Skip to main content

Metastasis Models

Lungs, Spleen/Liver, Bone, and Brain

  • Chapter
Tumor Models in Cancer Research

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 436 Accesses

Abstract

The metastatic spread of solid tumors is directly or indirectly responsible for most cancer-related deaths (1). Approximately 30% of cancer patients have clinically detectable metastases at the time of initial diagnosis, and 30–40% harbor occult metastases (2). There is an urgent clinical need to predict the metastatic potential of individual tumors, to identify occult metastatic foci, to prevent metastatic dissemination, and to prevent the transformation of tumors to more invasive phenotypes. Appropriate preclinical models can help to achieve these goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad A, Hart IR. Mechanisms of metastasis. Crit Rev OnocoUHematol 1997; 26: 163–173.

    Article  CAS  Google Scholar 

  2. Liotta LA, Kohn EC. Invasion and metastasis. In: Holland JF, Frei E III, Bast RC, Kufe DW, Morton DL, Weichselbaum RR, eds., Cancer Medicine. Lea & Fibiger: Philadelphia, PA, 1993, pp. 165–180.

    Google Scholar 

  3. Meyer T, Hart IR. Mechanisms of tumor metastasis. Eur J Cancer 1998; 34: 214–221.

    Article  PubMed  CAS  Google Scholar 

  4. Morris VL, Schmidt EE, MacDonald IC, Groom AC, Chambers AF. Sequential steps in hematogenous metastasis of cancer cells studied by in vivo videomicroscopy. Invasion Metastasis 1997; 17: 281–296.

    PubMed  CAS  Google Scholar 

  5. Ruiz P, Gunthert U. The cellular basis of metastasis. World J Urol 1996; 14: 141–150.

    Article  PubMed  CAS  Google Scholar 

  6. Andreasen PA, Kjoller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997; 72: 1–22.

    Article  PubMed  CAS  Google Scholar 

  7. Saiki I. Cell adhesion molecules and cancer metastasis. Jpn J Pharmacol 1997; 75: 215–242.

    Article  PubMed  CAS  Google Scholar 

  8. Iwamoto Y, Robey FA, Graf J, Saski M, Kleinman HK, Yamada Y, et al. YIGSR, a synthetic laminin penta-peptide, inhibits experimental metastasis formation. Science 1987; 238: 1132–1134.

    Article  PubMed  CAS  Google Scholar 

  9. Menard S, Castronovo V, Tagliabue E, Sobel ME. New insights into the metastasis-associated 67 kD laminin receptor. J Cell Biochem 1997; 67: 155–165.

    Article  PubMed  CAS  Google Scholar 

  10. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer 1997; 80: 1529–1537.

    Article  PubMed  CAS  Google Scholar 

  11. Nicolson GL, Dulski K, Basson C, Welch DR. Preferential organ attachment and invasion in vitro by B16 melanoma cells selected for differing metastatic colonization and invasive properties. Invasion Metastasis 1985; 5: 144–154.

    PubMed  CAS  Google Scholar 

  12. Rubens RD. Bone metastases—the clinical problem. Eur J Cancer 1998; 34: 210–213.

    Article  PubMed  CAS  Google Scholar 

  13. Yoneda T. Cellular and molecular mechanisms of breast and prostate cancer metastasis to bone. Eur J Cancer 1998; 34: 240–245.

    Article  PubMed  CAS  Google Scholar 

  14. Resnick MI. Hemodynamics of prostate bone metastases. In: JP Karr, Yamanka H, eds., Prostate Cancer and Bone Metastasis, Plenum Press: New York, NY, 1992, pp. 77–83.

    Chapter  Google Scholar 

  15. Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer lnst 1997; 89: 1260–1270.

    Article  CAS  Google Scholar 

  16. Weiss L. Metastatic inefficiency. Adv Cancer Res 1990; 54: 159–211.

    Article  PubMed  CAS  Google Scholar 

  17. Liotta LA, Kleinerman J, Saidel GM. Quantitative relationships of intravascular tumor cells, tumor vessels and pulmonary metastases following tumor implantation. Cancer Res 1974; 34: 997–1004.

    PubMed  CAS  Google Scholar 

  18. Butler TP, Gullino PM. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 1975; 35: 512–516.

    PubMed  CAS  Google Scholar 

  19. Tarin D, Vass AC, Kettlewell MG, Proce JE. Absence of metastatic sequalae during long-term treatment of malignant ascites by perineovenous shunting. A clinico-pathological report. Invasion Metastasis 1984; 4: 1–12.

    PubMed  CAS  Google Scholar 

  20. Fidler IJ. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5- iodo-2’-deoxyuridine. J Natl Cancer Inst 1970; 45: 773–782.

    PubMed  CAS  Google Scholar 

  21. Fidler IJ, Poste G. The cellular heterogeneity of malignant neoplasms: implications for adjuvant chemotherapy. Semin Oncol 1985; 12: 207–221.

    PubMed  CAS  Google Scholar 

  22. Slack NH, Bross JDJ. The influence of the site of metastasis on tumor growth and response to chemotherapy. Br J Cancer 1975; 78: 32–41.

    Google Scholar 

  23. Pratesi G, Manzotti C, Tortoreto M, Audisio RA, Zunino F. Differential efficacy of flavone acetic acid against liver versus lung metastases in a human tumor xenograft. Br J Cancer 1991; 71: 663–671.

    Google Scholar 

  24. Smith KA, Begg AC, Denekamp J. Differences in chemosensitivity between subcutaneous and pulmonary tumors. Eur J Cancer Clin Oncol 1985; 21: 249–259.

    Article  PubMed  CAS  Google Scholar 

  25. Staroselsky A, Fan D, O’Brian CA, Bucana CD, Gupta KP, Fidler IJ. Site-dependent differences in response of the UV-2237 murine fibrosarcoma to systemic therapy with adriamycin. Cancer Res 1990; 40: 7775–7782.

    Google Scholar 

  26. Donelli MG, Russo R, Garattini S. Selective chemotherapy in relation to the site of tumor transplantation. Int J Cancer 1975; 32: 78–88.

    Article  Google Scholar 

  27. Teicher BA, Herman TS, Holden SA, et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 1990; 247: 1457–1461.

    Article  PubMed  CAS  Google Scholar 

  28. Wilmanns C, Fan D, O’Brian CA, Bucana CD, Fidler IJ. Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon carcinoma cells to doxorubicin and 5-fluorouracil. Int J Cancer 1992; 52: 98–107.

    Article  PubMed  CAS  Google Scholar 

  29. Dong Z, Radinsky R, Fan D, et al. Organ-specific modulation of steady-state mdr-1 gene expression and drug resistance in murine colon cancer cells. J Nall Cancer Inst 1994; 86: 913–920.

    Article  CAS  Google Scholar 

  30. Hamilton TC, Young RC, Louie KG, Behrens BC, McKoy WM, Grotzinger KR, et al. Characterization of a xenograft model of human ovarian carcinoma which produces ascites and intra-abdominal carcinomatosis in mice. Cancer Res 1984; 44: 5286–5295.

    PubMed  CAS  Google Scholar 

  31. Manzotti C, Audisio RA, Pratesi G. Importance of orthoptopic implantation for human tumors as model systems: relevance to metastasis and invasion. Clin Exp Metastasis 1993; 11: 5–14.

    Article  PubMed  CAS  Google Scholar 

  32. Hoffman RM. Orthotopic is orthodox: why are orthotopic-transplant metastatic models different from all other models? J Cell Biochem 1994; 56: 1–3.

    Article  PubMed  CAS  Google Scholar 

  33. Kubota T. Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J Cell Biochem 1994; 56: 4–8.

    Article  PubMed  CAS  Google Scholar 

  34. Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Investig New Drugs 1999; 17: 343–359.

    Article  CAS  Google Scholar 

  35. Mitchell BS, Schumacher U. Use of immunodeficient mice in metastasis research. Br J Biomed Sci 1997; 54: 278–286.

    PubMed  CAS  Google Scholar 

  36. An Z, Wang X, Geller J, Moossa AR, Hoffman RM. Surgical orthotopic implantation allows high lung and lymph node metastatic expression of human prostate carcinoma cell line PC-3 in nude mice. Prostate 1998; 34: 169–174.

    Article  PubMed  CAS  Google Scholar 

  37. An Z, Jiang P, Wang X, Moossa AR, Hoffman RM. Development of a high metastatic orthotopic model of human renal cell carcinoma in nude mice: benefits of fragment implantyation compared to cell-suspension injection. Clin Exp Metastasis 1999; 17: 265–270.

    Article  PubMed  CAS  Google Scholar 

  38. Morioka CY, Saito S, Ohzawa K, Watanabe A. Homologous orthotopic implantation models of pancreatic ductal cancer in Syrian golden hamsters: which is better for metastasis research-cell implantation or tissue implantation? Pancreas 2000; 20: 152–157.

    Article  PubMed  CAS  Google Scholar 

  39. Fidler IJ, Wilmanns C, Staroselsky A, Radinsky R, Dong Z, Fan D. Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Met Rev 1994; 13: 209–222.

    Article  CAS  Google Scholar 

  40. Fidler IJ, Hart IP. Biologic diversity in metstatic neoplasms: origins and implications. Science 1982; 217: 998–1002.

    Article  PubMed  CAS  Google Scholar 

  41. Fidler IJ, Poste G. The cellular heterogeneity of malignant neoplasms: implications for adjuvant chemotherapy. Semin Oncol 1985; 12: 207–221.

    PubMed  CAS  Google Scholar 

  42. Yokoyama T, Ohneseit P, Buchholz R, Santo-Holtje L, Schmidberger H. Intrathecal ACNU treatment of B16 melanoma leptomengeal metastasis in a new athymic rat model. J Neuro-Oncol 1992; 14: 169–175.

    Google Scholar 

  43. Wietrzyk J, Opolski A, Madej J, Radzikowski C. Antitumor and antimetastatic effect of genistein alone or combined with cyclophosphamide in mice transplanted with various tumors depends on the route of tumor transplantation. In Vivo 2000; 14: 357–362.

    PubMed  CAS  Google Scholar 

  44. Xie X, Brunner N, Jensen G, Albrectsen J, Gotthardsen B, Rygaard J. Comparative studies between nude and scid mice on the growth and metastatic behavior of xenografted human tumors. Clin Exp Metastasis 1992; 10: 201–210.

    Article  PubMed  CAS  Google Scholar 

  45. Inoue K, Okabe S, Sueoka E, Sueoka N, Tabei T, Suganuma M. The role of interleukin-6 in inhibition of lung metastasis in subcutaneous tumor-bearing mice. Oncol Rep 2000; 7: 69–73.

    PubMed  CAS  Google Scholar 

  46. Hrushesky WJ, Lester B, Lannin D. Circadian coordination of cancer growth and metastatic spread. Int J Cancer 1999; 83: 365–373.

    Article  PubMed  CAS  Google Scholar 

  47. Kraemer M, Touraire R, Dejong V, Montreau N, Briane D, Derbin C, et al. Rat embryo fibroblasts transformed by c-jun display highly metastatic and angiogenic activities in vivo and deregulate gene expression of both angiogenic and antiangiogenic factors. Cell Growth Differ 1999; 10: 193–200.

    PubMed  CAS  Google Scholar 

  48. Bogden AE, Esber HJ, Taylor DJ, Gray JH. Comparative study on the effects of surgery, chemotherapy, and immunotherapy, alone and in combination, on metastases of the 13762 mammary adenocarcinoma. Cancer Res 1974; 34: 1627–1631.

    PubMed  CAS  Google Scholar 

  49. Neri A, Welch D, Kawaguchi T, Nicolson GL. Development and biologic properties of malignant cell sublines and clones of a spontaneously metastasizing rat mammary adenocarcinoma. J Natl Cancer Inst 1982; 68: 507–517.

    PubMed  CAS  Google Scholar 

  50. Stanko RT, Mullick P, Clarke MR, Contis LC, Janosky JE, Rmaasatry SS. Pyruvate inhibits growth of mammary adenocarcinoma 13762 in rats. Cancer Res 1994; 54: 1004–1007.

    PubMed  CAS  Google Scholar 

  51. Kaufmann AM, Khazaie K, Wiedemuth M, Rohde-Schultz B, Ullrich A, Schirrmacher V, et al. Expression of epidermal growth factor receptor correlates with metastatic potential of 13762NF rat mammary adenocarcinoma cells. Int J Oncol 1994; 4: 1149–1155.

    PubMed  CAS  Google Scholar 

  52. Ramasastry SS, Weinstein LW, Zerbe A, Narayanan K, LaPietra D, Futrell JW. Regression of local and distant tumor growth by tissue expansion: an experimental study of mammary carcinoma 13762 in rats. Plast Recon Surg 1991; 87: 1–7.

    Article  CAS  Google Scholar 

  53. Young MR, Lozano Y, Djordjevic A, Devata S, Matthews J, Young ME, et al. Granulocyte-macrophage colony-stimulating factor stimulates the metastatic properties of Lewis lung carcinoma through a protein kinase A signal-transduction pathway. Int J Cancer 1993; 53: 667–671.

    Article  PubMed  CAS  Google Scholar 

  54. Hidvegi M, Raso E, Tomoskozi-Farkas R, Paku S, Lapis K, Szende B. Effect of Avemar and Avemar + vitamin C on tumor growth and metastasis in experimental animals. Anticancer Res 1998; 18: 2353–2358.

    PubMed  CAS  Google Scholar 

  55. Kuramitsu Y, Hamada J, Tsuruoka T, Morikawa K, Naito S, Kobayashi H, et al. ND-2001 suppresses lung metastasis of human renal cancer cells in athymic mice. Anti-Cancer Drugs 1998; 9: 739–741.

    Article  PubMed  CAS  Google Scholar 

  56. Umezawa K. Inhibition of experimental metastasis by enzyme inhibitors from microorganisms and plants. Adv Enzyme Reg 1996; 36: 267–281.

    Article  CAS  Google Scholar 

  57. Mundy GR. Mechanisms of bone metastasis. Cancer 1997; 80: 1546–1556.

    Article  PubMed  CAS  Google Scholar 

  58. Arguello F, Baggs RB, Frantz CN. A murine model of experimental metastasis to bone and bone marrow. Cancer Res 1988; 48: 6876–6881.

    PubMed  CAS  Google Scholar 

  59. Stakpole CW, Alterman AL, Fornabaio DM. Growth characteristics of clonal cell populations constituting a B 16 melanoma metastasis model system. Invasion Metastasis 1985; 5: 125–143.

    Google Scholar 

  60. Haq M, Goltzman D, Tremblay G, Brodt P. Rat prostate adenocarcinoma cells disseminate to bone and adhere preferentially to bone marrow-derived endothelial cells. Cancer Res 1992; 52: 4613–4619.

    PubMed  CAS  Google Scholar 

  61. Rabbani SA, Gladu J, Harakidas P, Jamison B, Goltzman D. Over-production of parathyroid hormone-related peptide results in increased osteolytic skeletal metastasis by prostate cancer cells in vivo. Int J Cancer 1999; 80: 257–264.

    Article  PubMed  CAS  Google Scholar 

  62. Blomme EAG, Dougherty KM, Pienta KJ, Capen CC, Rosol TJ, McCauley LK. Skeletal metastasis of prostate adenocarcinoma in rats: morphometric analysis and role of parathyroid hormone-related protein. The Prostate 1999; 39: 187–197.

    Article  PubMed  CAS  Google Scholar 

  63. Gleave ME, Hsieh JT, Gao C, von Eschenbach AC, Chung LWK. Acceleration of human prostate cancer growth in vivo by prostate and bone fibroblasts. Cancer Res 1991; 51: 3753–3761.

    PubMed  CAS  Google Scholar 

  64. Thalmann GN, Sikes RA, Wu TT, Degeorges A, Chang S-M, Ozen M, et al. LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. The Prostate 2000; 44: 91–103.

    Article  PubMed  CAS  Google Scholar 

  65. Yoneda T, Sasaki A, Mundy GR. Osteolytic bone disease in breast cancer. Breast Cancer Res Treatment 1994; 32: 73–84.

    Article  CAS  Google Scholar 

  66. Yoneda T. Arterial microvascularization and breast cancer colonization in bone. Histol Histopathol 1997; 12: 1145–1149.

    PubMed  CAS  Google Scholar 

  67. Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M, Hiraga T. Use of bisphosphonates for the treatment of bone metastasis in experimental animal models. Cancer Treat Rev 1999; 25: 293–299.

    Article  PubMed  CAS  Google Scholar 

  68. Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, et al. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 1995; 55: 3551–3557.

    PubMed  CAS  Google Scholar 

  69. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52: 1399–1405.

    PubMed  CAS  Google Scholar 

  70. Lelekakis M, Moseley JM, Martin JM, Hards D, Williams E, Ho P, et al. A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 1999; 17: 163–170.

    Article  PubMed  CAS  Google Scholar 

  71. Alsina M, Boyce B, Devlin RD, Anderson JL, Craig F, Mundy GR, et al. Development of an in vivo model of human multiple myeloma bone disease. Blood 1996; 87: 1495–1501.

    PubMed  CAS  Google Scholar 

  72. Hilpert D, Romen W, Neumann HG. The role of partial hepatectomy and of promoters in the formation of tumors in non-target tissues of trans-4-acetylaminostilbene in rats. Carcinogenesis 1983; 4: 1519–1525.

    Article  PubMed  CAS  Google Scholar 

  73. Diwan BA, Rice JM, Ohshima M, Ward JM, Dove LF. Comparative tumor-promoting activities of phenobarbital, amobarbital, barbital sodium and barbituric acid on livers and other organs of male F344/NCr rats following initiation with N-nitrosodiethylamine. J Natl Cancer Inst 1985; 74: 509–516.

    PubMed  CAS  Google Scholar 

  74. Fukushima S, Hagiwara A, Hirose M, Yamaguchi S, Tiwawech D, Ito N. Modifying effects of various chemicals on preneoplastic and neoplastic lesion development in a wide-spectrum organ carcinogenesis model using F344 rats. Jpn J Cancer Res 1991; 82: 642–649.

    Article  PubMed  CAS  Google Scholar 

  75. Seglen PO, Saeter G, Schwartze PE. Liver tumor promoters stimulate growth of transplanted hepatocellular carcinomas. Hepatology 1990; 12: 295–300.

    Article  PubMed  CAS  Google Scholar 

  76. Anderson LM, Hagiwara A, Kovatch RM, Rehm S, Rice JM. Transplacental initiation of liver, lung, neurogenic and connective tissue tumors by N-nitroso compounds in mice. Fundam Appl Toxicol 1989; 12: 604–620.

    Article  PubMed  CAS  Google Scholar 

  77. Irimura T, Tressler RJ, Nicolson GL. Sialoglycoproteins of murine RAW117 large cell lymphoma/lymphosarcoma sublines of various metastastic colonization properties. Cell Res 1986; 165: 403–416.

    Article  CAS  Google Scholar 

  78. Watson SA, Morris TM, Crosbee DM, Hardcastle JD. A hepatic invasive human colorectal xenograft model. Eur J Cancer 1993; 29A: 1740–1745.

    Article  Google Scholar 

  79. Naomoto Y, Kondo H, Tanaka N, Orita K. Novel experimental models of human cancer metastasis in nude mice: lung metastasis, intraabdominal carcinomatosis with ascites and liver metastasis. J Cancer Res Clin Oncol 1987; 113: 544–549.

    Article  PubMed  CAS  Google Scholar 

  80. Cohen SA, Goldrosen MH. Modulation of colon-derived experimental hepatic metastasis by murine nonparenchymal liver cells. Immunol Investig 1989; 18: 351–363.

    Article  CAS  Google Scholar 

  81. Sola F, Farao M, Ciomei M, Pastori A, Mongelli N, Grandi M. FCE27266, a sulfonic distamycin derivative, inhibits experimental and spontaneous lung and liver metastasis. Invasion Metastasis 1995; 15: 222–231.

    PubMed  CAS  Google Scholar 

  82. Shimizu K, Qi XR, Maitani Y, Yoshii M, Kawano K, Takayama K, et al. Targeting of soybean-derived sterylglucoside liposomes to liver tumors in rat and mouse models. Biol Pharmaceut Bull 1998; 21: 741–746.

    Article  CAS  Google Scholar 

  83. Amirkhosravi A, Warnes G, Biggerstaff J, Malik Z, May K, Francis JL. The effect of pentoxifylline on spontaneous and experimental metastases of the mouse Neuro2a neuroblastoma. Clin Exp Metastasis 1997; 15: 453–461.

    Article  PubMed  CAS  Google Scholar 

  84. Tardi P, Choice E, Masin D, Redelmeier T, Bally M, Madden TD. Liposomal encapsulation of topotecan enhances anticancer efficacy in murine and human xenograft models. Cancer Res 2000; 60: 3389–3393.

    PubMed  CAS  Google Scholar 

  85. Chen MC, Tsang YM, Stark DD, Weissleder R, Saini S, Brandhorst J, et al. Hepatic metastases: rat models for imaging research. Magnet Reson Imaging 1989; 7: 1–8.

    Article  CAS  Google Scholar 

  86. Yang R, Rescorla FJ, Reilly CR, Faight PR, Sanghvi NT, Lumeng L, et al. A reproducible rat liver cancer model for experimental therapy: introducing a technique of intrahepatic tumor implantation. J Surg Res 1992; 52: 193–198.

    Article  PubMed  CAS  Google Scholar 

  87. Qin Y, Van Cauteren M, Osteaux M, Willems G. Quantitative study of the growth of experimental hepatic tumors in rats by using magnetic resonance imaging. Int J Cancer 1992; 51: 665–670.

    Article  PubMed  CAS  Google Scholar 

  88. Kreft BP, Tanimoto A, Stark DD, Baba Y, Zhao L, Chen JT, et al. Enhancement of tumor-liver contrast-to-noise ratio with gadobenate dimeglumine in MR imaging of rats. J Magn Reson Imaging 1993; 3: 41–49.

    Article  PubMed  CAS  Google Scholar 

  89. Fukuda H, Takahashi J, Fujiwara T, Yamaguchi K, Abe Y, Kubota K, et al. High accumulation of 2deoxy-2-fluorine-l8-fluoro-D-galactose by well-differentiated hepatomas of mice and rats. J Nucl Med 1993; 34: 780–786.

    PubMed  CAS  Google Scholar 

  90. Brix G, Bellemann ME, Haberkorn U, Gerlach L, Lorenz WJ. Assessment of the biodistribution and metabolism of 5-fluorouracil as monitored by 18F PET and 19F MRI: a comparative animal study. Nucl Med Biol 1996; 23: 897–906.

    Article  PubMed  CAS  Google Scholar 

  91. Katzir I, Shani J, Wolf W, Chatterjee-Parti S, Berman E. Enhancement of 5-fluorouracil anabolism by methotrexate and trimetrexate in two rat solid tumor models, Walker 256 carcinosarcoma and Novikoff hepatoma, as evaluated by 19F-magnetic resonance spectroscopy. Cancer Investig 2000; 18: 20–27.

    CAS  Google Scholar 

  92. Thorstensen O, Isberg B, Svahn U, Jorulf H, Venizelos N, Jaremko G. Experimental tissue transplantation using a biopsy instrument and radiologie methods. Investig Radiol 1994; 29: 469–471.

    Article  CAS  Google Scholar 

  93. Kuwata Y, Hirota S, Sako M. Treatment of metastastic liver tumors by intermittent repetitive injection of an angiogenesis inhibitor using an implantable port system in a rabbit model. Kobe J Med Sci 1997; 43: 83–98.

    PubMed  CAS  Google Scholar 

  94. Gnant MF, Noll LA, Irvine KR, Puhlmann M, Terrill RE, Alexander HR Jr, et al. Tumor-specific gene delivery using recombinant vaccinia virus in a rabbit model of liver metastases. J Natl Cancer Inst 1999; 91: 1744–1750.

    Article  PubMed  CAS  Google Scholar 

  95. Schabet M, Ohneseit P, Buchholz R, Santo-Holtje L, Schmidberger H. Intrathecal ACNU treatment of B16 melanoma leptomeningeal metastasis in a new athymic rat model. Neurooncol 1992; 14: 207–211.

    Article  Google Scholar 

  96. Yano S, Nokihara H, Hanibuchi M, Parajuli P, Shinohara T, Kawano T, et al. Model of malignant plueral effusion of human lung adenocarcinoma in SCID mice. Oncol Res 1997; 9: 573–579.

    PubMed  CAS  Google Scholar 

  97. Yano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM, et al. Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res 2000; 60: 4959–4967.

    PubMed  CAS  Google Scholar 

  98. Morikawa K, Walker SM, Nakajima M, Pathak S, Jessup JM, Fidler U. Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cell in nude mice. Cancer Res 1988; 48: 6863–6871.

    PubMed  CAS  Google Scholar 

  99. Fujimaki T, Fan D, Staroselsky AH, Gohji K, Bucana CD, Fidler U. Critical factors regulating site-specific brain metastasis of murine melanomas. Int J Oncol 1993; 3: 789–799.

    PubMed  CAS  Google Scholar 

  100. Ghossein RA, Carusone L, Bhattacharya S. Review: polymerase chain reaction detection of micrometastases and circulating tumor cells: application to melanoma, prostate and thyroid carcinomas. Diagn Mole Pathol 1999; 8: 165–175.

    Article  CAS  Google Scholar 

  101. Rubio N, Villacampa MM, El Hilali, Blanco J. Metastatic burden in nude mice organs measured using prostate PC-3 cells expressing the luciferase gene as a quantifiable tumor cell marker. The Prostate 2000; 44: 133–143.

    CAS  Google Scholar 

  102. Yang M, Jiang P, An Z, Baranov E, Li L, Hasegawa S, et al. Genetically fluorescent melanoma bone and organ metastasis models. Clin Cancer Res 1999; 5: 3549–3559.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Menon, K., Teicher, B.A. (2002). Metastasis Models. In: Teicher, B.A. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-100-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-100-8_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6883-1

  • Online ISBN: 978-1-59259-100-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics