Skip to main content

Murine Models of Bone-Marrow Transplant Conditioning

  • Chapter
Tumor Models in Cancer Research

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 439 Accesses

Abstract

Hematopoietic stem-cell transplantation (SCT) is a rapidly evolving clinical strategy for treating a variety of malignancies or disorders of the lymphohematopoietic system. Bone-marrow cells or, more recently, mobilized peripheral blood (MPB) stem cells, are used as a vital source of hematopoietic cells that can reconstitute the host and rescue the patient from an otherwise fatal bone-marrow aplasia induced by intensive cancer therapy. SCT is also envisaged as an essential prerequisite toward the induction of immunological tolerance in organ transplantation, and as a vehicle for gene therapy in the correction of a number of genetic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ellinger F. Lethal dose studies with X-rays. Radiology 1945; 44: 125–144.

    Google Scholar 

  2. Quastler H. Studies on roentgen death in mice. I. Survival time and dosage. Am J Roentgenol 1945; 54: 449–456.

    Google Scholar 

  3. Hall E. Radiobiology for the Radiobiologist. JB Lippincott, Philadelphia, PA, 1988.

    Google Scholar 

  4. Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213–222.

    Article  PubMed  CAS  Google Scholar 

  5. Hendry J, Lord B. The analysis of the early and late response to cytotoxic insults in the haematopoietic cell hierarchy. In: Potten C, Hendry J. Cytotoxic Insult to Tissues: Effects on Cell Lineages, vol. 2. Churchill Livingstone, New York, NY, 1983, 1–66.

    Google Scholar 

  6. Hendry JH, Howard A. The response of haemopoletic colony-forming units to single and split-doses of gamma-rays or D-T neutrons. Int J Radiat Biol 1971; 19: 51–64.

    Article  CAS  Google Scholar 

  7. Tarbell NJ, Amato DA, Down JD, Mauch P, Hellman S. Fractionation and dose-rate effects in mice: a model for bone marrow transplantation in man. Int J Radiar Oncol Biol Phys 1987; 13: 1065–1069.

    Article  CAS  Google Scholar 

  8. Till JE, McCulloch EA. Early repair processes in marrow cells irradiated and proliferating in vivo. Radiat Res 1963; 18: 96–105.

    Article  CAS  Google Scholar 

  9. Imai Y, Nakao I. In vivo radiosensitivity and recovery pattern of the hematopoietic precursor cells and stem cells in mouse bone marrow. Exp Hematol 1987; 15: 890–895.

    PubMed  CAS  Google Scholar 

  10. Kaplan HS, Brown MB. Mortality of mice after total body irradiation as influenced by alterations in total dose, fractionation and periodicity of treatment. J Natl Cancer Inst 1952; 12: 765–775.

    PubMed  CAS  Google Scholar 

  11. Paterson E, Gilbert CW, Matthews J. Time intensity factors and whole body irradiation. Br J Radiol 1952; 25: 427–433.

    Article  Google Scholar 

  12. Krebs JS, Brauer RW. Accumulation of lethal irradiation doses by fractionated exposure to X-rays. Radiat Res 1965; 25: 480–488.

    Article  PubMed  CAS  Google Scholar 

  13. Hodgson GS, Bradley TR. Properties of haematopoietic stem cells surviving 5-fluorouracil treatment: evidence for a pre-CFU-S cell? Nature 1979; 281: 381–382.

    Article  PubMed  CAS  Google Scholar 

  14. Harrison DE. Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 1980; 55: 77–81.

    PubMed  CAS  Google Scholar 

  15. Ploemacher RE, Brons NHC. Isolation of hemopoietic stem cell subsets from mutine bone marrow: II. evidence for an early precursor of day-12 CFU-S and cells associated with radioprotective ability. Exp Hematol 1988; 16: 27–32.

    PubMed  CAS  Google Scholar 

  16. Ploemacher RE, Brons NHC. Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: evidence for a preCFU-S cell. Exp Hematol 1989; 17: 263–266.

    PubMed  CAS  Google Scholar 

  17. Jones R, Wagner J, Celano P, Zicha M, Sharkis S. Separation of pluripotent hematopoietic stem cells from spleen colony-forming cells. Nature 1990; 347: 188–189.

    Article  PubMed  CAS  Google Scholar 

  18. Ploemacher RE, van der Loo JCM, Van Beurden CAJ, Baert MRM. Wheat germ agglutinin affinity of mutine hemopoietic stem cell subpopulations is an inverse function of their long-term repopulating ability in vitro and in vivo. Leukemia 1993; 7: 120–130.

    PubMed  CAS  Google Scholar 

  19. Pallavicini MG, Redfearn W, Necas E, Brecher G. Rescue from lethal irradiation correlates with transplantation of 10–20 CFU-S-day 12. Blood Cells Mol Dis 1997; 23: 157–168.

    Article  PubMed  CAS  Google Scholar 

  20. Harrison D, Astle C, Lerner C. Number and continuous proliferative pattern of transplanted primitive immunohematopoietic stem cells. Proc Natl Acad Sci USA 1988; 85: 822–826.

    Article  PubMed  CAS  Google Scholar 

  21. Harrison D, Jordan C, Zhong R-K, Astle C. Primitive hemopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Exp Hematol 1993; 21: 206–219.

    PubMed  CAS  Google Scholar 

  22. Harrison D, Lerner C. Most primitive hematopoietic stem cells are stimulated to cycle rapidly after treatment with 5-fluorouracil. Blood 1991; 78: 1237–1240.

    PubMed  CAS  Google Scholar 

  23. Down JD, Ploemacher RE. Transient and permanent engraftment potential of murine hematopoietic stem cell subsets: differential effects of host conditioning with gamma radiation and cytotoxic drugs. Exp Hematol 1993; 21: 913–921.

    PubMed  CAS  Google Scholar 

  24. Ploemacher RE, van der Sluijs JP, Voerman JSA, Brons NHC. An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 1989; 74: 2755–2763.

    PubMed  CAS  Google Scholar 

  25. Ploemacher RE, van der Sluijs JP, Van Beurden CAJ, Baert MRM, Chan PL. Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood 1991; 10: 2527–2533.

    Google Scholar 

  26. Down J, Boudewijn A, Dillingh J, Fox B, Ploemacher R. Relationship between ablation of distinct haematopoietic cell subsets and the development of donor bone marrow engraftment following recipient pretreatment with different alkylating drugs. Br J Cancer 1994; 70: 611–616.

    Article  PubMed  CAS  Google Scholar 

  27. Ploemacher RE, van Os RP, Van Beurden CAJ, Down JD. Murine hematopoietic stem cells with long-term engraftment and marrow repopulating ability are less radiosensitive to gamma radiation than are spleen colony forming cells. Int J Radiat Biol 1992; 61: 489–499.

    Article  PubMed  CAS  Google Scholar 

  28. Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int. J Radiat Oncol Biol Phys 1982; 8: 1981–1987.

    Article  PubMed  CAS  Google Scholar 

  29. Thames HD, Jr, Rozell ME, Tucker SL, Ang KK, Fisher DR, Travis EL. Direct analysis of quantal radiation response data. Int J Radiat Biol Relat Stud Phys Chem Med 1986; 49: 999–1009.

    Article  PubMed  Google Scholar 

  30. Stuben G, Landuyt W, van der SE, van der Kogel M, Reijnders A. Estimation of repair parameters in mouse lip mucosa during continuous and fractionated low dose-rate irradiation. Radiother Oncol 1991; 20: 38–45.

    Article  PubMed  CAS  Google Scholar 

  31. Chougule A, Supe SJ. Linear quadratic model-estimation of alpha/beta ratio for mucosal reaction. Strahlenther Onkol 1993; 169: 427–430.

    PubMed  CAS  Google Scholar 

  32. Douglas BG, Fowler JF. The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat Res 1976; 66: 401–426.

    Article  PubMed  CAS  Google Scholar 

  33. Withers HR, Reid BO, Hussey DH. Response of mouse jejunum to multifraction radiation. Int J Radiat Oncol Biol Phys 1975; 1: 41–52.

    Article  PubMed  CAS  Google Scholar 

  34. Peck JW, Gibbs FA. Mechanical assay of consequential and primary late radiation effects in murine small intestine: alpha/beta analysis. Radiat Res 1994; 138: 272–281.

    Article  PubMed  CAS  Google Scholar 

  35. Brown JAH, Corp MJ, Mole RH. The effect of dose-rate and fractionation on acute mortality in X-irradiated mice. Part II. Int J Radiat Biol 1962; 5: 369–377.

    Article  PubMed  CAS  Google Scholar 

  36. Travis EL, Fang MZ, Basic I. Protection of mouse bone marrow by WR-2721 after fractionated irradiation. Int Radiat Oncol Biol Phys 1988; 15: 377–382.

    Article  CAS  Google Scholar 

  37. van Os R, Thames HD, Konings AW, Down JD. Radiation dose-fractionation and dose-rate relationships for long-term repopulating hemopoietic stem cells in a murine bone marrow transplant model. Radiat Res 1993; 136: 118–125.

    Article  PubMed  Google Scholar 

  38. Down JD, Boudewijn A, van Os R, Thames HD, Ploemacher RE. Variations in radiation sensitivity and repair among different hematopoietic stem cell subsets following fractionated irradiation. Blood 1995; 86: 122–127.

    PubMed  CAS  Google Scholar 

  39. Down JD, Easton DF, Steel GG. Repair in the mouse lung during low dose-rate irradiation. Radiother Oncol 1986; 6: 29–42.

    Article  PubMed  CAS  Google Scholar 

  40. Travis EL, Thames HD, Watkins TL, Kiss I. The kinetics of repair in mouse lung after fractionated irradiation. Int J Radiat Biol Relat Stud Phys Chem Med 1987; 52: 903–919.

    Article  PubMed  CAS  Google Scholar 

  41. Vegesna V, Withers HR, Taylor JM. Repair kinetics of mouse lung. Radiother Oncol 1989; 15: 115–123.

    Article  PubMed  CAS  Google Scholar 

  42. Stewart FA, Soranson JA, Alpen EL, Williams MV, Denekamp J. Radiation-induced renal damage: the effects of hyperfractionation. Radiat Res 1984; 98: 407–420.

    Article  PubMed  CAS  Google Scholar 

  43. Thames HD, Ang KK, Stewart FA, van der Schueren E. Does incomplete repair explain the apparent failure of the basic LQ model to predict spinal cord and kidney responses to low doses per fraction? Int J Radiat Biol 1988; 54: 13–19.

    Article  PubMed  CAS  Google Scholar 

  44. Bentzen SM, Thames HD, Overgaard M. Latent-time estimation for late cutaneous and subcutaneous radiation reactions in a single-follow-up clinical study. Radiother Oncol 1989; 15: 267–274.

    Article  PubMed  CAS  Google Scholar 

  45. Ford CE, Hamerton JL, Barnes DWH, Loutit JE. Cytological identification of radiation chimaeras. Nature 1956; 177: 452–454.

    Article  PubMed  CAS  Google Scholar 

  46. van der Sluijs J, van den Bos C, Baert M, Van Beurden C, Ploemacher R. Loss of long-term repopulating ability in long-term bone marrow culture. Leukemia 1993; 7: 725–732.

    PubMed  Google Scholar 

  47. Hampson IN, Spooncer E, Dexter TM. Evaluation of a mouse Y chromosome probe for assessing marrow transplantation. Exp Hematol 1989; 17: 313–315.

    PubMed  CAS  Google Scholar 

  48. Soderling CC, Song CW, Blazar BR, Vallera DA. A correlation between conditioning and engraft-ment in recipients of MHC-mismatched T cell-depleted murine bone marrow transplants. J Immunol 1985; 135: 941–946.

    PubMed  CAS  Google Scholar 

  49. Lapidot T, Singer T, Reisner Y. Transient engraftment of T cell depleted allogeneic bone marrow in mice improves survival rate following lethal irradiation. Bone Marrow Transplant 1988; 3: 157–164.

    PubMed  CAS  Google Scholar 

  50. Salomon O, Lapidot T, Terenzi A, Lubin I, Rabi I, Reisner Y. Induction of donor-type chimerism in murine recipients of bone marrow allografts by different radiation regimens currently used in treatment of leukemia patients. Blood 1990; 76: 1872–1888.

    PubMed  CAS  Google Scholar 

  51. Sprangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells [published erratum appears in Science 1989 Jun 2;244(4908):1030]. Science 1988; 241: 58–62.

    Article  Google Scholar 

  52. Li CL, Johnson GR. Long-term hemopoietic repopulation by Thy-11o, Lin-, Ly6A/E+ cells. Exp Hematol 1992; 20: 1309–1319.

    PubMed  CAS  Google Scholar 

  53. Sprangrude GJ, Johnson GR. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci USA 1990; 87: 7433–7437.

    Article  Google Scholar 

  54. van Os R, Sheridan TM, Robinson S, Drukteinis D, Ferrara JL, Mauch PM. Immunogenicity of Ly5 (CD45)-antigens hampers long-term engraftment following minimal conditioning in a murine bone marrow transplantation model. Stem cells 2001; 19: 80–87.

    Article  PubMed  Google Scholar 

  55. Ferrara JLM, Lipton J, Hellman S, Burakoff S, Mauch P. Engraftment following T-cell-depleted bone marrow transplantation. I. The role of major and minor histocompatibility barriers. Transplantation 1987; 43: 461–467.

    Article  PubMed  CAS  Google Scholar 

  56. Ferrara JLM, Mauch P, McIntyre J, Michaelson J, Burakoff S. Engraftment following T-cell-depleted bone marrow transplantation. Il. Stability of mixed chimerism in semiallogeneic recipients after total-body irradiation. Transplantation 1987; 44: 495–499.

    Article  PubMed  CAS  Google Scholar 

  57. Francescutti LH, Gambel P, Wegmann TG. Characterization of hemopoietic stem cell chimerism in antibody-facilitated bone marrow chimeras. Transplantation 1985; 40: 7–11.

    Article  PubMed  CAS  Google Scholar 

  58. Barker JE, Braun J, McFarland-Starr E. Erythrocyte replacement precedes leukocyte replacement during repopulation of W/W`’ mice with limiting dilutions of +/+ donor marrow cells. Proc Natl Acad Sci USA 1988; 85: 7332–7335.

    Article  PubMed  CAS  Google Scholar 

  59. Ansell J, Micklem H. Genetic markers for following cell populations. In: Weir DM, Herzenberg LA, Blackwell CC. Handbook of Experimental Immunology, vol. 2, 4th ed. Blackwell, Edinburgh, 1986, pp. 56. 1–56. 18.

    Google Scholar 

  60. Sigounas G, MacVittie TJ. Transgenic marrow transplantation: A new in vivo and in vitro system for experimental hemopoiesis and radiobiology which employs sequential molecular monitoring of multiple genetic markers. Radiat Res 1993; 135: 206–211.

    Article  PubMed  CAS  Google Scholar 

  61. Phillips K, Gentry T, McCowage G, Gilboa E, Smith C. Cell-surface markers for assessing gene transfer into human hematopoietic cells. Nat Med 1996; 2: 1154–1156.

    Article  PubMed  CAS  Google Scholar 

  62. Persons DA, Allay JA, Riberdy JM, Wersto RP, Donahue RE, Sorrentino BP et al. Use of the green fluorescent protein as a marker to identify and track genetically modified hematopoietic cells. Nat Med 1998; 4: 1201–1205.

    Article  PubMed  CAS  Google Scholar 

  63. Van Hennik PB, Verstegen MM, Bierhuizen MF, Limon A, Wognum AW, Cancelas JA, et al. Highly efficient transduction of the green fluorescent protein gene in human umbilical cord blood stem cells capable of cobblestone formation in long-term cultures and multilineage engraftment of immunodeficient mice. Blood 1998; 92: 4013–4022.

    PubMed  Google Scholar 

  64. Wu AM, Till JE, Siminovich L, McCulloch EA. A cytological study of the capacity for differentiation of normal hemopoietic colony-forming cells. J Cell Physiol 1967; 69: 177–184.

    Article  PubMed  CAS  Google Scholar 

  65. Magli MC, Iscove NN, Odartchenko N. Transient nature of early haematopoietic spleen colonies. Nature 1982; 295: 527–529.

    Article  PubMed  CAS  Google Scholar 

  66. Ploemacher RE, Brons NHC. In vivo proliferative and differential properties of murine bone marrow cells separated on the basis of rhodamine-123 retention. Exp Hematol 1988; 16: 903–907.

    PubMed  CAS  Google Scholar 

  67. Harrison D, Zhong R-K. The same exhaustible multilineage precursor produces both myeloid and lymphoid cells as early as 3–4 weeks after marrow transplantation. Proc Natl Acad Sci USA 1992; 89: 10134–10138.

    Article  PubMed  CAS  Google Scholar 

  68. Stutman O. Intrathymic and extrathymic T cell maturation. Immunol Rev 1978; 42: 138–184.

    Article  PubMed  CAS  Google Scholar 

  69. Van Furth R. Origin and turnover of monocytes and macrophages. Curr Top Pathol 1989; 79P: 125–150.

    Article  PubMed  Google Scholar 

  70. Down J, Berman A, Warhol M, Yeap B, Mauch P. Late complications following total-body irradiation and bone marrow rescue in mice: predominance of glomerular nephropathy and hemolytic anemia. Int J Radiat Biol 1990; 57: 551–565.

    Article  PubMed  CAS  Google Scholar 

  71. Lemischka I, Raulet D, Mulligan R. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 1986; 45: 917–927.

    Article  PubMed  CAS  Google Scholar 

  72. Jordan CT, Lemischka IR. Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dey 1990; 4: 220–232.

    Article  CAS  Google Scholar 

  73. Lemischka I. The haematopoietic stem cell and its clonal progeny: mechanisms regulating the hierarchy of primitive haematopoietic cells. Cancer Sun 1992; 15: 3–18.

    CAS  Google Scholar 

  74. Parkman R, Gelfand EW, Rosen FS, Sanderson A, Hirschhorn, R. Severe combined immunodeficiency and adenosine deaminase deficiency. N Engl J Med 1975; 292: 714–719.

    Article  PubMed  CAS  Google Scholar 

  75. van Leeuwen JE, van Tol MJ, Joosten AM, Schellekens PT, van den Bergh RL, Waaijer JL, et al. Relationship between patterns of engraftment in peripheral blood and immune reconstitution after allogeneic bone marrow transplantation for (severe) combined immunodeficiency. Blood 1994; 84: 3936–3947.

    PubMed  Google Scholar 

  76. Minegishi Y, Ishii N, Tsuchida M, Okawa H, Sugamura K, Yata J. T cell reconstitution by haploidentical BMT does not restore the diversification of the Ig heavy chain gene in patients with X-linked SCID. Bone Marrow Transplant 1995; 16: 801–806.

    PubMed  CAS  Google Scholar 

  77. Borzy MS, Ridgway D, Noya FJ, Shearer WT. Successful bone marrow transplantation with split lymphoid chimerism in DiGeorge syndrome. J Clin Immunol 1989; 9, 386–392.

    Article  PubMed  CAS  Google Scholar 

  78. Fulop G, Phillips R. The scid mutation in mice causes a general defect in DNA repair. Nature 1990; 347: 479–482.

    Article  PubMed  CAS  Google Scholar 

  79. Biederman K, Sun J, Giaccia A, Tosto L, Brown J. SCID-mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc Nall Acad Sci USA 1991; 88: 1394–1397.

    Article  Google Scholar 

  80. Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, Gottlieb TM, et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 1995; 80: 813–823.

    Article  PubMed  CAS  Google Scholar 

  81. Kirchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T, et al. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 1995; 267: 1178–1183.

    Article  PubMed  CAS  Google Scholar 

  82. Nakano T, Waki N, Asai H, Kitamura Y. Different repopulation profile between erythroid and nonerythroid progenitor cells in genetically anemic W/Wv mice after bone marrow transplantation. Blood 1989; 74: 1552–1556.

    PubMed  CAS  Google Scholar 

  83. Nakano T, Waki N, Asai H, Kitamura Y. Lymphoid differentiation of the hematopoietic stem cell that reconstitutes total erythropoiesis of a genetically anemic W/Wv mouse. Blood 1989; 73: 1175–1179.

    PubMed  CAS  Google Scholar 

  84. Barker JE, Compton ST. Hematopoietic repopulation of adult mice with beta-thalassemia. Blood 1994; 83: 828–832.

    PubMed  CAS  Google Scholar 

  85. van den BC, Kieboom D, van der Sluijs JP, Baert MR, Ploemacher RE, Wagemaker G. Selective advantage of normal erythrocyte production after bone marrow transplantation of alpha-thalassemic mice. Exp Hematol 1994; 22: 441–446.

    Google Scholar 

  86. van der Loo JC, van den BC, Baert MR, Wagemaker G, Ploemacher RE. Stable multilineage hematopoietic chimerism in alpha-thalassemic mice induced by a bone marrow subpopulation that excludes the majority of day-12 spleen colony-forming units. Blood 1994; 83: 1769–1777.

    PubMed  Google Scholar 

  87. Bjorgvinsdottir H, Ding C, Pech N, Gifford MA, Li LL, Dinauer MC. Retroviral-mediated gene transfer of gp9lphox into bone marrow cells rescues defect in host defense against Aspergillus fumigatus in murine X-linked chronic granulomatous disease. Blood 1997; 89: 41–48.

    PubMed  CAS  Google Scholar 

  88. Mardiney M III, Jackson SH, Spratt SK, Li F, Holland SM, Malech HL. Enhanced host defense after gene transfer in the murine p47phox-deficient model of chronic granulomatous disease. Blood 1997; 89: 2268–2275.

    PubMed  CAS  Google Scholar 

  89. Dinauer MC, Li LL, Bjorgvinsdottir H, Ding C, Pech N. Long-term correction of phagocyte NADPH oxidase activity by retroviral-mediated gene transfer in murine X-linked chronic granulomatous disease. Blood 1999; 94: 914–922.

    PubMed  CAS  Google Scholar 

  90. Snell G, Stimpling J. Genetics of tissue transplantation. In: Green E. Biology of the Laboratory Mouse, 2nd ed. McGraw Hill, New York, NY, 1966; 457–491.

    Google Scholar 

  91. Michaelson J, Lawrence M, Dorf M. Genetics of bone marrow engraftment in mice. J Cell Biochem 1988 (Suppl. 12C) abstract #K126.

    Google Scholar 

  92. Gengozian N, Carlson D, Allen E. Transplantation of allogeneic and xenogeneic (rat) marrow in irradiated mice as affected by radiation exposure rates. Transplantation 1969; 7: 259–273.

    Article  PubMed  CAS  Google Scholar 

  93. Cudkowicz G, Bennett M. Peculiar immunobiology of bone marrow allografts. I. Graft rejection by irradiated responder mice. J Exp Med 1971; 134: 83–102.

    Article  PubMed  CAS  Google Scholar 

  94. Sado T, Kamisuka H, Kubo E. Strain difference in the radiosensitivity of immunocompetent cells and its influence on the residual host-vs-graft reaction in lethally irradiated mice grafted with semiallogeneic bone marrow. J Immunol 1985; 134: 704–710.

    PubMed  CAS  Google Scholar 

  95. Schwartz E, Lapidot T, Gozes D, Singer T, ReisnerY. Abrogation of bone marrow allograft resistance in mice by increased total body irradiation correlates with eradication of host clonable T cells and alloreactive cytotoxic precursors. J Immunol 1987; 138: 460–465.

    PubMed  CAS  Google Scholar 

  96. Dennert G, Anderson C, Warner J. T killer cells play a role in allogeneic bone marrow graft rejection but not in hybrid resistance. J Immunol 1985; 135: 3729–3734.

    PubMed  CAS  Google Scholar 

  97. Sentman C, Kumar V, Koo G, Bennett M. Effector cell expression of NK1.1, a murine natural killer cell-specific molecule, and ability of mice to reject bone marrow allografts. J Immunol 1989; 142: 1847–1853.

    PubMed  CAS  Google Scholar 

  98. Nakamura H, Gress R. Graft rejection by cytolytic T cells. Specificity of the effector mechanism in the rejection of allogeneic marrow. Transplantation 1990; 49: 453–458.

    Article  PubMed  CAS  Google Scholar 

  99. Bunjes D, Heit W, Arnold R, Schmeiser T, Wiesneth M, Carbonell F, et al. Evidence for the involvement of host-derived OKT8-positive T, cells in the rejection of T-depleted, HLA-identical bone marrow grafts. Transplantation 1987; 43: 501–505.

    Article  PubMed  CAS  Google Scholar 

  100. Marijt WA, Kernan NA, Diaz-Barrientos T, Veenhof WF, O’Reilly RJ, Willemze R, et al. Multiple minor histocompatibility antigen-specific cytotoxic T lymphocyte clones can be generated during graft rejection after HLA-identical bone marrow transplantation. Bone Marrow Transplant 1995; 16: 125–132.

    PubMed  CAS  Google Scholar 

  101. Lamb LS, Jr., Szafer F, Henslee-Downey PJ, Walker M, King S, Godder K, et al. Characterization of acute bone marrow graft rejection in T cell-depleted, partially mismatched related donor bone marrow transplantation. Exp Hematol 1995; 23: 1595–1600.

    PubMed  Google Scholar 

  102. Lamb LS, Jr., Gee AP, Parrish RS, Lee C, Walker M, Geier S, et al. Acute rejection of marrow grafts in patients transplanted from a partially mismatched related donor: clinical and immunologic characteristics. Bone Marrow Transplant 1996; 17: 1021–1027.

    PubMed  Google Scholar 

  103. van Os R, Konings AW, Down JD. Radiation dose as a factor in host preparation for bone marrow transplantation across different genetic barriers. Int J Radiat Biol 1992; 61: 501–510.

    Article  PubMed  Google Scholar 

  104. Van Putten LM, Van Bekkum DW, Vries Md, Balner H. The effect of preceding blood transfusions on the fate of homologous bone marrow grafts in lethally irradiated monkeys. Blood 1967; 30: 749–757.

    PubMed  Google Scholar 

  105. Weiden PL, Storb R, Thomas ED, Graham TC, Lerner KG, Buckner CD, et al. Preceding transfusions and marrow graft rejection in dogs and man. Transplant Proc 1976; 8: 551–554.

    PubMed  CAS  Google Scholar 

  106. van Os R, de Witte T, Dillingh JH, Mauch PM, Down JD. Increased rejection of murine allogeneic bone marrow in presensitized recipients. Leukemia 1997; 11: 1045–1048.

    Article  PubMed  Google Scholar 

  107. van Os R, Konings AW, Down JD. Compromising effect of low dose-rate total body irradiation on allogeneic bone marrow engraftment. Im J Radiat Biol 1993; 64: 761–770.

    Article  Google Scholar 

  108. Down J, Tarbell N, Thames H, Mauch P. Syngeneic and allogeneic bone marrow engraftment after total body irradiation: Dependence on dose, dose-rate, and fractionation. Blood 1991; 77: 661–669.

    PubMed  CAS  Google Scholar 

  109. Lösslein L, Kolb HJ, Porzsolt S. Hyperfractionation of total-body irradiation and engraftment of marrow from DLA-haploidentical littermates. Transplant Proc 1987; XIX: 2707–2708.

    Google Scholar 

  110. Storb R, Raff RF, Appelbaum FR, Graham TC, Schuening FG, Sale G, et al. Comparison of fractionated to single-dose total body irradiation in conditioning canine littermates for DLA-identical marrow grafts. Blood 1989; 74: 1139–1143.

    PubMed  CAS  Google Scholar 

  111. Patterson J, Prentice HG, Brenner MK, Gilmore M, Janossy G, Ivory K, et al. Graft rejection following HLA matched T-lymphocyte depleted bone marrow transplantation. Br J Haematol 1986; 63: 221–230.

    Article  PubMed  CAS  Google Scholar 

  112. Guyotat D, Dutou L, Ehrsam A, Campos L, Archimbaud E, Fiere D. Graft rejection after T-cell depleted marrow transplantation: role of fractionated irradiation [letter]. Br J Haematol 1987; 65: 499.

    Article  PubMed  CAS  Google Scholar 

  113. Inondo A, Hermosa V, Richard C, Conde E, Bello C, Garijo J, et al. Graft rejection following T lymphocyte depleted bone marrow transplantation with two different TBI regimens [letter]. Br J Haematol 1987; 65: 246–248.

    Article  Google Scholar 

  114. Ferrara JL, Levy R, Chao NJ. Pathophysiologic mechanisms of acute graft-vs.-host disease. Biol Blood Marrow Transplant 1999; 5: 347–356.

    Article  PubMed  CAS  Google Scholar 

  115. Down J, Mauch P, Warhol M, Neben S, Ferrara J. The effect of donor T lymphocytes and total-body irradiation on hemopoietic engraftment and pulmonary toxicity following experimental allogeneic bone marrow transplantation. Transplantation 1992; 54: 802–808.

    Article  PubMed  CAS  Google Scholar 

  116. Cooke KR, Krenger W, Hill G, Martin TR, Kobzik L, Brewer J, et al. Host reactive donor T cells are associated with lung injury after experimental allogeneic bone marrow transplantation. Blood 1998; 92: 2571–80.

    PubMed  CAS  Google Scholar 

  117. Shankar G, Scott BJ, Darrell JC, Kaplan AM, Cohen DA. Idiopathic pneumonia syndrome after allogeneic bone marrow transplantation in mice. Role of pretransplant radiation conditioning. Am J Respir Cell Mol Biol 1999; 20: 1116–1124.

    PubMed  CAS  Google Scholar 

  118. Panoskaltsis-Mortari A, Taylor PA, Yaeger TM, Wangensteen OD, Bitterman PB, Ingbar DH, et al. The critical early proinflammatory events associated with idiopathic pneumonia syndrome in irradiated murine allogeneic recipients are due to donor T cell infusion and potentiated by cyclophosphamide. J Clin Invest 1997; 100: 1015–1027.

    Article  PubMed  CAS  Google Scholar 

  119. Haddad IY, Panoskaltsis-Mortari A, Ingbar DH, Yang S, Milla CE, Blazar BR. High levels of peroxynitrite are generated in the lungs of irradiated mice given cyclophosphamide and allogeneic T cells. A potential mechanism of injury after marrow transplantation. Am J Respir Cell Mol Biol 1999; 20: 1125–1135.

    PubMed  CAS  Google Scholar 

  120. Hill GR, Crawford JM, Cooke KR, Brinson YS, Pan L, Ferrara JL. Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 1997; 90: 3204–3213.

    PubMed  CAS  Google Scholar 

  121. Hill GR, Cooke KR, Brinson YS, Bungard D, Ferrara JL. Pretransplant chemotherapy reduces inflammatory cytokine production and acute graft-versus-host disease after allogeneic bone marrow transplantation. Transplantation 1999; 67: 1478–1480.

    Article  PubMed  CAS  Google Scholar 

  122. Korngold B, Sprent J. Lethal graft-versus-host disease after bone marrow transplantation across minor histocompatibility barriers in mice. Prevention by removing mature T cells from marrow. J Exp Med 1978; 148: 1687–1698.

    CAS  Google Scholar 

  123. Trigg ME, Billing R, Sondel PM, Exten R, Hong R, Bozdech MJ, et al. Clinical trial depleting T lymphocytes from donor marrow for matched and mismatched allogeneic bone marrow transplants. Cancer Treat Rep 1985; 69: 377–386.

    PubMed  CAS  Google Scholar 

  124. Mitsuyasu RT, Champlin RE, Gale RP, Ho WG, Lenarsky C, Winston D, et al. Treatment of donor bone marrow with monoclonal anti-T-cell antibody and complement for the prevention of graft-versus-host disease. A prospective, randomized, double-blind trial. Ann Intern Med 1986; 105: 20–26.

    PubMed  CAS  Google Scholar 

  125. Champlin R. T-cell depletion to prevent graft-versus-host disease after bone marrow transplantation. Hematol Oncol Clin NAm 1990; 4: 687–698.

    CAS  Google Scholar 

  126. Kloosterman TC, Tielemans MJ, Martens AC, Van Bekkum DW, Hagenbeek A. Quantitative studies on graft-versus-leukemia after allogeneic bone marrow transplantation in rat models for acute myelocytic and lymphocytic leukemia. Bone Marrow Transplant 1994; 14: 15–22.

    PubMed  CAS  Google Scholar 

  127. Blazar BR, Taylor PA, Boyer MW, Panoskaltsis-Mortari A, Allison JP, Vallera DA. CD28B7 interactions are required for sustaining the graft-versus-leukemia effect of delayed post-bone marrow transplantation splenocyte infusion in murine recipients of myeloid or lymphoid leukemia cells. J Immunol 1997; 159: 3460–3473.

    PubMed  CAS  Google Scholar 

  128. Johnson BD, Drobyski WR, Truitt RL. Delayed infusion of normal donor cells after MHC-matched bone marrow transplantation provides an antileukemia reaction without graft-versus-host disease. Bone Marrow Transplant 1993; 11: 329–336.

    PubMed  CAS  Google Scholar 

  129. Sykes M, Romick ML, Sachs DH. Interleukin 2 prevents graft-versus-host disease while preserving the graft-versus-leukemia effect of allogeneic T cells. Proc Natl Acad Sci USA 1990; 87: 5633–5637.

    Article  PubMed  CAS  Google Scholar 

  130. Yang YG, Sergio JJ, Pearson DA, Szot GL, Shimizu A, Sykes M. Interleukin-12 preserves the graftversus-leukemia effect of allogeneic CD8 T cells while inhibiting CD4-dependent graft-versus-host disease in mice. Blood 1997; 90: 4651–4660.

    PubMed  CAS  Google Scholar 

  131. Johnson BD, Becker EE, LaBelle JL, Truitt RL. Role of immunoregulatory donor T cells in suppression of graft-versus-host disease following donor leukocyte infusion therapy. J Immunol 1999; 163: 6479–6487.

    PubMed  CAS  Google Scholar 

  132. Johnson BD, Becker EE, Truitt RL. Graft-vs.-host and graft-vs.-leukemia reactions after delayed infusions of donor T-subsets. Biol Blood Marrow Transplant 1999; 5: 123–132.

    Article  PubMed  CAS  Google Scholar 

  133. Ito M, Shizuru JA. Graft-vs-lymphoma effect in an allogeneic hematopoietic stem cell transplantation model. Biel Blood Marrow Transplant 1999; 5: 357–368.

    Article  CAS  Google Scholar 

  134. Bacchetta R, Vandekerckhove BA, Touraine JL, Bigler M, Martino S, Gebuhrer L, et al. Chimerism and tolerance to host and donor in severe combined immunodeficiencies transplanted with fetal liver stem cells. J Clin Invest 1993; 91: 1067–1078.

    Article  PubMed  CAS  Google Scholar 

  135. Kaufman CL, Colson YL, Wren SM, Watkins S, Simmons RL, Ildstad ST. Phenotypic characterization of a novel bone marrow-derived cell that facilitates engraftment of allogeneic bone marrow stem cells. Blood 1994; 84: 2436–2446.

    PubMed  CAS  Google Scholar 

  136. Gandy KL, Domen J, Aguila H, Weissman IL. CD8+TCR+ and CD8+TCR-cells in whole bone marrow facilitate the engraftment of hematopoietic stem cells across allogeneic barriers. Immunity 1999; 11: 579–590.

    Article  PubMed  CAS  Google Scholar 

  137. Martin PJ. Winning the battle of graft versus host [news]. Nat Med 2000; 6: 18–19.

    Article  PubMed  CAS  Google Scholar 

  138. Sprent J, Surh CD, Agus D, Hurd M, Sutton S, Heath WR. Profound atrophy of the bone marrow reflecting major histocompatibility complex class II-restricted destruction of stem cells by CD4+ cells. JExp Med 1994; 180: 307–317.

    Article  CAS  Google Scholar 

  139. Welniak LA, Blazar BR, Anver MR, Wiltrout RH, Murphy WJ. Opposing roles of interferon-gamma on CD4+ T cell-mediated graft-versus-host disease: effects of conditioning. Biol Blood Marrow Transplant 2000; 6: 604–612.

    Article  PubMed  CAS  Google Scholar 

  140. Uharek L, Glass B, Gassmann W, Eckstein V, Steinmann J, Loeffler H, et al. Engraftment of allogeneic bone marrow cells: experimental investigations on the role of cell dose, graft-versus-host reactive T cells and pretransplant immunosuppression. Transplant Proc 1992; 24: 3023–3025.

    PubMed  CAS  Google Scholar 

  141. Colson YL, Wren SM, Schuchert MJ, Patrene KD, Johnson PC, Boggs SS, et al. A nonlethal conditioning approach to achieve durable multilineage mixed chimerism and tolerance across major, minor, and hematopoietic histocompatibility barriers. J Immunol 1995; 155: 4179–4188.

    PubMed  CAS  Google Scholar 

  142. Down J, Mauch R. The effect of combining cyclophosphamide with total body irradiation on donor bone marrow engraftment. Transplantation 1991; 51: 1309–1311.

    Article  PubMed  CAS  Google Scholar 

  143. Botnick L, Hannon E, Viognuelle R, Hellman S. Differential effects of cytotoxic agents on hematopoietic progenitors. Cancer Res 1981; 41: 2338–2342.

    PubMed  CAS  Google Scholar 

  144. Down JD, Westerhof GR, Boudewijn A, Setroikromo R, Ploemacher RE. Thiotepa improves allogeneic bone marrow engraftment without enhancing stem cell depletion in irradiated mice. Bone Marrow Transplant 1998; 21: 327–330.

    Article  PubMed  CAS  Google Scholar 

  145. Westerhof GR, Ploemacher RE, Boudewijn A, Blokland I, Dillingh JH, McGown AT, et al. Comparison of different busulfan analogues for depletion of hematopoietic stem cells and promotion of donor-type chimerism in murine bone marrow transplant recipients. Cancer Res 2000; 60: 5470–5478.

    PubMed  CAS  Google Scholar 

  146. Floersheim GL, Ruszkiewicz M. Bone-marrow transplantation after antilymphocytic serum and lethal chemotherapy. Nature 1969; 222: 854–857.

    Article  PubMed  CAS  Google Scholar 

  147. Kolb HJ, Storb R, Weiden PL, Ochs HD, Kolb H, Graham TC, et al. Immunologic, toxicologic and marrow transplantation studies in dogs given dimethyl myleran. Biomedicine 1974; 20: 341–351.

    PubMed  CAS  Google Scholar 

  148. Santos GW. Immunosuppression for clinical marrow transplantation. Semin Hematol 1974; 11: 341–351.

    PubMed  CAS  Google Scholar 

  149. Samlowski WE, Araneo BA, Butler MO, Fung MC, Johnson HM. Peripheral lymph node helper T-cell recovery after syngeneic bone marrow transplantation in mice prepared with either gamma-irradiation or busulfan. Blood 1989; 74: 1436–1445.

    PubMed  CAS  Google Scholar 

  150. Leong LY, Qin S, Cobbold SP, Waldmann H. Classical transplantation tolerance in the adult: the interaction between myeloablation and immunosuppression. Eur J Immunol 1992; 22: 2825–2830.

    Article  PubMed  CAS  Google Scholar 

  151. Bonin MM, Horowitz MM, Gale RP, Barrett AJ, Champlin RE, Dicke KA, et al., Changing trends in allogeneic bone marrow transplantation for leukemia in the 1980s. JAMA 1992; 268: 607–612.

    Article  Google Scholar 

  152. Copelan EA, Deeg HJ. Conditioning for allogeneic marrow transplantation in patients with lymphohematopoietic malignancies without the use of total body irradiation. Blood 1992; 80: 1648–1658.

    PubMed  CAS  Google Scholar 

  153. Champlin RE, Ho WG, Mitsuyasu R, Burnison M, Greenberg P, Holly G, et al. Graft failure and leukemia relapse following T lymphocyte-depleted bone marrow transplants: effect of intensification of immunosuppressive conditioning. Transplant Proc 1987; 19: 2616–2619.

    PubMed  CAS  Google Scholar 

  154. Ganem G, Kuentz M, Beaujean F, Lebourgeois JP, Vinci G, Cordonnier C, et al. Additional total-lymphoid irradiation in preventing graft failure of T-cell-depleted bone marrow transplantation from HLA-identical siblings. Results of a prospective randomized study. Transplantation 1988; 45: 244–248.

    Article  PubMed  CAS  Google Scholar 

  155. Soiffer RJ, Mauch P, Tarbell NJ, Anderson KC, Freedman AS, Rabinowe SN, et al. Total lymphoid irradiation to prevent graft rejection in recipients of HLA non-identical T cell-depleted allogeneic marrow. Bone Marrow Transplant 1991; 7: 23–33.

    PubMed  CAS  Google Scholar 

  156. Slavin S, Fuks Z, Kaplan HS, Strober S. Transplantation of allogeneic bone marrow without graftversus-host disease using total lymphoid irradiation. J Exp Med 1978; 147: 963–972.

    Article  PubMed  CAS  Google Scholar 

  157. Cobbold SP, Martin G, Qin S, Waldmann H. Monoclonal antibodies to promote marrow engraftment and tissue graft tolerance. Nature 1986; 323: 164–166.

    Article  PubMed  CAS  Google Scholar 

  158. Ferrara JLM, Mauch P, van Dijken PJ. Evidence that anti-asialo GM1 in vivo improves engraftment of T cell depleted bone marrow in hybrid recipients. Transplantation 1990; 49: 134–138.

    Article  PubMed  CAS  Google Scholar 

  159. Hiruma K, Hirsch R, Patchen M, Bluestone JA, Gress RE. Effects of anti-CD3 monoclonal antibody on engraftment of T-cell-depleted bone marrow allografts in mice: host T-cell suppression, growth factors, and space. Blood 1992; 79: 3050–3058.

    PubMed  CAS  Google Scholar 

  160. Fischer A, Griscelli C, Blanche S, Le Deist F, Veber F, Lopez M, et al. Prevention of graft failure by an anti-HLFA-1 monoclonal antibody in HLA-mismatched bone-marrow transplantation. Lancet 1986; 2: 1058–1061.

    Article  PubMed  CAS  Google Scholar 

  161. van Dijken PJ, Ghayur T, Mauch P, Down J, Burakoff SJ, Ferrara JL. Evidence that anti-LFA-1 in vivo improves engraftment and survival after allogeneic bone marrow transplantation. Transplantation 1990; 49: 882–886.

    Article  PubMed  Google Scholar 

  162. Blazar BR, Carroll SF, Vallera DA. Prevention of murine graft-versus-host disease and bone marrow alloengraftment across the major histocompatibility barrier after donor graft preincubation with antiLFA1 immunotoxin. Blood 1991; 78: 3093–3102.

    PubMed  CAS  Google Scholar 

  163. Voralia M, Semeluk A, Wegmann T. Facilitation of syngeneic stem cell engraftment by anti-class monoclonal antibody pre-treatment of unirradiated recipients. Transplantation 1987; 44: 487–494.

    Article  PubMed  CAS  Google Scholar 

  164. Matthews DC, Martin PJ, Nourigat C, Appelbaum FR, Fisher DR, Bernstein ID. Marrow ablative and immunosuppressive effects of (231) I-anti-CD45 antibody in congenic and H2-mismatched mutine transplant models. Blood 1999; 93: 737–745.

    PubMed  CAS  Google Scholar 

  165. Matthews DC, Appelbaum FR, Eary JF, Fisher DR, Durack LD, Hui TE, et al. Phase I study of (131)I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 1999; 94: 1237–1247.

    PubMed  CAS  Google Scholar 

  166. Meijne EI, Winden-van Groenewegen RJ, Ploemacher RE, Vos O, David JA, Huiskamp R. The effects of x-irradiation on hematopoietic stem cell compartments in the mouse. Exp Hematol 1991; 19: 617–623.

    PubMed  CAS  Google Scholar 

  167. Brecher G, Ansell J, Micklem H, Tjio J, Cronkite E. Special proliferative sites are not needed for seeding and proliferation of transfused bone marrow cells in normal syngeneic mice. Proc Natl Acad Sci USA 1982; 79: 5085–5087.

    Article  PubMed  CAS  Google Scholar 

  168. Stewart FM, Crittenden RB, Lowry P, Pearson-White S, Quesenberry PJ. Long-term engraftment of normal and post-5-Fluorouracil murine marrow into normal nonmyeloablated mice. Blood 1993; 81: 2566–2571.

    PubMed  CAS  Google Scholar 

  169. Stewart FM, Zhong S, Wuu J, Hsieh C, Nilsson SK, Quesenberry Pi. Lymphohematopoietic engraft-ment in minimally myeloablated hosts. Blood 1998; 91: 3681–3687.

    PubMed  CAS  Google Scholar 

  170. Mardiney M, Malech HL. Enhanced engraftment of hematopoietic progenitor cells in mice treated with granulocyte colony-stimulating factor before low-dose irradiation-Implications for gene therapy. Blood 1996; 87: 4049–4056.

    PubMed  CAS  Google Scholar 

  171. Down JD, de Haan G, Dillingh JH, Dontje B, Nijhof W. Stem cell factor has contrasting effects in combination with 5-fluorouracil or total-body irradiation on frequencies of different hemopoietic cell subsets and engraftment of transplanted bone marrow. Radial Res 1997; 147: 680–685.

    Article  CAS  Google Scholar 

  172. Sharabi Y, Sachs DH. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J Exp Med 1989; 169: 493–502.

    Article  PubMed  CAS  Google Scholar 

  173. Huang CA, Fuchimoto Y, Scheier-Dolberg R, Murphy MC, Neville DM, Jr., Sachs DH. Stable mixed chimerism and tolerance using a nonmyeloablative preparative regimen in a large-animal model. J Clin Invest 2000; 105: 173–181.

    Article  PubMed  CAS  Google Scholar 

  174. Kimikawa M, Sachs DH, Colvin RB, Bartholomew A, Kawai T, Cosimi AB. Modifications of the conditioning regimen for achieving mixed chimerism and donor-specific tolerance in cynomolgus monkeys. Transplantation 1997; 64: 709–716.

    Article  PubMed  CAS  Google Scholar 

  175. Sykes M, Szot GL, Swenson KA, Pearson DA. Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nat Med 1997; 3: 783–787.

    Article  PubMed  CAS  Google Scholar 

  176. Wekerle T, Sachs DH, Sykes M. Mixed chimerism for the induction of tolerance: potential applicability in clinical composite tissue grafting. Transplant Proc 1998; 30: 2708–2710.

    Article  PubMed  CAS  Google Scholar 

  177. Quesenberry PJ, Zhong S, Wang H, Stewart M. Allogeneic chimerism with low-dose irradiation, antigen presensitization, and costimulator blockade in H-2 mismatched mice. Blood, 2001; 97: 557–564.

    Article  PubMed  CAS  Google Scholar 

  178. Durham MM, Bingaman AW, Adams AB, Ha J, Waitze SY, Pearson TC, Larsen CP. Cutting edge: administration of anti-CD40 ligand and donor bone marrow leads to hemopoietic chimerism and donor-specific tolerance without cytoreductive conditioning. J Immunol, 2000; 165: 1–4.

    PubMed  CAS  Google Scholar 

  179. Pelot MR, Pearson DA, Swenson K, Zhao G, Sachs J, Yang YG, et al. Lymphohematopoietic graftvs.-host reactions can be induced without graft-vs.-host disease in murine mixed chimeras established with a cyclophosphamide-based nonmyeloablative conditioning regimen. Biol Blood Marrow Transplant 1999; 5: 133–143.

    Article  PubMed  CAS  Google Scholar 

  180. Stavin S, Nagler A, Naparstek E, Kapelushnik Y, Aker M, Cividalli G, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998; 91: 756–763.

    Google Scholar 

  181. Khouri IF, Keating M, Korbling M, Przepiorka D, Anderlini P, O’Brien S, et al. Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell-transplantation as treatment for lymphoid malignancies. J Clin Oncol 1998; 16: 2817–2824.

    PubMed  CAS  Google Scholar 

  182. Spitzer TR, McAfee S, Sackstein R, Colby C, Toh HC, Multani Pet al. Intentional induction of mixed chimerism and achievement of antitumor responses after nonmyeloablative conditioning therapy and HLA-matched donor marrow transplantation for refractory hematologic malignancies. Bio Blood Marrow Transplant 2000; 6: 309–320.

    Article  CAS  Google Scholar 

  183. Bornhauser M, Thiede C, Schuler U, Platzbecker U, Freiberg-Richter J, Helwig A, et al. Dose-reduced conditioning for allogeneic blood stem cell transplantation: durable engraftment without antithymocyte globulin Bone marrow Transplant 2000; 26: 119–125.

    Article  PubMed  CAS  Google Scholar 

  184. Sandmaier BM, McSweeney P, Yu C, Storb R. Nonmyeloablative transplants; preclinical and clinical results. Semin Oncol 2000; 27 (2 Suppl 5): 78–81.

    PubMed  CAS  Google Scholar 

  185. Childs R, Chernoff A, Contentin N, Bahceci E, Schrump D, Leitman Set al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 2000; 343: 750–758.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Os, R., Down, J.D. (2002). Murine Models of Bone-Marrow Transplant Conditioning. In: Teicher, B.A. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-100-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-100-8_21

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6883-1

  • Online ISBN: 978-1-59259-100-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics