Skip to main content

SENCAR Mouse-Skin Tumorigenesis Model

  • Chapter
Tumor Models in Cancer Research

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 435 Accesses

Abstract

Over the past few decades, the mouse has been established as the primary organism used to investigate the fundamental mechanisms of skin carcinogenesis and to model human neoplasia. Skin is the most important protective barrier against the harmful and lethal carcinogenic effects of physical (e.g., ultraviolet (UV) radiation), chemical (e.g., polycyclic aromatic hydrocarbons (PAHs)), and biological (e.g., oncogenic viruses) environmental factors. Carcinogenesis has been demonstrated by experimental and epidemiologic studies to be a multifactorial, multigenic, and multiphasic process composed of three major sequential stages: initiation, promotion, and progression (1). A single exposure of a carcinogenic agent such as 7,12-dimethylbenz(a)anthracene (DMBA), benzo(a)pyrene B(a)P to epidermal cells may result in a small subset of initiating cells carrying irreversible mutations in critical gene(s) such as proto-oncogenes and tumor-suppressor genes, which control normal cellular growth and differentiation (2). In the promotion stage, repeated applications of promoters such as phorbol esters that are generally nonmutagenic bring about many important epigenetic alterations in initiated cells, facilitating the clonal expansion of an initiated phenotype and leading to the formation of benign tumors or papillomas. The early stage of promotion is reversible, but promotion in late stage and progression represents the irreversible phases of carcinogenesis process (3). In progression stage, papillomas acquire additional aberrant genetic and epigenetic changes, and develop into a rapidly growing invasive lesion known as carcinoma. Because of an increasing trend in the incidence of human skin cancer, many laboratories have been involved in the process of developing a suitable skin carcinogenesis model to investigate and understand the tumorigenic factors and the cellular, biochemical, and molecular mechanisms involved in the process of human skin tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mukhtar H, Mercurio MG, Agarwal R. Murine skin carcinogenesis: relevance to humans. In: Mukhtar H, ed. Skin Cancer: Mechanisms and Human Relevance. CRC Press, Boca Raton, FL, 1995, pp. 3–8.

    Google Scholar 

  2. Boutwell RK. Some biological effects of skin carcinogenesis. Prog Exp Tumor Res 1964; 4: 207–250.

    PubMed  CAS  Google Scholar 

  3. Agarwal R, Khan SG, Athar M, Zaidi SIA, Bickers DR, Mukhtar H. Ras protein p21 processing enzyme famesyltransferase in chemical carcinogen-induced murine skin tumors. Mol Carcinog 1993; 8: 290–298.

    PubMed  CAS  Google Scholar 

  4. Agarwal R, Katiyar SK, Zaidi SIA, Mukhtar H. Inhibition of tumor promoter-caused induction of ornithine decarboxylase activity in SENCAR mice by polyphenolic fraction isolated from green tea and its individual epicatechin derivatives. Cancer Res 1992; 52: 3582–3588.

    PubMed  CAS  Google Scholar 

  5. DiGiovanni J, Slaga TJ, Boutwell RK. Comparision of the tumor initiating activity of 7,12-dimethylbenz(a)anthracene and benzo(a)pyrene in female SENCAR and CD-1 mice. Carcinogenesis 1980; 1: 381–389.

    PubMed  CAS  Google Scholar 

  6. Slaga TI. SENCAR mouse skin tumorigenesis model versus other strains and stocks of mice. Environ Health Persp 1986; 68: 27–32.

    CAS  Google Scholar 

  7. Slaga TJ, Fischer SM, Triplett LL, Nesnow S. Comparison of complete carcinogenesis and tumor initiation and promotion in mouse skin: the induction of papillomas by tumor initiation-promotion, a reliable short term assay. J Environ Pathol Toxicol 1981; 4: 1025–1041.

    Google Scholar 

  8. Stenback F. Skin carcinogenesis as a model system, observations on species, strain and tissue sensitivity to 7,12-dimethylbenz(a)anthracene with and without promotion from croton oil. Acta Pharmacol Toxicol 1980; 46: 89–97.

    CAS  Google Scholar 

  9. Reiners J, Davidson K, Nelson K, Mamrack M, Slaga TJ. Skin tumor promotion: a comparative study of several stocks and strains of mice. Basic Life Sci 1983; 24: 173–178.

    PubMed  CAS  Google Scholar 

  10. Slaga TI, Fischer SM. Strain differences and solvent effects in mouse skin carcinogenesis experiments using carcinogens, tumor initiators and promoters. Prog Exp Tumor Res 1983; 26: 85–109.

    PubMed  CAS  Google Scholar 

  11. Phillips DH, Grover PL, Sims R The covalent binding of polycyclic hydrocarbons to the DNA in the skin of mice of different strains. Int J Cancer 1987; 52: 479–494.

    Google Scholar 

  12. Fischer SM, O’Connell JF, Conti CJ, Tacker KC, Fries JW, Patrick KE, et al. Characterization of an inbred strain of the SENCAR mouse that is highly sensitive to phorbol esters. Carcinogenesis 1987; 8: 421–424.

    PubMed  CAS  Google Scholar 

  13. Gimenez-Conti IB, Bianchi AB, Fischer SM, Reiners II Jr, Conti CJ, Slaga TJ. Dissociation of sensitivities to tumor promotion and progression in outbred and inbred SENCAR mice. Cancer Res 1992; 52: 3432–3435.

    PubMed  CAS  Google Scholar 

  14. Stern MC, Gimenez-Conti IB, Conti CI. Genetic susceptibility to papilloma progression in SENCAR mice. Carcinogenesis 1995; 16: 1947–1953.

    PubMed  CAS  Google Scholar 

  15. Hennings H, Lowry DT, Yuspa SH, Bock B, Potter M. New strains of inbred SENCAR mice with increased susceptibility to induction of papillomas and squamous cell carcinomas in skin. Mol Carcinog 1997; 20: 143–150.

    PubMed  CAS  Google Scholar 

  16. Coghlan LG, Gimenez-Conti I, Kleiner HE, Fischer SM, Rundhaug JE, Conti CJ, et al. Development and initial characterization of several new inbred strains of SENCAR mice for studies of multistage skin carcinogenesis. Carcinogenesis 2000; 21: 641–646.

    PubMed  CAS  Google Scholar 

  17. Wester RC, Maibach HI. Animal models for percutaneous absorption. In: Wang RGM, Knaak JB, Maibach HI, eds. Health Risk Assessment. CRC Press, Boca Raton, FL, 1993, pp. 89–116.

    Google Scholar 

  18. Bronaugh RL, Steward RF, Congdon ER. Differences in the permeability of rat skin related to sex and body size. J Soc Cosmet Chem 1983; 34: 1237–1240.

    Google Scholar 

  19. Clayson DB, Kitchin KT. Interspecies differences in response to chemical carcinogens. In: Kitchin KT, ed. Carcinogenicity Testing, Predicting, and Interpreting Chemical Effects. Marcel Dekker, Inc, New York, NY, 1999, pp. 837–880.

    Google Scholar 

  20. Potts RO, Francoeur ML. The influence of stratum corneum morphology on water permeability. J Invest Dermatol 1991; 96: 495–499.

    PubMed  CAS  Google Scholar 

  21. Lavker RM, Sun TT. Epidermal stem cells. J Invest Dermatol 1983; 81 (1 S): 121–127.

    Google Scholar 

  22. Morris RJ, Fischer SM, Slaga TJ. Evidence that a slowly cycling subpopulation of adult murine epidermal cells retains carcinogens. Cancer Res 1986; 46: 3061–3066.

    PubMed  CAS  Google Scholar 

  23. Stenback F, Peto R, Shubik R. Initiation and promotion at different ages and doses in 2200 mice. I. Methods, and the apparent persistance of initiated cells. Br J Cancer 1981; 44: 1–14.

    PubMed  CAS  Google Scholar 

  24. Miller SJ, Wei ZG, Wilson C, Dzubow L, Sun TT, Lavker RM. Mouse skin is particularly susceptible to tumor initiation during early anagen of hair cycle: possible involvement of hair follicle stem cells. J Invest Dermatol 1993; 101: 591–594.

    PubMed  CAS  Google Scholar 

  25. Ahmed N, Agarwal R, Mukhtar H. Cytochrome P450 and drug development for skin diseases. Skin Pharmacol 1996; 9: 231–241.

    Google Scholar 

  26. Anari MR, Khan S, Liu ZU, O’Brien PJ. Cytochrome P450 peroxidase/peroxygenase mediated xeno-biotic metabolic activation and cytotoxicity in isolated hepatocytes. Chem Res Toxicol 1995; 8: 997–1004.

    PubMed  CAS  Google Scholar 

  27. Lahiri M, Mukhtar H, Agarwal R. Reactive intermediates and skin cancer. In: Kitchin KT, ed. Carcinogenicity Testing, Predicting, and Interpreting Chemical Effects. Marcel Dekker, Inc, New York, NY, 1999, pp. 679–714.

    Google Scholar 

  28. Nebert DW. Drug metabolizing enzymes in ligand-modulated transcription. Biochem Pharmacol 1994; 47: 25–37.

    PubMed  CAS  Google Scholar 

  29. Guengerich FR. Metabolic activation of carcinogens. Pharmcol Ther 1992; 54: 17–61.

    CAS  Google Scholar 

  30. Chouroulinkov I, Gentil A, Tierney B, Grover PL, Sims R. The initiation of tumors on mouse skin by dihydrodiols derived from 7,12-dimethylbenz(a)anthracene and 3-methylcholanthrene. Int J Cancer 1979; 24: 455–460.

    PubMed  CAS  Google Scholar 

  31. Ramakrishna NV, Devanesan PD, Rogan EG, Cavalieri EL, Jeong H, Jankowiak R, et al. Mechanism of metabolic activation of the potent carcinogen 7,12-dimethylbenz(a)anthracene. Chem Res Toxicol 1992; 5: 220–226.

    PubMed  CAS  Google Scholar 

  32. Flagg EW, Coates RJ, Jones DP, Eley JW, Gunter EW, Jackson B, et al. Plasma total glutathione in humans and its association with demographic and health-related factors. Br J Nutr 1993; 70: 797–808.

    PubMed  CAS  Google Scholar 

  33. Witz G. Active oxygen species as factors in multistage carcinogenesis. Proc Exp Biol Med 1991; 198: 675–682.

    CAS  Google Scholar 

  34. Dixit R, Mukhtar H, Bickers DR. Studies on the role of reactive oxygen species in mediating lipid peroxide formation in epidermal microsomes of rat skin. J Invest Dermatol 1983; 81: 369–375.

    PubMed  CAS  Google Scholar 

  35. Schallreuter KU, Wood JM. Role of thioredoxin reductase in the reduction of free radicals at the surface of the epidermis. Biochem Biophys Res Commun 1986; 136: 630–637.

    PubMed  CAS  Google Scholar 

  36. Carraro C, Pathak MA. Characterization of superoxide dismutase from mammalian skin epidermis. J Invest Dermatol 1988; 90: 31–36.

    PubMed  CAS  Google Scholar 

  37. Ketterer B. Protective role of glutathione and glutathione transferases in mutagenesis and carcinogenesis. Mutat Res 1988; 202: 343–361.

    PubMed  CAS  Google Scholar 

  38. Lahiri-Chatterjee, Katiyar SK, Mohan RR, Agarwal R. A flavonoid antioxidant, silymarin affords exceptionally high protection against tumor promotion in the SENCAR mouse skin tumorigenesis model. Cancer Res 1999; 59: 622–632.

    Google Scholar 

  39. Hennings H, Shores R, Wenk ML, Spangler EF, Tarone R, Yuspa SH. Malignant conversion of mouse skin tumors is increased by tumor initiators and unaffected by tumor promoters. Nature 1983; 304: 67–69.

    PubMed  CAS  Google Scholar 

  40. Dipple A, Pigott M, Moschel RC, Constantino N. Evidence that binding of 7,12dimethylbenz(a)anthracene to DNA in mouse cell cultures results in extensive substitution of both adenine and guaninine residues. Cancer Res 1983; 43: 4132–4135.

    PubMed  CAS  Google Scholar 

  41. Guengerich FR. Metabolism of chemical carcinogens. Carcinogenesis 2000; 21: 345–351.

    PubMed  CAS  Google Scholar 

  42. Agarwal R, Mukhtar H. Cutaneous chemical carcinogenesis. In: Mukhtar H, ed. Pharmacology of the Skin. CRC Press, Boca Raton, FL, 1992; pp. 371–387.

    Google Scholar 

  43. Balmain A, Brown K. Oncogene activation in chemical carcinogenesis. Adv Cancer Res 1988; 57: 147–182.

    Google Scholar 

  44. Barrett JC, Anderson M. Molecular mechanisms of carcinogenesis in humans and rodents. Mol Carcinog 1993; 7: 1–13.

    PubMed  CAS  Google Scholar 

  45. Nelson MA, Futscher BW, Kinsella T, Wymer J, Bowden GT. Detection of mutant Ha-ras genes in chemically initiated mouse skin epidermis before the development of benign tumors. Proc Natl Acad Sci USA 1992; 89: 6398–6402.

    PubMed  CAS  Google Scholar 

  46. Roop DR, Lowy DR, Tambourin PE, Strickland J, Harper JR, Balaschak M, et al. An activated Harvey ras produces benign tumors on mouse epidermal tissue. Nature 1986; 323: 822–824.

    PubMed  CAS  Google Scholar 

  47. Quintanilla MI, Brown K, Ramsden M, Balmain A. Carcinogen specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 1986; 322: 78–80.

    PubMed  CAS  Google Scholar 

  48. Greenhalgh DA, Welty DJ, Player A, Yuspa SH. Two oncogenes v-fos and v-ras, cooperate to convert normal keratinocyte to squamous cell carcinoma. Proc Natl Acad Sci USA 1990; 87: 643–647.

    PubMed  CAS  Google Scholar 

  49. Greenhalgh DA, Rothnagel JA, Quintanilla MI, Orengo CC, Gagne TA, Bundman DS, et al. Induction of epidermal hyperplasia, hyperkeratosis, and papillomas in transgenic mice by targeted v-Haras oncogene. Mol Carcinog 1993; 7: 99–110.

    PubMed  CAS  Google Scholar 

  50. Spalding JW, Momma J, Elwell MR, Tennant RW. Chemically induced skin carcinogenesis in a trans-genic mouse line (TG.AC) carrying a v-HA-ras gene. Carcinogenesis 1993; 14: 1335–1341.

    PubMed  CAS  Google Scholar 

  51. Brown K, Buchmann A, Balmain A. Carcinogen-induced mutations in the mouse c-Ha-ras gene provide evidence of multiple pathways for tumor progression. Proc Natl Acad Sci USA 1990; 87: 538–542.

    PubMed  CAS  Google Scholar 

  52. Husain Z, Yang Q, Biswas DK. C-Ha-ras proto-oncogene: amplification and overexpression in UV-Binduced mouse skin papillomas and carcinomas. Arch Dermatol 1990; 126: 324–330.

    PubMed  CAS  Google Scholar 

  53. Pelling JC, Neades R, Strawhecker J. Epidermal papillomas and carcinomas induced in uninitiated mouse skin by tumor promoters alone contain a point mutation in 61St codon of the Ha-ras oncogene. Carcinogenesis 1988; 9: 665–667.

    PubMed  CAS  Google Scholar 

  54. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 1984; 308: 693–698.

    PubMed  CAS  Google Scholar 

  55. Aldaz CM, Conti CJ, Jimenez IB, Slaga TJ, Klein-Szanto APJ. Cutaneous changes during prolonged application of 12-O-tetradecanoylphorbol-13-acetate on mouse skin and residual effects after cessation of treatment. Cancer Res 1985; 45: 2753–2759.

    PubMed  CAS  Google Scholar 

  56. Stanley PL, Steiner S, Havens M, Tramposch KM. Mouse skin inflammation induced by multiple topical application of 12-O-tetradecanoylphorbol-13-acetate. Skin Pharmacol 1991; 4: 262–271.

    PubMed  CAS  Google Scholar 

  57. Oberyszyn TM, Sabourin CLK, Bijur GN, Oberyszyn AS, Boros LG, Robertson FM. Interleukin-la gene expression and localization of interleukin-la protein during tumor promotion. Mol Carcinog 1993; 7: 238–248.

    PubMed  CAS  Google Scholar 

  58. Lee WY, Butler AP, Lockniskar MF, Fischer SM. Signal transduction pathway(s) involved in phorbol ester and autocrine induction of interleukin-la mRNA in murine keratinocytes. J Biol Chem 1994; 269:17, 971–17, 980.

    Google Scholar 

  59. Eisenberg SP, Brewer MT, Verderber E, Heimdal P, Brandhuber BJ, Thomson RC. Interleukin-1 receptor antagonist is a member of the interleukin-1 gene family: evolution of a cytokine control mechanism. Proc Natl Acad Sci USA 1991; 88: 5232–5236.

    PubMed  CAS  Google Scholar 

  60. La E, Muga SJ, Locniskar MF, Fischer SM. Altered expression of interleukin-1 receptor antagonist in different stages of mouse skin carcinogenesis. Mol Carcinog 1999; 24: 276–286.

    PubMed  CAS  Google Scholar 

  61. Corradi A, Franzi AT, Rubartelli A. Synthesis and secretion of interleukin-la and interleukin-1 receptor antagonist during differentiation of cultured keratinocytes. Exp Cell Res 1995; 217: 255–362.

    Google Scholar 

  62. Zhao J, Sharma Y, Agarwal R. Significant inhibition by the flavonoid antioxidant silymarin against 12-O-tetradecanoyl-13-phorbol acetate-caused modulation of antioxidant and inflammatory enzymes, and cyclooxygenase 2 and interleukin-la expression in SENCAR mouse epidermis: implications in the prevention of the stage I tumor promotion. Mol Carcinog 1999; 26: 321–333.

    PubMed  CAS  Google Scholar 

  63. Kiguchi K, Beltran LM, You J, Rho O, DiGiovanni J. Elevation of transforming growth factor-a mRNA and protein expression by diverse tumor promoters in SENCAR mouse epidermis. Mol Carcinog 1995; 12: 225–235.

    PubMed  CAS  Google Scholar 

  64. Kiguchi K, Beltran L, Rupp T, DiGiovanni J. Altered expression of epidermal growth factor receptor ligands in tumor promoter-treated mouse epidermis and in primary mouse skin tumors induced by an initiation-promotion protocol. Mol Carcinog 1998; 22: 73–83.

    PubMed  CAS  Google Scholar 

  65. Coffey RJ Jr, Derynck R, Wilcox JN, Bringman TS, Goustin AS, Moses HL, et al. Production and auto-induction of transforming growth factor-alpha in human keratinocytes. Nature 1987; 328: 817–820.

    Google Scholar 

  66. Prigent SA, Lemoine MR. Type 1 (EGF-related) family of growth factor receptors and their ligands. Prog Growth Factor Res 1992; 4: 1–24.

    PubMed  CAS  Google Scholar 

  67. Derynck R, Goeddel DV, Ullrich A, Gutterman JU, Williams RD, Bringman TS, et al. Synthesis of mRNAs for transforming growth factors a and 13, and the epidermal growth factor receptor by human tumors. Cancer Res 1987; 47: 707–712.

    PubMed  CAS  Google Scholar 

  68. Glick AB, Sporn MB, Yuspa SH. Altered expression of TGF131 and TGFa in primary keratinocytes and papillomas expressing v-Ha-ras. Mol Carcinog 1991; 4: 210–219.

    CAS  Google Scholar 

  69. Rho O, Beltran LM, Gimenez-Conti IB, DiGiovanni J. Altered expression of the epidermal growth factor receptor and transforming growth factor during multistage skin carcinogenesis. Mol Carcinog 1994; 11: 19–28.

    PubMed  CAS  Google Scholar 

  70. Riggs PK, Rho O, DiGiovanni J. Alteration of Egr-1 mRNA during multistage carcinogenesis in mouse skin. Mol Carcinog 2000; 27: 247–251.

    PubMed  CAS  Google Scholar 

  71. Gashler A, Sukhatme VP. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol 1995; 50: 191–224.

    Google Scholar 

  72. Huang RP, Liu C, Fan Y, Mercola D, Adamson ED. Egr-1 negatively regulates human tumor cell growth via the DNA binding domain. Cancer Res 1995; 55: 5054–5062.

    PubMed  CAS  Google Scholar 

  73. Liu C, Fan Y, Adamson ED, Mercola D. Transcription factor Egr-1 suppress the growth and transformation of human HT-1080 fibrosarcoma cells by induction of transforming growth factor 131. Proc NatlAcad Sci USA 1996; 93:11, 831–11, 836.

    Google Scholar 

  74. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 1982; 257: 7847–7851.

    PubMed  CAS  Google Scholar 

  75. Miyake R, Tanaka Y, Tsuda T, Kaibuchi D, Kikkawa U, Nishizuka Y. Activation of protein kinase C by non-phorbol tumor promoter, mezerein. Biochem Biophys Res Commun 1984; 121: 649–656.

    PubMed  CAS  Google Scholar 

  76. Hunter T, Ling N, Cooper JA. Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane. Nature 1984; 311: 480–483.

    PubMed  CAS  Google Scholar 

  77. Grausz JD, Fradelizi D, Dautry F, Monier R, Lehn R Modulation of c-fos and c-myc mRNA levels in normal human lymphocytes by calcium ionophore A23187 and phorbol ester. Eur J Immunol 1986; 16: 1217–1221.

    PubMed  CAS  Google Scholar 

  78. Auvinen M, Paasinen A, Anderson LC, Holtta E. Ornithine decarboxylase activity is critical for cell transformation. Nature 1992; 360: 355–358.

    PubMed  CAS  Google Scholar 

  79. Koza RA, Meghosh LC, Palmieri M, O’Brien T. Constitutively elevated levels of ornithine and polyamines in mouse epidermal papillomas. Carcinogenesis 1991; 12: 1619–1625.

    PubMed  CAS  Google Scholar 

  80. Rose-John S, Furstenberger G, Krieg P, Besemfelder E, Rincke C, Marks F. Differential effects of phorbol ester on c-fos and c-myc, and ornithine decarboxylase gene expression in mouse skin in vivo. Carcinogenesis 1988; 9: 831–835.

    PubMed  CAS  Google Scholar 

  81. Kumar AP, Butler AR. Enhanced DNA-binding activity in murine keratinocyte cell lines and epidermal tumors. Cancer Lett 1999; 137: 159–165.

    PubMed  CAS  Google Scholar 

  82. Hagen G, Mueller S, Beato M, Suske G. Spl-mediated transcriptional activation is repressed by Sp3. EMBO J 1994; 13: 3843–3851.

    PubMed  CAS  Google Scholar 

  83. Gunther M, Frebourg T, Laithier M, Fossar N, Bouziane-Quartini M, Lavialle C, et al. An Spl binding site and the minimal promoter contribute to overexpression of the cytokeratin 18 gene in tumori-genic clones relative to that in nontumorigenic clones of a human carcinoma cell line. Mol Cell Biol 1995; 15: 2490–2499.

    PubMed  CAS  Google Scholar 

  84. Warren BS, Naylor MF, Vo TKO, Sandoval A, Davis MM, Slaga TJ. Phorbol ester tumor promoter treated epidermis, papillomas, carcinomas, and tumor derived epidemial cell lines have decreased levels of the glucocorticoid receptor. Proc Am Assoc Cancer Soc 1991; 32: 162–169.

    Google Scholar 

  85. Beato M, Herrlich P, Schultz G. Steroid hormone receptors: many actors in search of a pilot. Cell 1995; 83: 851–857.

    PubMed  CAS  Google Scholar 

  86. Diamond MI, Minor JN, Yoshinaga SK, Yamamoto KR. Transcriptional factor interactions: steroids of positive and negative regulation from a single DNA element. Science 1990; 249: 1266–1272.

    PubMed  CAS  Google Scholar 

  87. Jonat C, Rahmsdorf HJ, Park KK, Cato ACB, Gebel S, Ponta H, et al. Antitumor promotion and anti-inflammation: down-modulation of AP-1 (fos/jun) activity by glucocorticoid hormone. Cell 1990; 62: 1189–1204.

    PubMed  CAS  Google Scholar 

  88. Perchellet EM, Perch]let GR. Characterization of the hydrogen peroxide response observed in mouse skin treated with tumor promoters in vivo. Cancer Res 1989; 49: 6193–6201.

    PubMed  CAS  Google Scholar 

  89. Burger F, Krieg P, Kinzig A, Schurich B, Marks F, Furstenberger G. Constitutive expression of 8lipoxigenase in papillomas and clastogenic effects of lipoxigenase-derived arachidonic acid metabolites in keratinocytes. Mol Carcinog 1999; 24: 108–117.

    PubMed  CAS  Google Scholar 

  90. Ruzicka T, Printz MP. Archidonic acid metabolism in skin: a review. Rev Physiol Biochem Pharmacol 1984; 100: 121–132.

    PubMed  CAS  Google Scholar 

  91. Muller-Decker K, Scholz K, Marks F, Furstenberger G. Differential expression of prostaglandin H synthase isoenzymes during multistage carcinogenesis in mouse epidermis. Mol Carcinog 1995; 12: 31–41.

    PubMed  CAS  Google Scholar 

  92. Beyer EC. Gap junctions. !nt Rev Cytol 1993; 137C: 1–37.

    Google Scholar 

  93. Yamasaki H, Krutovskikh V, Mesnil M, Columbano A, Tsuda H, Ito N. Gap junctional intercellular communication and cell proliferation during rat liver carcinogenesis. Environ Health Perspect 1993; 101S: 191–198.

    PubMed  CAS  Google Scholar 

  94. Budunova IV, Carbajal S, Slaga TJ. Effect of diverse tumor promoters on the expression of gap junctional proteins connexin (Cx)26, Cx31.1, and Cx43 in SENCAR mouse epidermis. Mol Carcinog 1996; 15: 202–214.

    PubMed  CAS  Google Scholar 

  95. Yokota J. Tumor progression and metastasis. Carcinogenesis 2000; 21: 497–503.

    PubMed  CAS  Google Scholar 

  96. Aldaz CM, Trono D, Larcher F, Slaga TJ, Conti CJ. Sequential trisomization of chromosomes 6 and 7 in mouse skin premalignant lesions. Mol Carcinog 1989; 2: 22–26.

    PubMed  CAS  Google Scholar 

  97. Bremner R, Balmain A. Genetic changes in skin tumor progression: correlation between the presence of a mutant ras and loss of heterozygosity on mouse chromosome 7. Cell 1990; 61: 407–417.

    PubMed  CAS  Google Scholar 

  98. Domann FE Jr, Levy JP, Finch JS, Bowden GT. Constitutive AP-1 DNA binding and transactivating ability of malignant but not benign mouse epidermal cells. Mol Carcinog 1994; 9: 61–62.

    PubMed  CAS  Google Scholar 

  99. DuBowski A, Jonston DA, Rupp T, Beltran L, Conti CJ, DiGiovanni J. Papillomas at high risk for malignant progression arising both early and late during two-stage carcinogenesis in SENCAR mice. Carcinogenesis 1998; 19: 1141–1147.

    PubMed  CAS  Google Scholar 

  100. Rundhaug JE, Gimenez-Conti I, Stern MC, Budunova IV, Kiguchi K, Bol DK, et al. Changes in protein expression during multistage mouse skin carcinogenesis. Mol Carcinog 1997; 20: 125–136.

    PubMed  CAS  Google Scholar 

  101. Tennenbaum T, Weiner AK, Belanger Ai, Glick AB, Hennings H, Yuspa SH. The suprabasal expression of Œ6134 integrin is associated with a high risk for malignant progression in mouse skin carcinogenesis. Cancer Res 1993; 53: 4803–4810.

    PubMed  CAS  Google Scholar 

  102. Glick AB, Kulkarni AB, Tennenbaum T, Hennings H, Flanders KC, O’Reilly M, et al. Loss of expression of transforming growth factor ß in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc Natl Acad Sci USA 1993; 90: 6076–6080.

    PubMed  CAS  Google Scholar 

  103. Bolontrade MF, Stem MC, Binder RL, Jenklusen IC, Gimenez-Conti IB, Conti O. Angiogenesis is an early event in the development of chemically induced skin tumors. Carcinogenesis 1998; 19: 2107–2113.

    PubMed  CAS  Google Scholar 

  104. Loeb KR, Loeb LA. Significance of multiple mutations in cancer. Carcinogenesis 2000; 21: 379–385.

    PubMed  CAS  Google Scholar 

  105. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994; 266: 1821–1827.

    PubMed  CAS  Google Scholar 

  106. Kuerbitz SJ, Plunkett BS, Walsh VW, Kastan MB. Wild type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 1992; 89: 7491–7495.

    PubMed  CAS  Google Scholar 

  107. Balmain A, Pragnell I. Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey ras oncogene. Nature 1983; 303: 72–74.

    PubMed  CAS  Google Scholar 

  108. Nakazawa H, Aguelon A, Yamasaki H. Identification and quantification of a carcinogen-induced molecular initiation event in cell transformation. Oncogene 1992; 7: 2295–2301.

    PubMed  CAS  Google Scholar 

  109. Aldaz CM, Conti CJ, Klein-Szanto AJP, Slaga TJ. Progressive dysplasia and aneuploidy are hallmarks of mouse papillomas: relevance to malignancy. Proc Natl Acad Sci USA 1987; 84: 2029–2034.

    PubMed  CAS  Google Scholar 

  110. Rodriguez-Puebla ML, LaCava M, Bolontrade MF, Russell J. Increased expression of mutated Haras during premalignant progression in SENCAR mouse skin. Mol Carcinog 1999; 26: 150–156.

    PubMed  CAS  Google Scholar 

  111. Rodriguez-Puebla ML, Robles AI, Conti CJ. Ras activity and cyclin D1 expression: an essential mechanism of mouse skin tumor development. Mol Carcinog 1999; 24: 1–6.

    PubMed  CAS  Google Scholar 

  112. Sherr CJ. Mammalian GI cyclins. Cell 1993; 73: 1059–1065.

    PubMed  CAS  Google Scholar 

  113. Weinberg RA. Tumor suppressor genes. Science 1991; 254: 1138–1146.

    PubMed  CAS  Google Scholar 

  114. Hiebert S. Regions of the retinoblastoma gene product required for its interaction with the E2F transcription factor are necessary for E2 promoter repression and pRb-mediated growth suppression. Mol Cell Biol 1993; 13: 3384–3391.

    PubMed  CAS  Google Scholar 

  115. Lane DP. Cancer: p.53, guardian of the genome. Nature 1992; 358; 15–16.

    PubMed  CAS  Google Scholar 

  116. Ruggeri B, Caamano J, Goodrow T, DiRado M, Bianchi A, Trono D, et al. Alterations of the p.53 tumor suppressor gene during mouse skin tumor progression. Cancer Res 1991; 51: 6615–6621.

    PubMed  CAS  Google Scholar 

  117. Rodriguez-Puebla ML, LaCava M, Gimenez-Conti IB, Johnson DG, Conti CJ. Deregulated expression of cell cycle proteins during premalignant progression in SENCAR mouse skin. Oncogene 1998; 17: 2251–2258.

    PubMed  CAS  Google Scholar 

  118. Sherr CJ. The pezcoller lecture: cancer cell cycle revisited. Cancer Res 2000; 60: 3689–3695.

    PubMed  CAS  Google Scholar 

  119. Robles AI, Conti CJ. Early overexpression of cyclin D1 protein in mouse skin carcinogenesis. Carcinogenesis 1995; 16: 781–786.

    PubMed  CAS  Google Scholar 

  120. Robles AI, Rodriguez-Puebla ML, Glick AB, Trempus C, Hansen L, Sicinski P, et al. Reduced tumor development in cyclin D1-deficient mice highlights the oncogenic ras pathway in vivo. Genes Dev 1998; 12: 2469–2474.

    PubMed  CAS  Google Scholar 

  121. Kim NY, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PLC, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2115.

    PubMed  CAS  Google Scholar 

  122. Bednarek A, Budunova I, Slaga TJ, Aldaz CM. Increased telomerase activity in mouse skin premalignant progression. Cancer Res 1995; 55: 4566–4569.

    PubMed  CAS  Google Scholar 

  123. Wattenberg LW. An overview of chemoprevention: current status and future prospects. Proc Soc Exp Biol Med 1997; 216: 133–141.

    PubMed  CAS  Google Scholar 

  124. Kelloff GJ, Hawk ET, Karp JE, Crowell JA, Boone CW, Steele VE, et al. Progress in chemical chemoprevention. Semin Oncol 1997; 24: 241–252.

    PubMed  CAS  Google Scholar 

  125. Sporn MB, Suh N. Chemoprevention of cancer. Carcinogenesis 2000; 21: 525–530.

    PubMed  CAS  Google Scholar 

  126. Kelloff GJ. Perspectives on cancer chemoprevention research and drug development. Adv Cancer Res 1999; 78: 199–334.

    Google Scholar 

  127. Agarwal R, Katiyar SK, Mukhtar H. Skin cancer chemoprevention by naturally occurring polyphenols. In: Mukhtar H, ed. Skin Cancer: Mechanisms and Human relevance. CRC Press, Boca Raton, FL, 1995, pp. 391–399.

    Google Scholar 

  128. Ishikawa T, Nakatsuru Y, Zarkovic M, Shamsuddin AM. Inhibition of skin cancer by IP6 in vivo: initiation-promotion model. Anticancer Res 1999; 19: 3749–3752.

    PubMed  CAS  Google Scholar 

  129. Zi X, Agarwal R. Modulation of mitogen-activated protein kinase activation and cell cycle regulators by the potent skin cancer preventive agent silymarin. Biochem Biophys Res Commun 1999; 263: 528–536.

    PubMed  CAS  Google Scholar 

  130. Shamsuddin AM, Vusenic I, Cole KE. IP6: a novel anti-cancer agent. Life Sci 1997; 61: 343–354.

    PubMed  CAS  Google Scholar 

  131. Bhatia N, Zhao J, Wolf DM, Agarwal R. Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: comparison with silymarin. Cancer Lett 1999; 147: 77–84.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, R.P., Agarwal, R. (2002). SENCAR Mouse-Skin Tumorigenesis Model. In: Teicher, B.A. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-100-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-100-8_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6883-1

  • Online ISBN: 978-1-59259-100-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics