Skip to main content

Human Tumor Xenografts and Explants

  • Chapter
Tumor Models in Cancer Research

Abstract

Since the first report of the successful xenografting of a human tumor into nude mice in 1969, there have been numerous studies conducted throughout the world using the nude mouse as a tool to answer a variety of questions regarding the cause, prevention, and therapy of cancer. Thus, the role of immunodeficient animals in oncology has continuously increased, and the athymic nude mouse has proven to be an outstanding host for many human solid-tumor xenografts (1,2). These mice are now extensively used in the development of potential anticancer drugs, new antineoplastic treatment modalities, and studies of tumor biology (3–7). Moreover, mice with severe combined immunodeficiency (SCID) have enlarged the spectrum of possible applications in cancer research and enabled engraftments of human tumors that were previously difficult to explant, such as those of the hematopoietic system (8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rygaard J, Povlsen CO. Heterotranspiantation of a human malignant tumour to the mouse mutant “nude.” Acta Pathol Microbiol Scand 1969; 77: 758–760.

    Article  PubMed  CAS  Google Scholar 

  2. Povlsen CO, Sordat B, Tamaoki N. Human tumors serially transplanted in nude mice. Report. Copenhagen: The Nude Mouse Secretariat, 1977.

    Google Scholar 

  3. Houchens DP, Ovejera AA. Proceedings of the symposium on the use of athymic (nude) mice in cancer research, Gustav Fischer Verlag, New York, Stuttgart, 1978.

    Google Scholar 

  4. Reid LM, Holland J, Jones C, Wolf B, Niwayama G, Williams R, et al. Some of the variables affecting the success of transplantation of human tumors into the athymic nude mouse. In: Houchens DP, Ovejera AA, eds. Proceedings of the symposium on the use of athymic (nude) mice in cancer research, Gustav Fischer Verlag, New York, Stuttgart, 1978, pp. 107–122.

    Google Scholar 

  5. Ovejera AA. The use of human tumor xenografts in large scale drug screening. In: Kallman RF, ed. Rodent tumor models in experimental cancer therapy. Pergam on Press, New York, Oxford, 1987, pp. 218–220.

    Google Scholar 

  6. Venditti JM, Weseley RA, Plowman J. Current NCI preclinical antitumor screening in vivo: results of tumor panel screening, 1976–1982, and future directions. In: Garattini S, Goldin A, Hawking F, eds. Advances in Pharmacology and Chemotherapy, vol. 20, Academic Press, New York, NY 1984, pp. 2–20.

    Google Scholar 

  7. Staquet MJ, Byar DP, Green SB, Rozencweig M. Clinical predictivity of transplantable tumor systems in the selection of new drugs for solid tumors. Rationale of a three-stage strategy. Cancer Treat Rep 1983; 67: 753–765.

    PubMed  CAS  Google Scholar 

  8. Fichtner I, Goan S, Becker M, Baldy C, Borgmann A, Stackelberg A, et al. Transplantation of human haematopoietic of leukaemic cells into SCID and NOD/SCID mice. In: Fiebig HH, Burger AM, eds. Relevance of tumor models for anticancer drug development. Contrib Oncol, vol 54, Basel, Karger, 1999, pp. 207–217.

    Google Scholar 

  9. Bibby MC. Transplantable tumours in mice-the way forward. In: Fiebig HH, Burger AM, eds. Relevance of tumor models for anticancer drug development. Contrib Oncol vol 54, Basel, Karger, 1999, pp. 1–13.

    Google Scholar 

  10. Fiebig HH, Dengler WA, Roth T. Human tumor xenografts: predictivity, characterization and discovery of new-anticancer agents. In: Fiebig HH, Burger AM, eds. Relevance of tumor models for anticancer drug development. Contrib Oncol, vol 54, Basel, Karger, 1999, pp. 29–50.

    Google Scholar 

  11. Goldin A, Venditti JM, MacDonald JS, Muggia FM, Henney JE, DeVita VT. Current results of the screening program at the division of cancer treatment, National Cancer Institute. Eur J Cancer 1981; 17: 129–142.

    PubMed  CAS  Google Scholar 

  12. Sausville EA, Feigal E. Evolving approaches to cancer drug discovery and development at the National Cancer Institute. Ann Oncol 1999; 10: 1287–1292.

    Article  PubMed  CAS  Google Scholar 

  13. Malakoff D, Vogel G, Marshall E. The rise of the mouse, biomedicine’s model mammal. Science 2000; 288: 248–257.

    Article  PubMed  CAS  Google Scholar 

  14. Note for guidance on the pre-clinical evaluation of anticancer medicinal products,“ (http://www.eudra.org/emea.html).

    Google Scholar 

  15. Scholz CC, Berger DP, Winterhalter BR, Henss H, Fiebig HH. Correlation of drug response in patients and in the clonogenic assay using solid human tumor xenografts. Eur J Cancer 1990; 26: 901–905.

    Article  PubMed  CAS  Google Scholar 

  16. Fiebig HH, Schmid JR, Bieser W, Henss H, Löhr GW. Colony assay with human tumor xenografts, murine tumors and human bone marrow. Potential for anticancer drug development. Eur J Cancer Clin Oncol 1987; 23: 937–948.

    Article  PubMed  CAS  Google Scholar 

  17. Fiebig HH, Berger DP, Dengler WA, Wallbrecher E, Winterhalter BR. Combined in vitrolin vivo test procedure with human tumor xenografts. In: Fiebig HH, Berger DP, eds. Immunodeficient Mice in Oncology. Contrib Oncol, vol 42, Karger, Basel 1992, pp. 321–351.

    Google Scholar 

  18. Workman P, Twentyman P, Balkwill F, Balmain A, Chaplin D, Double J, et al. United Kingdom CoOrdinating Committee on Cancer Research (UKCCCR) guidelines for the welfare of animals in experimental neoplasy, 2nd ed. Br J Cancer 1998; 77: 1–10.

    Google Scholar 

  19. Geran RI, Greenberg NH, MacDonald MM, Schumacher AM, Abbott BJ. Protocols for screening chemical agents and natural products against tumor and other biological systems. Cancer Chemother Rep 1972; 3: 1–103.

    Google Scholar 

  20. Miles AA, Miles EM. Vascular reactions to histamine, histamine liberator and leukotaxine in the skin of guinea pigs. J Physiol 1952; 118: 228–257.

    PubMed  CAS  Google Scholar 

  21. Schüler JB, Fiebig HH, Burger AM. Development of human tumor models for evaluation of compounds which target tumor vasculature. In: Fiebig HH, Burger AM, (eds). Relevance of tumor models for anticancer drug development. Contrib Oncol, vol 54, Karger Verlag, Basel 1999, pp. 181–190.

    Google Scholar 

  22. Von Hoff DD. In vitro predictive testing: the sulfonamide era. Int J Cell Cloning 1987; 5: 179–190.

    Article  Google Scholar 

  23. Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977; 197: 461–463.

    Article  PubMed  CAS  Google Scholar 

  24. Steel G. How well do xenografts maintain the therapeutic response characteristics of the source tumor in the donor patient? In: Kallman RF, ed. Rodent tumor models in experimental cancer therapy. Pergam on Press, New York, Oxford, 1987, pp. 205–208.

    Google Scholar 

  25. Klostermeyer A, Schüler JB, Fiebig HH, Burger AM. Expression patterns of metastasis associated proteins (MMPs, CD44) in a panel of human tumor xenografts. Ann Hematol 1998; 77: 220.

    Google Scholar 

  26. Salmi M, Gron-Virta K, Sointu P, Grenman R, Kalimo H, Jalkanen S. Regulated expression of exon v6 containing isoforms of CD44 in man: downregulation during malignant transformation of tumors of squamocellular origin. J Cell Biol 1993; 122: 431–442.

    Article  PubMed  CAS  Google Scholar 

  27. Dome B, Somlai B, Tamasy A, Peter L, Tovari J, Horvath A, et al. Prognosis and invasion marker expression of cutaneous melanoma. Metastasis-associated genes (nm23, CD44v3, MMP2). Ory Hetil 1999; 140: 235–240.

    CAS  Google Scholar 

  28. Paradis V, Lagha NB, Zeimoura L, Blanchet P, Eschwege P, Ba N, et al. Expression of vascular endothelial growth factor in renal cell carcinomas. Virchows Arch 2000; 436: 351–356.

    Article  PubMed  CAS  Google Scholar 

  29. Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L, et al. Display and analysis of patterns of differential activity of drugs against human tumour cell lines: development of mean graph and COMPARE algorithm. J Nati Cancer Inst 1989; 81: 1088–1092.

    Article  CAS  Google Scholar 

  30. Fiebig HH, Berger DP, Winterhalter BR, Plowman J. In-vitro and in-vivo evaluation of US-NCI compounds in human tumor xenografts. Cancer Treat Rev 1990; 17: 109–117.

    Article  PubMed  CAS  Google Scholar 

  31. Hendriks HR, Berger DP, Dengler WA, Drees M, Winterhalter BR, Lobbezoo MW, et al. New anticancer drug development: interim results of the cooperative program between the Freiburg preclinical anticancer drug development group and the EORTC new drug development office. Contrib Oncol 1996; 51: 108–114.

    CAS  Google Scholar 

  32. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an Hsp90geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 1997; 89: 239–250.

    Article  PubMed  CAS  Google Scholar 

  33. Schnur RC, Corman ML, Gallachun RI, Cooper BA, Dee MF, Coty JL, et al. erbB-2 oncogene inhibition by geldanamycin derivatives: synthesis, mechanism of action, and structure-activity relationships. J Med Chem 1995; 38: 3813–3820.

    Article  PubMed  CAS  Google Scholar 

  34. Burger AM, Fiebig HH, Newman DJ, Camalier RF, Sausville EA. Antitumor activity of 17-allylaminogeldanamycin (NSC 330507) in melanoma xenografts is associated with decline in Hsp90 protein expression. Ann Oncol 1998; 9 (Suppl 2): 132.

    Article  Google Scholar 

  35. Burger AM, Sausville EA, Camalier RF, Newman DJ, Fiebig HH. Response of human melanomas to 17-AAG is associated with modulation of the molecular chaperone function of Hsp90. Proc Am Assoc Cancer Res 2000; 41: 447.

    Google Scholar 

  36. Stehle G, Sinn H, Wunder A, Schrenk HH, Stewart JCM, Hartung G, et al. Plasma protein (albumin) catabolism by the tumor itself-implications for tumor metabolism and the genesis of cachexia. Crit Rev Oncol Hematol 1997; 26: 77–100.

    Article  PubMed  CAS  Google Scholar 

  37. Matsumara Y, Maeda HA. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46: 6387–6392.

    Google Scholar 

  38. Hartung G, Stehle G, Sinn H, Wunder A, Schrenk HH, Heeger S, et al. Phase I trial of methotrexatealbumin in a weekly intravenous bolus regimen in cancer patients. Clin Cancer Res 1999; 5: 753–759.

    PubMed  CAS  Google Scholar 

  39. Fiebig HH, Roth T, Hartung G, Sinn H, Stehle G. In vivo activity of a methotrexat-albumin-conjugate (MTX-HSA) in human tumor xenografts. Eur J Cancer 1997; 9: 33(Suppl 8), 174.

    Google Scholar 

  40. Fiebig HH, Dengler WA, Drees M, Schwendener RA, Schott H. In vivo activity of N4-Octadecyl-AraC in human solid tumors and leukemias. Proc Am Assoc Cancer Res 1995; 36: A2434.

    Google Scholar 

  41. Burger AM, Steidle C, Fiebig HH, Frick E, Schlmerich J, Kreutz W. Activity of pH-sensitive salicylic acid derivatives against human tumors in vivo. Clin Cancer Res 1999; 5: 205.

    Google Scholar 

  42. Drees M, Dengler W, Roth T, Labonte H, Mayo J, Malspeis L, et al. Flavopiridol (L86–8275): selective antitumor activity in vitro and in vivo for prostate carcinoma cells. Clin Cancer Res 1997; 3: 273–279.

    PubMed  CAS  Google Scholar 

  43. Fiebig HH, Berger DP, Dengler WA, Drees M, Mayo J, Malspeis L, et al. Cyanocyclin A and the Quinocarmycin analog NSC 607 097 demonstrate selectivity against melanoma xenografts in-vitro and in-vivo. Proc Am Assoc Cancer Res 1994; 2794.

    Google Scholar 

  44. Burger AM, Kaur G, Hollingshead M, Fischer RT, Nagashima K, Malspeis L, et al. Antiproliferative activity in vitro and in vivo of the spicamycin analog KRN5500 with altered glycoprotein expression in vitro. Clin Cancer Res 1997; 3: 455–463.

    CAS  Google Scholar 

  45. Hendriks HR, Fiebig HH, Giavazzi R, Langdon SP, Jimeno JM, Faircloth GT. High antitumor activity of ET743 against human tumour xenografts from melanoma, non-small-cell lung and ovarian cancer. Ann Oncol 1999; 10: 1233–1240.

    Google Scholar 

  46. Winterhalter BR, Berger DP, Dengler WA, Hendriks HR, Mertelsmann R, Fiebig HH. High antitumors activity of rhizoxin in a combines in-vitro and in-vivo test procedure with human tumor xenografts. Proc Am Assoc Cancer Res 1993; 34: 376.

    Google Scholar 

  47. Hendriks HR, Pizao PE, Berger DP, Kooistra KL, Bibby MC, Boven E, et al. E09, a novel bioreductive alkylating indoloquinone with preferential solid tumor activity and lack of bone marrow toxicity in preclinical models. Eur J Cancer 1993; 29: 897–906.

    Article  Google Scholar 

  48. Klenner T, Voegeli R, Fiebig H, Hilgard P. Antitumor effect of the platinum complex D-19466 (Inn: Lobaplatin) against the transplantable osteosarcoma of the rat and other experiments. J Cancer Res Clin Oncol 1992; 118 (Suppl): 149.

    Google Scholar 

  49. Maly K, Uberall F, Schubert C, Kindler E, Stekar J, Brachwitz H, et al. Interference of new alkylphospholipid analogues with mitogenic signal transduction. Anicancer Drug Des 1995; 10: 411–425.

    CAS  Google Scholar 

  50. Fiebig HH, Steidle C, Burger AM, Lerchen HG. Anticancer activity of novel camptothecin glycoconjugates in human tumor xenograft models. Clin Cancer Res 1999; 5: 667.

    Google Scholar 

  51. Burger AM, Mengs U, Schüler JB, Zinke H, Lentzen H, Fiebig HH. Recombinant mistletoe lectin (rML) is a potent inhibitor of tumor cell growth in vitro and in vivo. Proc Am Assoc Cancer Res 1999; 40: 399.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fiebig, HH., Burger, A.M. (2002). Human Tumor Xenografts and Explants. In: Teicher, B.A. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-100-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-100-8_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6883-1

  • Online ISBN: 978-1-59259-100-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics