Skip to main content

Tissue-Isolated Tumors in Mice

Ex Vivo Perfusion of Human Tumor Xenografts

  • Chapter
Tumor Models in Cancer Research

Abstract

The microenvironment surrounding cancer cells in vivo in a solid tumor exerts a profound influence on the tumor’s growth and response to treatment. The heterogeneous blood flow and the complex exchange between vascular, interstitial, and cellular compartments govern the nutrient delivery, the metabolic activity, and the transport of agents in the neoplastic tissue. In vivo studies of whole tumors do not separate the relative contributions from various blood-borne metabolites, and in vitro studies are far from representative of tissue conditions in a solid tumor in vivo. The ex vivo perfused preparation represents a useful link between extremes. This chapter discusses these tumor-model types and demonstrates the type of information that can be obtained by such models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kristjansen PEG, Pedersen EJ, Quistorff B, Elling F, Spang-Thomsen M. Early effects of radiotherapy in small cell lung cancer xenografts monitored by 31P magnetic resonance spectroscopy and biochemical analysis. Cancer Res 1990; 50: 4880–4884.

    PubMed  CAS  Google Scholar 

  2. Kristjansen PEG, Spang-Thomsen M, Quistorff B. Different energy metabolism in two human small cell lung cancer subpopulations examined by 31P magnetic resonance spectroscopy and biochemical analysis in vivo and in vitro. Cancer Res 1991; 51: 5160–5164.

    PubMed  CAS  Google Scholar 

  3. Kristjansen PEG, Pedersen AG, Quistorff B, Spang-Thomsen M. Different early effect of irradiation in brain and small cell lung cancer examined by in vivo 31P-magnetic resonance spectroscopy. Radiother Oncol 1992; 24: 186–190.

    Article  PubMed  CAS  Google Scholar 

  4. Kristjansen PEG, Kristensen CA, Spang-Thomsen M, Quistorff B. Relationship between tumor response and the ratio of nucleotide triphosphates to inorganic phosphate in small cell lung cancer xenografts. Int J Oncology 1995; 7: 127–131.

    CAS  Google Scholar 

  5. Hamberg LM, Kristjansen PEG, Hunter GJ, Wolf GL, Jain RK. Spatial heterogeneity in tumor perfusion measured with functional computed tomography at 0.05 microliter resolution. Cancer Res 1994; 54: 6032–6036.

    PubMed  CAS  Google Scholar 

  6. Kristjansen PEG, Quistorff B, Spang-Thomsen M, Hansen HH. Intratumoral pharmacokinetic analysis by 19F-magnetic resonance spectroscopy and cytostatic in vivo activity of gemcitabine (dFdC) in two small cell lung cancer xenografts. Ann Oncol 1993; 4: 157–160.

    PubMed  CAS  Google Scholar 

  7. Kristjansen PEG, Brown TJ, Shipley LA, Jain RK. Intratumor pharmacokinetics, flow resistance, and metabolism during gemcitabine infusion in ex vivo perfused human small cell lung cancer. Clin Cancer Res 1996; 2: 359–367.

    PubMed  CAS  Google Scholar 

  8. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci 1999; 24: 68–72.

    Article  PubMed  CAS  Google Scholar 

  9. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helixPAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.

    Article  PubMed  CAS  Google Scholar 

  10. Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 2000; 35: 71–103.

    Article  PubMed  CAS  Google Scholar 

  11. Gullino PM, Busch H, eds. Methods in cancer research. In: Techniques for the Study of Tumor pathophysiology. Academic Press, New York, NY, 1970; pp. 45–91.

    Google Scholar 

  12. Gullino PM, Grantham FH. Studies on the exchange of fluids between host and tumor. 1. A method for growing “tissue-isolated” tumors in laboratory animals. J Natl Cancer Inst 1961; 27: 679–693.

    PubMed  CAS  Google Scholar 

  13. Kristjansen PEG, Roberge S, Lee I, Jain RK. Tissue-isolated human tumor xenografts in athymic nude mice. Microvasc Res 1994; 48: 389–402.

    Article  PubMed  CAS  Google Scholar 

  14. Vaupel P, Fortmeyer HP, Runkel S, Kallinowski E Blood flow, oxygen consumption, and tissue oxygenation of human breast cancer xenografts in nude rats. Cancer Res 1987; 47: 3496–3503.

    PubMed  CAS  Google Scholar 

  15. Eskey CJ, Koretsky AP, Domach MM, Jain RK. 2H-Nuclear magnetic resonance imaging of tumor blood flow: spatial and temporal heterogeneity in a tissue-isolated mammary adenocarcima. Cancer Res 1992; 52: 6010–6019.

    PubMed  CAS  Google Scholar 

  16. Sensky PL, Prise VE, Tozer GM, Shaffi KM, Hirst DG. Resistance to flow through tissue-isolated transplanted rat tumours located in two different sites. Br J Cancer 1993; 67: 1337–1341.

    Article  PubMed  CAS  Google Scholar 

  17. Sevick EM, Jain RK. Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity. Cancer Res 1989a; 49: 3513–3519.

    PubMed  CAS  Google Scholar 

  18. Sevick EM, Jain RK. Geometric resistance to blood flow in solid tumors perfused ex vivo: effects of tumor size and perfusion pressure. Cancer Res 1989b; 49: 3506–3512.

    PubMed  CAS  Google Scholar 

  19. Tozer GM, Priese VE, Bell KM. The influence of nitric oxide on tumour vascular tone. Acta Oncologica 1995; 34: 373–377.

    Article  PubMed  CAS  Google Scholar 

  20. Sauer LA, Stayman JW, Dauchy RT. Amino acids, glucose, and lactic acid utilization in vivo by rat tumors. Cancer Res 1982; 42: 4090–4097.

    PubMed  CAS  Google Scholar 

  21. Kallinowski F, Vaupel P, Runkel S, Berg G, Fortmeyer HP, Baessler KH, et al. Glucose uptake, lactate release, ketone body turnover, metabolic micromilieu, and pH distribution in human breast cancer xenografts in nude rats. Cancer Res 1988; 48: 7264–7272.

    Google Scholar 

  22. Graham RA, Brown TR, Meyer RA. An ex vivo model for the study of tumor metabolism by nuclear magnetic resonance: characterization of the phosphorus-31 spectrum of the isolated perfused morns hepatoma 7777. Cancer Res 1991; 51: 841–849.

    PubMed  CAS  Google Scholar 

  23. Eskey CJ, Koretsky AP, Domach MM, Jain RK. Role of oxygen vs. glucose in energy metabolism in a mammary carcinoma perfused ex vivo: direct measurement by 31P NMR. Proc Natl Acad Sci USA 1993; 90: 2646–2650.

    Article  PubMed  CAS  Google Scholar 

  24. Sauer LA, Dauchy RT. Lactate release and uptake in hepatoma 7288CTC perfused in situ with L-[(U)14C] lactate or D-[(U)-14C] glucose. Metabolism 1995; 43: 1488–1497.

    Article  Google Scholar 

  25. Jain RK, Wei J, Gullino PM. Pharmacokinetics of methotrexate in solid tumors. J Pharmacokinet Biopharm 1979; 7: 181–194.

    Article  PubMed  CAS  Google Scholar 

  26. Ohkouchi K, Imoto H, Takakura Y, Hashida M, Sezaki H. Disposition of anticancer drugs after bolus arterial administration in a tissue-isolated tumor perfusion system. Cancer Res 1990; 50: 1640–1644.

    PubMed  CAS  Google Scholar 

  27. Imoto H, Sakamura Y, Ohkouchi K, Atsumi R, Takakura Y, Sezaki H, et al. Disposition characteristics of macromolecules in the perfused tissue-isolated tumor preparation. Cancer Res 1992; 52: 4396–1401.

    PubMed  CAS  Google Scholar 

  28. Eskey CJ, Wolmark N, McDowell CL, Domach MM, Jain RK. Residence time distributions of various tracers in tumors: implications for drug delivery and blood flow measurement. J Natl Cancer Inst 1994; 86: 293–299.

    Article  PubMed  CAS  Google Scholar 

  29. Steel GG. Growth Kinetics of Tumors. Oxford University Press, Oxford, UK 1977.

    Google Scholar 

  30. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989a; 49: 6449–6465.

    PubMed  CAS  Google Scholar 

  31. Horsman MR, Kristjansen PEG, Mizuno M, Christensen KL, Chaplin DJ, Quistorff B, et al. Biochemical and physiological changes induced by nicotinamide in a C3H mouse mammary carcinoma and CDFI mice. Int J Radiat Oncol Biol Phys 1992; 22: 451–454.

    Article  PubMed  CAS  Google Scholar 

  32. Boucher Y, Jain RK. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 1992; 52: 5110–5114.

    PubMed  CAS  Google Scholar 

  33. Rubin P, Cassarett G. Microcirculation of tumors I. Anatomy, function, and necrosis. Clin Radiol 1966; 17: 1640–1644.

    Google Scholar 

  34. Jain RK. Determinants of tumor blood flow: a review. Cancer Res 1988; 48: 2641–2658.

    PubMed  CAS  Google Scholar 

  35. Jain RK, Teicher B, eds. Physiological resistance to the treatment of solid tumors. In: Durg Resistance in Oncology. Marcel Dekker, New York, NY, 1993.

    Google Scholar 

  36. Boucher Y, Kirkwood JM, Opacic D, Desantis M, Jain RK. Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res 1991; 51: 6691–6694.

    PubMed  CAS  Google Scholar 

  37. Gutmann R, Leunig M, Feyh J, Goetz AE, Messmer K, Kastenbauer E, et al. Interstitial hypertension in head and neck tumors in patients: Correlation with tumor size. Cancer Res 1992; 52: 1993–1995.

    PubMed  CAS  Google Scholar 

  38. Tufto I, Rofstad EK. Interstitial fluid pressure in human melanoma xenografts. Relationship to fractional tumor water content, tumor size, and tumor volume-doubling time. Acta Oncologica 1995; 34: 361–365.

    Article  PubMed  CAS  Google Scholar 

  39. Kristjansen PEG, Boucher Y, Jain RK. Dexamethasone reduces the interstitial fluid pressure in a human colon adenocarcinoma xenograft. Cancer Res 1993a; 53: 4764–4766.

    PubMed  CAS  Google Scholar 

  40. Neuwelt EA, Barnett PA, Ramsey FL, Hellström I, Hellström KE, McCormick CI. Dexamethasone decreases the delivery of tumor-specific monoclonal antibody to both intracerebral and subcutaneous tumor xenografts. Neurosurgery 1993; 33: 478–484.

    Article  PubMed  CAS  Google Scholar 

  41. Butler TP, Grantham FH, Gullino PM. Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res 1975; 35: 3084–3088.

    PubMed  CAS  Google Scholar 

  42. Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 1990; 9: 253–266.

    Article  PubMed  CAS  Google Scholar 

  43. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 1994; 54: 4564–4568.

    PubMed  CAS  Google Scholar 

  44. Jain RK, Baxter LT. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 1988; 48: 7022–7032.

    PubMed  CAS  Google Scholar 

  45. Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK. Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res 1995; 55: 5451–5458.

    PubMed  CAS  Google Scholar 

  46. Vogel AW. Intratumoral vascular changes with increased size of mammary adenocarcinoma-new methods and results. J Natl Cancer Inst 1965; 34: 571–578.

    PubMed  CAS  Google Scholar 

  47. Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 1990; 50: 4478–4484.

    PubMed  CAS  Google Scholar 

  48. Ruiz van Haperen VW, Veerman G, Eriksson S, Boven E, Stegmann AP, Hermsen M, et al. Development and molecular characterization of a 2’,2’-difluorodeoxycytidine-resistant variant of the human ovarian carcinoma cell line A2780. Cancer Res 1994; 54: 4138–4143.

    PubMed  CAS  Google Scholar 

  49. Shipley LA, Brown TJ, Cornpropst JD, Hamilton M, Daniels WD, Culp HW. Metabolism and disposition of gemcitabine, an oncolytic deoxycytidine analog, in mice, rats, and dogs. Drug Metab Dispos 1992; 20: 849–855.

    PubMed  CAS  Google Scholar 

  50. Gerlowski LE, Jain RK. Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci 1983; 72: 1103–1127.

    Article  PubMed  CAS  Google Scholar 

  51. Grunewald R, Abbruzzese J, Tarassoff P, Plunkett W. Saturation of 2’,2’-difluorodeoxycytidine 5’-triphosphate accumulation by mononuclear cells during a phase I trial of gemcitabine. Cancer Chemother Pharmacol 1991; 27: 258–262.

    Article  PubMed  CAS  Google Scholar 

  52. Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, et al. A phase I clinical, plasma and cellular pharmacology study of gemcitabine. J Clin Oncol 1991; 9: 491–498.

    PubMed  CAS  Google Scholar 

  53. Less JR, Skalak TC, Sevick EM, Jain RK. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 1991; 51: 265–273.

    PubMed  CAS  Google Scholar 

  54. Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K, et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS 174T in SCID mice. Cancer Res 1992; 52: 6553–6560.

    PubMed  CAS  Google Scholar 

  55. Yuan F, Leunig M, Berk DA, Jain RK. Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc Res 1993; 45: 269–289.

    Article  PubMed  CAS  Google Scholar 

  56. Kristensen CA, Roberge S, Jain RK. Effect of tumor necrosisfactor alpha on vascular resistance, nitric oxide production, and glucose and oxygen consumption in perfused tissue-isolated human melanoma xenografts. Clin Cancer Res 1997; 3: 319–324.

    PubMed  CAS  Google Scholar 

  57. Newell K, Franchi A, Pouyssegur J, Tannock I. Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor acidity. Proc Natl Acad Sci USA 1993; 90: 1127–1131.

    Article  PubMed  CAS  Google Scholar 

  58. Bhujwalla ZM, Shungu DC, Chatham JC, Wehrle JP, Glickson JD. Glucose metabolism in RIF-1 tumors after reduction in blood flow: an in vivo 13C and 31P NMR study. Magn Reson Med 1994; 32: 303–309.

    Article  PubMed  CAS  Google Scholar 

  59. Koutcher JA, Fellenz MP, Vaupel PW, Gerweck LE. FSaII mouse tumor metabolic changes with different doses of glucose measured by 31P nuclear magnetic resonance. Cancer Res 1988; 48: 5917–5921.

    PubMed  CAS  Google Scholar 

  60. Ross BD, Mitchell SL, Merkle H, Garwood M. In vivo 31P and 1H NMR studies of rat brain tumor pH and blood flow during acute hyperglycemia: differential effects between subcutaneous and intracerebral locations. Magn Reson Med 1989; 12: 219–234.

    Article  PubMed  CAS  Google Scholar 

  61. Volk T, Jähde E, Fortmeyer HP, Gltisenkamp K-H, Rajewsky MF. pH in human tumour xenografts: effect of intravenous administration of glucose. Br J Cancer 1993; 68: 492–500.

    Article  PubMed  CAS  Google Scholar 

  62. Anonymous. Tumour pH. Lancet 1992; 340: 342–343.

    Article  Google Scholar 

  63. Jensen PB, Sorensen BS, Sehested M, Grue P, Demant EJF, Hansen HH. Targeting the cytotoxicity of topoisomerase II-directed epipodophyllotoxins to tumor cells in acidic environments. Cancer Res 1994; 54: 2959–2963.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kristjansen, P.E.G. (2002). Tissue-Isolated Tumors in Mice. In: Teicher, B.A. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-100-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-100-8_23

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6883-1

  • Online ISBN: 978-1-59259-100-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics