–490.

    Article  Google Scholar 

  9. Yanovski JA, Cutler GB, Jr, Chrousos GP, Nieman LK. Corticotropin-releasing hormone stimulation following low-dose dexamethasone administration: a new test to distinguish Cushing’s syndrome from pseudo-Cushing’s states. J Am Med Assoc 1993; 269: 2232–2238.

    Article  CAS  Google Scholar 

  10. Tsigos C, Young RJ, White A. Diabetic neuropathy is associated with increased activity of the hypothalamic-pituitary-adrenal axis. J Clin Endocrinol Metab 1993; 76: 554–558.

    Article  PubMed  CAS  Google Scholar 

  11. Roy MS, Roy A, Gallucci WT, Colliler B, Young K, Kamilaris TC, et al. The ovine corticotropinreleasing hormone-stimulation test in type I diabetic patients and controls: suggestion of mild chronic hypercortisolism. Metabolism 1993; 42: 696–700.

    Article  PubMed  CAS  Google Scholar 

  12. Paton A. Alcohol-induced cushingoid syndrome. Br Med J 1976; 2: 1504.

    Article  PubMed  CAS  Google Scholar 

  13. Lamberts SW, Klijn JG, de Jong FH, Birkenhager JC. Hormone secretion in alcohol-induced pseudoCushing’s syndrome. Differential diagnosis with Cushing’s disease. JAMA 1979; 242: 1640–1643.

    CAS  Google Scholar 

  14. Jeffcoate W. Alcohol-induced pseudo-Cushing’s syndrome. Lancet 1993; 341: 676, 677.

    Google Scholar 

  15. Wand GS, Dobs AS. Alterations in the hypothalamic-pituitary-adrenal axis in actively drinking alcoholics. J Clin Endocrinol Metab 1991; 72: 1290–1295.

    Article  PubMed  CAS  Google Scholar 

  16. Jain S, Sakhuja V, Bhansali A, Gupta KL, Dash RJ, Chugh KS. Corticotropin-dependent Cushing’s syndrome in a patient with chronic renal failure-a rare association. Ren Fail 1993; 15: 563–566.

    Article  PubMed  CAS  Google Scholar 

  17. Otokida K, Fujiwara T, Oriso S, Kato M. Cortisol and its metabolites in the plasma and urine in Cushing’s syndrome with chronic renal failure (CRF), compared to Cushing’s syndrome without CRF. Nippon Jinzo Gakkai Shi 1989; 31: 651–656.

    PubMed  CAS  Google Scholar 

  18. Sharp NA, Devlin JT, Rimmer JM. Renal failure obfuscates the diagnosis of Cushing’s disease. JAMA 1986; 256: 2564, 2565.

    Google Scholar 

  19. Arai K, Chrousos GP. Syndromes of glucocorticoid and mineralocorticoid resistance. Steroids 1995; 60: 173–179.

    Article  PubMed  CAS  Google Scholar 

  20. de Lange P, Koper JW, Huizenga NA, Brinkmann AO, de Jong FH, Karl M, et al. Differential hormone-dependent transcriptional activation and-repression by naturally occurring human glucocorticoid receptor variants. Mol Endocrinol 1997; 11: 1156–1164.

    Article  PubMed  Google Scholar 

  21. Lamberts SW. The glucocorticoid insensitivity syndrome. Horm Res 1996; 1: 2–4.

    Article  Google Scholar 

  22. Friedman TC, Papanicolaou DA. Comment on high urinary free cortisol excretion in a patient with psychogenic polydipsia. J Clin Endocrinol Metab 1998; 83: 3378, 3379.

    Google Scholar 

  23. Cizza G, Nieman LK, Doppman JL, Passaro MD, Czerwiec FS, Chrousos GP, et al. Factitious Cushing syndrome. J Clin Endocrinol Metab 1996; 81: 3573–3577.

    Article  PubMed  CAS  Google Scholar 

  24. Friedman TC, Mastorakos G, Newman TD, Mullen NM, Horton EG, Costello R, et al. Carbohydrate and lipid metabolism in endogenous hypercortisolism: shared features with metabolic syndrome X and NIDDM. Endocr J 1996; 43: 645–655.

    Article  PubMed  CAS  Google Scholar 

  25. Reaven GM. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595–1607.

    Article  PubMed  CAS  Google Scholar 

  26. Peeke PM, Chrousos GP. Hypercortisolism and obesity. Ann NY Acad Sci 1995; 771: 665–676.

    Article  PubMed  CAS  Google Scholar 

  27. Kreze A, Veleminsky J, Spirova E. Low-dose dexamethasone suppression of urinary-free cortisol in the differential diagnosis between Cushing’ s syndrome and obesity. Klin Wochenschr 1985; 63: 188, 189.

    Google Scholar 

  28. Pasquali R, Cantobelli S, Casimirri F, Capelli M, Bortoluzzi L, Flamia R, et al. The hypothalamicpituitary-adrenal axis in obese women with different patterns of body fat distribution. J Clin Endocrinol Metab 1993; 77: 341–346.

    Article  PubMed  CAS  Google Scholar 

  29. Mârin P, Darin N, Amemiya T, Andersson B, Jern S, Björntorp P. Cortisol secretion in relation to body fat distribution in obese premenopausal women. Metabolism 1992; 41: 882–886.

    Article  PubMed  Google Scholar 

  30. Gibney J, Wallace JD, Spinks T, Schnorr L, Ranicar A, Cuneo RC, et al. The effects of 10 years of recombinant human growth hormone (GH) in adult GH-deficient patients. J Clin Endocrinol Metab 1999; 84: 2596–2602.

    Article  PubMed  CAS  Google Scholar 

  31. Ho TT, Chan KC, Wong KH, Lee SS. Abnormal fat distribution and use of protease inhibitors. Lancet 1998; 351: 1736, 1737.

    Google Scholar 

  32. Massip P, Marchou B, Bonnet E, Cuzin L, Montastruc JL. Lipodystrophia with protease inhibitors in HIV patients. Therapie 1997; 52: 615.

    PubMed  CAS  Google Scholar 

  33. Carr A, Samaras K, Burton S, Law M, Freund J, Chisholm DJ, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. Aids 1998; 12: F51–58.

    Article  PubMed  CAS  Google Scholar 

  34. Viraben R, Aquilina C Indinavir-associated lipodystrophy. Aids 1998; 12: F37–39.

    Article  PubMed  CAS  Google Scholar 

  35. Yanovski JA, Miller KD, Kino T, Friedman TC, Chrousos GP, Tsigos C, et al. Endocrine and metabolic evaluation of human immunodeficiency virus-infected patients with evidence of protease inhibitor-associated lipodystrophy. J Clin Endocrinol Metab 1999; 84: 1925–1931.

    Article  PubMed  CAS  Google Scholar 

  36. Hadigan C, Miller K, Corcoran C, Anderson E, Basgoz N, Grinspoon S. Fasting hyperinsulinemia and changes in regional body composition in human immunodeficiency virus-infected women. J Clin Endocrinol Metab 1999; 84: 1932–1937.

    Article  PubMed  CAS  Google Scholar 

  37. Fujii H, Lida S, Gomi M, Tsugawa M, Kitani T, Moriwaki K. Augmented induction by dexamethasone of metallothionein IIa messenger ribonucleic acid in fibroblasts from a patient with cortisol hyperreactive syndrome. J Clin Endocrinol Metab 1993; 76: 445–449.

    Article  PubMed  CAS  Google Scholar 

  38. Iida S, Moriwaki K, Fujii H, Gomi M, Tsugawa M, Nakamura Y, et al. Quantitative comparison of aromatase induction by dexamethasone in fibroblasts from a patient with familial cortisol resistance and a patient with cortisol hyperreactive syndrome. J Clin Endocrinol Metab 1991; 73: 192–196.

    Article  PubMed  CAS  Google Scholar 

  39. Iida S, Nakamura Y, Fujii H, Nishimura J, Tsugawa M, Gomi M, et al. A patient with hypocortisolism and Cushing’s syndrome-like manifestations: cortisol hyperreactive syndrome. J Clin Endocrinol Metab 1990; 70: 729–737.

    Article  PubMed  CAS  Google Scholar 

  40. Huizenga NA, Koper JW, De Lange P, Pols HA, Stolk RP, Burger H, et al. A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. J Clin Endocrinol Metab 1998; 83: 144–151.

    Article  PubMed  CAS  Google Scholar 

  41. Stewart PM. 11 beta-Hydroxysteroid dehydrogenase: implications for clinical medicine. Clin Endocrinol 1996; 44:493–499.

    Google Scholar 

  42. Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “Cushing’s disease of the omentum”? Lancet 1997; 349: 1210–1213.

    Article  PubMed  CAS  Google Scholar 

  43. Bujalska IJ, Kumar S, Hewison M, Stewart PM. Differentiation of adipose stromal cells: the roles of glucocorticoids and i ibeta-hydroxysteroid dehydrogenase. Endocrinology 1999; 140: 3188–3196.

    Article  PubMed  CAS  Google Scholar 

  44. Stewart PM, Boulton A, Kumar S, Clark PM, Shackleton CH. Cortisol metabolism in human obesity: impaired cortisone-cortisol conversion in subjects with central adiposity. J Clin Endocrinol Metab 1999; 84: 1022–1027.

    Article  PubMed  CAS  Google Scholar 

  45. Gold PW, Goodwin FK, Chrousos GP. Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (1). N Engl J Med 1988; 319: 348–353.

    Article  PubMed  CAS  Google Scholar 

  46. Chrousos GP, Schuermeyer TH, Doppman J, Oldfield EH, Schulte HM, Gold PW, et al. NIH conference. Clinical applications of corticotropin-releasing factor. Ann Intern Med 1985; 102: 344–358.

    Article  PubMed  CAS  Google Scholar 

  47. Gold PW, Loriaux DL, Roy A, Kling MA, Calabrese JR, Kellner CH, et al. Responses to corticotropinreleasing hormone in the hypercortisolism of depression and Cushing’s disease. Pathophysiologic and diagnostic implications. N Engl J Med 1986; 314: 1329–1335.

    Article  PubMed  CAS  Google Scholar 

  48. Gold PW, Goodwin FK, Chrousos GP. Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (2). N Engl J Med 1988; 319: 413–420.

    Article  PubMed  CAS  Google Scholar 

  49. Arana GW, Mossman D. The dexamethasone suppression test and depression. Approaches to the use of a laboratory test in psychiatry. Endocrinol Metab Clin North Am 1988; 17: 21–39.

    PubMed  CAS  Google Scholar 

  50. Carroll BJ. The dexamethasone suppression test for melancholia. Br J Psych 1982; 140: 292–304.

    Article  CAS  Google Scholar 

  51. Carroll BJ, Feinberg M, Greden JF, Tarika J, Albala AA, Haskett RF, et al. A specific laboratory test for the diagnosis of melancholia. Standardization, validation, and clinical utility. Arch Gen Psych 1981; 38: 15–22.

    Article  CAS  Google Scholar 

  52. Rubin RT, Phillips JJ, McCracken JT, Sadow TF. Adrenal gland volume in major depression: relationship to basal and stimulated pituitary-adrenal cortical axis function. Biol Psych 1996; 40: 89–97.

    Article  CAS  Google Scholar 

  53. Rivier C, Imaki T, Vale W. Prolonged exposure to alcohol: effect on CRF mRNA levels, and CRFand stress-induced ACTH secretion in the rat. Brain Res 1990; 520: 1–5.

    Google Scholar 

  54. Redei E, Branch BJ, Gholami S, Lin EY, Taylor AN. Effects of ethanol on CRF release in vitro. Endocrinology 1988; 123: 2736–2743.

    Article  PubMed  CAS  Google Scholar 

  55. Groote Veldman R, Meinders AE. On the mechanism of alcohol-induced pseudo-Cushing’s syndrome. Endocr Rev 1996; 17: 262–268.

    Article  Google Scholar 

  56. Johnson DA, Lee NM, Cooke R. Adaptation to ethanol-induced fluidization of brain lipid bilayers. Drug Alcohol Depend 1979; 4: 197–202.

    Article  PubMed  CAS  Google Scholar 

  57. Dave JR, Eiden LE, Karanian JW, Eskay RL. Ethanol exposure decreases pituitary corticotropinreleasing factor binding, adenylate cyclase activity, proopiomelanocortin biosynthesis, and plasma beta-endorphin levels in the rat. Endocrinology 1986; 118: 280–286.

    Article  PubMed  CAS  Google Scholar 

  58. Dave JR, Krieg R, Jr, Witorsch RJ. Modulation of prolactin binding sites in vitro by membrane fluidizers. Effects on male prostatic and female hepatic membranes in alcohol-fed rats. Biochim Biophys Acta 1985; 816: 313–320.

    Article  PubMed  CAS  Google Scholar 

  59. Hiramatsu R, Nisula BC. Effect of alcohol on the interaction of cortisol with plasma proteins, glucocorticoid receptors and erythrocytes. J Steroid Biochem 1989; 33: 65–70.

    Article  PubMed  CAS  Google Scholar 

  60. Stewart PM, Burra P, Shackleton CH, Sheppard MC, Elias E. 11 beta-Hydroxysteroid dehydrogenase deficiency and glucocorticoid status in patients with alcoholic and non-alcoholic chronic liver disease. J Clin Endocrinol Metab 1993; 76: 748–751.

    Article  PubMed  CAS  Google Scholar 

  61. Lex BW, Ellingboe JE, Teoh SK, Mendelson JH, Rhoades E. Prolactin and cortisol levels following acute alcohol challenges in women with and without a family history of alcoholism Alcohol 1991; 8: 383–387.

    CAS  Google Scholar 

  62. Schuckit MA, Risch SC, Gold EO. Alcohol consumption, ACTH level, and family history of alcoholism. Am J Psych 1988; 145: 1391–1395.

    CAS  Google Scholar 

  63. Nieman LK, Cutler GB, Jr. The sensitivity of the urine free cortisol measurement as a screening test for Cushing’s syndrome. Endocrine Soc (abstract) 1990; 72: 822.

    Google Scholar 

  64. Krieger DT, Allen W, Rizzo F, Krieger HP. Characterization of the normal temporal pattern of plasma corticosteroid levels. J Clin Endocrinol Metab 1971; 32: 266–284.

    Article  PubMed  CAS  Google Scholar 

  65. Friedman TC, Yanovski JA. Morning plasma-free cortisol: inability to distinguish patients with mild Cushing’s syndrome from patients with pseudo-Cushing states. J Endocrinol Invest 1995; 18: 696–701.

    PubMed  CAS  Google Scholar 

  66. Newell-Price J, Trainer P, Perry L, Wass J, Grossman A, Besser M. A single sleeping midnight cortisol has 100% sensitivity for the diagnosis of Cushing’s syndrome. Clin Endocrinol 1995; 43: 545–550.

    Article  CAS  Google Scholar 

  67. Papanicolaou DA, Yanovski JA, Cutler G, Jr, Chrousos GP, Nieman LK. A single midnight serum cortisol measurement distinguishes Cushing’s syndrome from pseudo-Cushing states. J Clin Endocrinol Metab 1998; 83: 1163–1167.

    Article  PubMed  CAS  Google Scholar 

  68. Raff H, Raff JL, Findling JW Late-night salivary cortisol as a screening test for Cushing’s syndrome. J Clin Endocrinol Metab 1998; 83: 2681–2686.

    Article  PubMed  CAS  Google Scholar 

  69. Papanicolaou DA, Mullen N, Nieman LK. Diurnal salivary cortisol determination: an accurate and convenient test for the diagnosis of Cushing syndrome. Endocrine Soc (abstract) 1995; 77:OR10–4.

    Google Scholar 

  70. Yanovski JA, Cutler G, Jr, Chrousos GP, Nieman LK. The dexamethasone-suppressed corticotropinreleasing hormone stimulation test differentiates mild Cushing’s disease from normal physiology. J Clin Endocrinol Metab 1998; 83: 348–352.

    Article  PubMed  CAS  Google Scholar 

  71. Pavlatos FC, Smilo RP, Forsham PH. A rapid screening test for Cushing’s syndrome. JAMA 1865; 193: 720–723.

    Google Scholar 

  72. Nugent CA, Nichols T, Tyler FH. Diagnosis of Cushing’ syndrome-single dose dexamethasone. Arch Intern Med 1965; 116: 172–176.

    Article  PubMed  CAS  Google Scholar 

  73. Liddle GW. Tests of pituitary-adrenal suppressibility in the diagnosis of Cushing’s syndrome. J Clin Endocrinol Metab 1960; 20: 1539–1561.

    Article  PubMed  CAS  Google Scholar 

  74. Murphy BE. Steroids and depression. J Steroid Biochem Mol Biol 1991; 38: 537–559.

    Article  PubMed  CAS  Google Scholar 

  75. Crapo LM. Cushing’s syndrome: a review of diagnostic tests. Metabolism 1979; 28: 955–977.

    Article  PubMed  CAS  Google Scholar 

  76. Terzolo M, Borretta G, Ali A, Cesario F, Magro G, Boccuzzi A, et al. Misdiagnosis of Cushing’s syndrome in a patient receiving rifampicin therapy for tuberculosis. Horm Metab Res 1995; 27: 148–150.

    Article  PubMed  CAS  Google Scholar 

  77. Meikle AW, Lagerquist LG, Tyler FH. Apparently normal pituitary-adrenal suppressibility in Cushing’s syndrome: dexamethasone metabolism and plasma levels. J Lab Clin Med 1975; 86: 472–478.

    PubMed  CAS  Google Scholar 

  78. Tiller JW, Maguire KP, Schweitzer I, Biddle N, Campbell DG, Outch K, et al. The dexamethasone suppression test: a study in a normal population. Psychoneuroendocrinology 1988; 13: 377–384.

    Article  PubMed  CAS  Google Scholar 

  79. Wood PJ, Barth JH, Freedman DB, Perry L, Sheridan B. Evidence for the low-dose dexamethasone suppression test to screen for Cushing’s syndrome-recommendations for a protocol for biochemistry laboratories. Ann Clin Biochem 1997; 34: 222–229.

    PubMed  CAS  Google Scholar 

  80. Findling JW, Shaker JL, Brickner RC, Magill SB, Lalande BM, Raff H. Low-dose dexamethasone suppression testing cannot be used to exclude Cushing’s syndrome. Endocrin Soc 1999; 81:0R21–23 (abstract).

    Google Scholar 

  81. Findling JW, Raff H. Newer diagnostic techniques and problems in Cushing’s disease. Endocrinol Metab Clin North Am 1999; 28: 191–210.

    Article  PubMed  CAS  Google Scholar 

  82. Tsigos C, Papanicolaou DA, Chrousos GP. Advances in the diagnosis and treatment of Cushing’s syndrome. Baillieres Clin Endocrinol Metab 1995; 9: 315–336.

    Article  PubMed  CAS  Google Scholar 

  83. James VH, Landon J, Wynn V, Greenwood FC. A fundamental defect of adrenocortical control in Cushing’s disease. J Endocrinol 1968; 40: 15–28.

    Article  PubMed  CAS  Google Scholar 

  84. Malerbi DA, Fragoso MC, Vieira Filho AH, Brenlha EM, Mendonca BB. Cortisol and adrenocorticotropin response to desmopressin in women with Cushing’s disease compared with depressive illness. J Clin Endocrinol Metab 1996; 81: 2233–2237.

    Article  PubMed  CAS  Google Scholar 

  85. Colombo P, Passim E, Re T, Faglia G, Ambrosi B. Effect of desmopressin on ACTH and cortisol secretion in states of ACTH excess. Clin Endocrinol 1997; 46: 661–668.

    Article  CAS  Google Scholar 

  86. Malerbi DA, Mendonca BB, Liberman B, Toledo SP, Corradini MC, Cunha-Neto MB, et al. The desmopressin stimulation test in the differential diagnosis of Cushing’s syndrome. Clin Endocrinol 1993; 38: 463–472.

    Article  CAS  Google Scholar 

  87. Ambrosi B, Bochicchio D, Ferrario R, Colombo P, Faglia G. Effects of the opiate agonist loperamide on pituitary-adrenal function in patients wiht suspected hypercortisolism J Endocrinol Invest 1989; 12: 31–35.

    CAS  Google Scholar 

  88. Ambrosi B, Bochicchio D, Colombo P, Fadin C, Faglia G. Loperamide to diagnose Cushing’s syndrome. J Am Med Assoc 1993; 270: 2301, 2302.

    Google Scholar 

  89. Bernin GP, Argenio GF, Cern F, Franchi F. Comparison between the suppressive effects of dexamethasone and loperamide on cortisol and ACTH secretion in some pathological conditions. J Endocrinol Invest 1994; 17: 799–804.

    Google Scholar 

  90. Tsigos C, Papanicolaou DA, Defensor R, Mitsiadis CS, Kyrou I, Chrousos GP. Dose effects of recombinant human interleukin-6 on pituitary hormone secretion and energy expenditure. Neuroendocrinology 1997; 66: 54–62.

    Article  PubMed  CAS  Google Scholar 

  91. Papanicolaou DA, Lotsikas AJ, Torpy DJ, Tsigos C, Chrousos GP. A single injection of interleukin6 accurately distinguishes Cushing syndrome from pseudo-Cushing states. Endocrine Soc 1998; 80:0R12–3 (abstract).

    Google Scholar 

  92. Yanovski JA, Cutler GB, Jr, Doppman JL, Miller DL, Chrousos GP, Oldfield EH, et al. The limited ability of inferior petrosal sinus sampling with corticotropin-releasing hormone to distinguish Cushing’s disease from pseudo-Cushing states or normal physiology. J Clin Endocrinol Metab 1993; 77: 503–509.

    Article  PubMed  CAS  Google Scholar 

  93. Hall WA, Luciano MG, Doppman JL, Patronas NJ, Oldfield EH. Pituitary magnetic resonance imaging in normal human volunteers: occult adenomas in the general population. Ann Intern Med 1994; 120: 817–820.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friedman, T. (2001). Pseudo-Cushing Syndrome. In: Margioris, A.N., Chrousos, G.P. (eds) Adrenal Disorders. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-101-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-101-5_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-029-8

  • Online ISBN: 978-1-59259-101-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics