Skip to main content

The Intestine as a Model for Studying Stem-Cell Behavior

  • Chapter
Tumor Models in Cancer Research

Abstract

The intestine is lined by a simple columnar epithelium that folds into a number of cavities—the crypts of Lieberkühn—embedded in the connective tissue. In the small intestine, there are also finger-like protrusions known as villi, which are covered in this epithelium. The villi are approximately ten times larger than the crypts, but much less common (4–7× fewer, depending upon the intestinal region) (1). The functional cells are located on the villus (or toward the top of the crypts of the large intestine), and are continuously sloughed off into the lumen. These cells are replaced by massive cell production within the bottom two-thirds of the crypt, where cells in the mouse are dividing approx twice daily. This crypt region is therefore frequently referred to as the proliferative zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wright NA, Alison M. The Biology of Epithelial Cell Populations. Clarendon Press, Oxford, UK, 1984.

    Google Scholar 

  2. Bromley M, Rew D, Becciolini A, Balzi M, Chadwick C, Hewitt D, et al. A comparison of proliferation markers (BrdUrd, Ki67, PCNA) determined at each cell position in the crypt of normal human colonic mucosa. Eur J Histochem 1996; 40: 89–100.

    PubMed  CAS  Google Scholar 

  3. Kaur P, Potten C.S. Cell migration velocities in the crypts of the small intestine after cytotoxic insult are not dependent on mitotic activity. Cell Tissue Kinet 1986; 19: 601–610.

    PubMed  CAS  Google Scholar 

  4. Potten CS. Cell cycles and hierarchies. Int J Radiat Biol 1986; 49: 257–278.

    Article  CAS  Google Scholar 

  5. Potten CS. A comprehensive study of the radiobiological response of the murine (BDF1) small intestine. Int J Radias Biol 1990; 58: 925–973.

    Article  CAS  Google Scholar 

  6. Al-Dewachi HS, Wright NA, Appleton DR, Watson AJ. The effect of a single injection of hydroxyurea on cell population kinetics in the small bowel mucosa of the rat. Cell and Tissue Kinetics 1997; 10: 203–213.

    Google Scholar 

  7. Al-Dewachi HS, Wright NA, Appleton DR, Watson AJ. The effect of a single injection of cytosine arabinoside on cell population kinetics in the mouse jejunal crypt. Virchows Arch B Cell Pathol 1980; 34: 299–309.

    Article  CAS  Google Scholar 

  8. Cairnie AB. Cell proliferation studies in the intestinal epithelium of the rat: response to continuous irradiation. Radial Res. 1967; 32: 240–264.

    Article  CAS  Google Scholar 

  9. Cairnie AB. Further studies on the response of the small intestine to continuous irradiation. Radiat Res. 1969; 38: 82–94.

    Article  PubMed  CAS  Google Scholar 

  10. Hendry JH, Potten CS, Ghaffor A, Moore JV, Roberts SA, Williams PC. The response of the murine intestinal crypts to short range prometheium-147 radiation. Radiat Res 1989; 118: 364–374.

    Article  PubMed  CAS  Google Scholar 

  11. Cairns J. Mutation selection and the natural history of cancer. Nature 1975; 15: 197–200.

    Article  Google Scholar 

  12. Potten CS, Hume WJ, Reid P, Cairns J. The segregation of DNA in epithelial stem cells. Cell 1978; 15: 899–906.

    Article  PubMed  CAS  Google Scholar 

  13. Potten CS. Extreme sensitivity of some intestinal crypt cells to X and y irradiation. Nature 1977; 269: 518–521.

    Article  PubMed  CAS  Google Scholar 

  14. Ponder BAJ, Schmidt GH, Wilkinson MM, Wood MJ, Monk M, Reid A. Derivation of mouse intestinal crypts from single progenitor cell. Nature 1985; 313: 689–691.

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt GH, Winton DJ, Ponder BAJ. Development of the pattern of cell renewal in the crypt villus unit of chimeric mouse small intestine. Development 1988; 103: 785–790.

    PubMed  CAS  Google Scholar 

  16. Inoue M, Imada M, Fukushima Y, Matsuura N, Shiozaki H, Mori T, et al. Macroscopic intestinal colonies of mice as a tool for studying differentiation of multipotential intestinal stem cells. Am J Pathol 1988; 132: 49–58.

    PubMed  CAS  Google Scholar 

  17. Potten CS, Owen G, Roberts S. The temporal and spatial changes in cell proliferation within the irradiated crypts of the murine small intestine. Int J Radiat Biol 1990; 57: 185–199.

    Article  PubMed  CAS  Google Scholar 

  18. Roberts SA, Hendry JH, Potten CS. Deduction of the clonogen content of intestinal crypts: a direct comparison of two-dose and multiple dose methodologies. Radiat Res 1995; 141: 303–308.

    Article  PubMed  CAS  Google Scholar 

  19. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 1990; 110: 1001–1020.

    PubMed  CAS  Google Scholar 

  20. Winton DJ. Intestinal stem cells and clonality. In: Halter F, Winton D, Wright N, eds. The Gut as a Model in Cell and Molecular Biology. Kluwer, Amsterdam, Netherland, 1997, pp. 3–13.

    Google Scholar 

  21. Williams ED, Lowes AP, Williams D, Williams GT. A stem cell niche theory of intestinal crypt maintenance based on a study of somatic mutation in colonic mucosa. Am J Pathol 1992; 141: 773–776.

    PubMed  CAS  Google Scholar 

  22. Park HS, Goodlad RA, Wright NA. Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am J Pathol 1995; 147: 1416–1427.

    PubMed  CAS  Google Scholar 

  23. Wright NA. Stem cell repertoire in the intestine. In: Potten CS, ed. Stem cells Academic Press, London, 1996, pp. 315–330.

    Google Scholar 

  24. Withers HR, Elkind MM. Radiosensitivity and fractionation response of crypt cells of mouse jejunum. Radiat Res 1969; 38: 598–613.

    Article  PubMed  CAS  Google Scholar 

  25. Withers HR, Elkind MM. Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int J Radiat Biol 1970; 17: 261–267.

    Article  CAS  Google Scholar 

  26. Potten CS, Hendry JH. The microcolony assay in mouse small intestine. In: Potten CS, Hendry JH, eds. Cell Clones: Manual of Mammalian Cell Techniques. Churchill-Livingstone, Edinburgh, 1985, pp. 155–159.

    Google Scholar 

  27. Potten CS, Hendry JH. Clonal regeneration studies. In: Potten CS, Hendry JH. Radiation and Gut. Elsevier, Amsterdam, 1995, pp. 45–59.

    Google Scholar 

  28. Merritt AJ, Potten CS, Kemp CJ, Hickman JA, Ballmain A, Lane DP, et al. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res 1994; 54: 614–617.

    PubMed  CAS  Google Scholar 

  29. Potten CS, Booth D, Haley JD. Pretreatment with transforming growth factor beta-3 protects small intestinal stem cells against radiation damage in vivo. Br J Cancer 1997; 75: 1454–1459.

    Article  PubMed  CAS  Google Scholar 

  30. Cai WB, Roberts SA, Bowley E, Hendry JH, Potten CS. Differential survival of murine small and large intestinal crypts following ionising radiation. Int J Radiat Biol 1997; 71: 145–155.

    Google Scholar 

  31. Cai WB, Roberts SA, Potten CS. The number of clonogenic cells in crypts in three regions of murine large intestine. Int J Radiat Biol 1997; 71: 573–579.

    Article  PubMed  CAS  Google Scholar 

  32. Merritt AJ, Jones LS, Potten CS. Apoptosis in murine intestinal crypts. In: Cotter TG, Martin SJ, eds. Techniques in Apoptosis. Portland Press Ltd., London, 1996, pp. 269–300.

    Google Scholar 

  33. Potten CS, Grant HK. The relationship between ionizing radiation induced apoptosis and stem cells in the small and large intestine. Br J Cancer 1998; 78: 993–1003.

    Article  PubMed  CAS  Google Scholar 

  34. Clarke AR, Gledhill S, Hooper ML, Bird CC, Wyllie AH. p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following r irradiation. Oncogene 1994; 9: 1767–1773.

    PubMed  CAS  Google Scholar 

  35. Merritt AJ, Potten CS, Watson AJM, Loh DY, Nakayama K, Nakayama K, et al. Differential expression of bcl-2 in intestinal epithelia-correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J Cell Science 1995; 108: 2261–2271.

    PubMed  CAS  Google Scholar 

  36. Ijiri K, Potten CS. Further studies on the response of intestinal crypt cells of different hierarchical status to eighteen different cytotoxic agents. Br J Cancer 1987; 55: 113–123.

    Article  PubMed  CAS  Google Scholar 

  37. Ijiri K, Potten CS. Response of intestinal cells of differing topographical and hierarchical status to ten cytotoxic drugs and five sources of radiation. Br J Cancer 1983; 47: 175–185.

    Article  PubMed  CAS  Google Scholar 

  38. Ijiri K, Potten CS. Stem cell death in cell hierarchies in adult mammalian tissue. In: Potten CS, ed. Perspectives on Mammalian Cell Death. Oxford University Press, New York, NY, 1987, pp. P325 - P356.

    Google Scholar 

  39. Li YQ, Fan CY, O’Connor PJ, Winton DJ, Potten CS. Target cells for the cytotoxic effects of carcinogens in the murine small bowel. Carcinogenesis 1992; 13: 361–368.

    Article  PubMed  CAS  Google Scholar 

  40. Potten CS. The significance of spontaneous and induced apoptosis in the gastrointestinal tract of mice. Cancer Metastasis Reviews 1992; 11: 179–195.

    Article  PubMed  CAS  Google Scholar 

  41. Qiu JM, Roberts SA, Potten CS. Cell migration in the small and large bowel shows a strong circadian rhythm. Epithelial Cell Biol 1994; 3: 137–148.

    PubMed  CAS  Google Scholar 

  42. Ijiri K, Potten CS. The circadian rhythm for the number and sensitivity of radiation-induced apoptosis in the crypts of mouse small intestine. Int J Radiat Biol 1990; 58: 165–175.

    Article  PubMed  CAS  Google Scholar 

  43. Potten CS, Owen G, Hewitt D, Chadwick CA, Hendry J, Lord BI, et al. Stimulation and inhibition of proliferation in the small intestinal crypts of the mouse after in vivo administration of growth factors. Gut 1995; 36: 864–873.

    Article  PubMed  CAS  Google Scholar 

  44. Booth D, Haley JD, Bruskin AM, Potten CS. Transforming growth factor (33 protects murine small intestinal crypt stem cells and animal survival after irradiation, possibly by reducing stem cell cycling. Int J Cancer 2000; 86: 53–59.

    Article  PubMed  CAS  Google Scholar 

  45. Potten CS, Booth C, Pritchard DM. The intestinal epithelial stem cell: the mucosal governor. Int J Exp Path 1997; 78: 219–243.

    Article  CAS  Google Scholar 

  46. Booth C, Patel S, Bennion GR, Potten CS. The isolation and culture of adult mouse colonic epithelium. Epithelial Cell Biol 1995; 4: 76–86.

    PubMed  CAS  Google Scholar 

  47. Whitehead RH, Brown A, Bhathal PS. A method for the isolation and culture of human colonic crypts in collagen gels. In Vitro Cell Dey Biol 1987; 23:436 1412.

    Google Scholar 

  48. Whitehead RH, Demmler K, Rockman SP, Watson NK. Clonogenic growth of epithelial cells from normal colonic mucosa from both mice and humans. Gastroenterology 1999; 117: 858–865.

    Article  PubMed  CAS  Google Scholar 

  49. Booth C, O’Shea JA, Potten CS. Maintenance of functional stem cells in isolated and cultured intestinal epithelium. Exp Cell Res 1999; 249: 359–366.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Booth, C., Potten, C.S. (2002). The Intestine as a Model for Studying Stem-Cell Behavior. In: Teicher, B.A. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-100-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-100-8_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6883-1

  • Online ISBN: 978-1-59259-100-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics