Skip to main content

Cancer Models

Manipulating the Transforming Growth Factor-β Pathway in Mice

  • Chapter
Book cover Tumor Models in Cancer Research

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 441 Accesses

Abstract

Among the variety of functions regulated by TGF-β pathways and their involvement in disease pathogenesis, it is perhaps their role in the suppression of malignant transformation and tumorigenesis that has gained the most attention. There are now several connections between the disruption of the cellular components of this pathway and human cancer. Mutations in the type II TGF-β receptor gene were the first to be described, and occur frequently in hereditary forms of nonpolyposis colorectal cancer with a phenotype of microsatellite instability (1,2). The downstream effectors of TGF-β signals are now also recognized as frequent molecular targets. Mutations in the Smad4 gene are common in familial juvenile polyposis and in pancreatic carcinomas, and are also found in other forms of epithelial cancers, while novel cytoplasmic oncoproteins that directly interact with and inhibit receptor-activated Smad proteins have been found in leukemias (2–7). In addition, many studies of cultured primary-tumor cells, cell lines, and established in vivo tumor models have described the now prototypical alterations in cancer-cell production and responsiveness to TGF-β that are widely recognized as important events. The recently established mouse models that explore these features and probe their relationship to the pathogenesis of human malignancy are of great significance, and represent the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995; 268: 1336–1338.

    Article  PubMed  CAS  Google Scholar 

  2. Markowitz SD, Roberts AB. Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev 1996; 7: 93–102.

    Article  PubMed  CAS  Google Scholar 

  3. Bresalier RS. Tumor progression in the intestine: smad about you. Gastroenterology 1998; 115: 1598–1599.

    Article  PubMed  CAS  Google Scholar 

  4. Lange D, Persson U, Wollina U, ten Dijke P, Castelli E, Heldin CH, et al. Expression of TGF-beta related Smad proteins in human epithelial skin tumors. Int J Oncol 1999; 14: 1049–1056.

    PubMed  CAS  Google Scholar 

  5. Le Dai J, Turnacioglu KK, Schutte M, Sugar AY, Kern SE. Dpc4 transcriptional activation and dysfunction in cancer cells. Cancer Res 1998; 58: 4592–4597.

    PubMed  CAS  Google Scholar 

  6. Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, et al. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dey 9–1–1999; 13: 2196 – 2206.

    Google Scholar 

  7. Schutte M. DPC4/SMAD4 gene alterations in human cancer, and their functional implications. Ann Oncol 1999; 10 (Suppl 4): 56–59.

    Article  PubMed  Google Scholar 

  8. de Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA 1978; 75: 4001–4005.

    Article  PubMed  Google Scholar 

  9. Frolik CA, Dart LL, Meyers CA, Smith DM, Sporn MB. Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc Natl Acad Sci USA 1983; 80: 3676–3680.

    Article  PubMed  CAS  Google Scholar 

  10. Roberts AB, Frolik CA, Anzano MA, Assoian RK, Sporn MB. Purification of type beta transforming growth factors from nonneoplastic tissues. In: Methods for preparation of media, supplements, and substrata for serum-free animal cell culture. Alan R. Liss, Publisher. New York, NY. 1984; 181–194.

    Google Scholar 

  11. Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 1983; 258: 7155–7160.

    PubMed  CAS  Google Scholar 

  12. Roberts AB, Anzano MA, Meyers CA, Wideman J, Blacher R, Pan YC, et al. Purification and properties of a type beta transforming growth factor from bovine kidney. Biochemistry 1983; 22: 5692–5698.

    Article  PubMed  CAS  Google Scholar 

  13. Roberts AB, Lamb LC, Newton DL, Sporn MB, de Larco JE, Todaro GJ. Transforming growth factors: isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. Proc Natl Acad Sci USA 1980; 77: 3494–3498.

    Article  PubMed  CAS  Google Scholar 

  14. Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms Genes Dey 1994; 8: 133–146.

    Article  CAS  Google Scholar 

  15. Roberts AB, Sporn MB. The transforming growth factors-f3. 1990; 95: 419–472.

    Google Scholar 

  16. McDonald NQ, Hendrickson WA. A structural superfamily of growth factors containing a cystine knot motif. Cell 1993; 73: 421–424.

    Article  PubMed  CAS  Google Scholar 

  17. Shipley GD, Tucker RF, Moses HL. Type beta transforming growth factor/growth inhibitor stimulates entry of monolayer cultures of AKR-2B cells into S phase after a prolonged prereplicative interval. Proc Natl Acad Sci USA 1985; 82: 4147–4151.

    Article  PubMed  CAS  Google Scholar 

  18. Petraglia F, Sacerdote P, Cossarizza A, Angioni S, Genazzani AD, Franceschi C, et al. Inhibin and activin modulate human monocyte chemotaxis and human lymphocyte interferon-gamma production. J Clin Endocrinol Metab 1991; 72: 496–502.

    Article  PubMed  CAS  Google Scholar 

  19. Cunningham NS, Paralkar V, Reddi AH. Osteogenin and recombinant bone morphogenetic protein 2B are chemotactic for human monocytes and stimulate transforming growth factor beta 1 mRNA expression. Proc Natl Acad Sci USA 1992; 89:11, 740–11, 744.

    Google Scholar 

  20. Postlethwaite AE, Seyer JM. Identification of a chemotactic epitope in human transforming growth factor-beta 1 spanning amino acid residues 368–374. J Cell Physiol 1995; 164: 587–592.

    Article  PubMed  CAS  Google Scholar 

  21. Adams DH, Hathaway M, Shaw J, Burnett D, Elias E, Strain AJ. Transforming growth factor-beta induces human T lymphocyte migration in vitro. J Immunol 1991; 147: 609–612.

    PubMed  CAS  Google Scholar 

  22. Ishisaki A, Yamato K, Hashimoto S, Nakao A, Tamaki K, Nonaka K, et al. Differential inhibition of smad6 and smad7 on bone morphogenetic protein–and activin–mediated growth arrest and apoptosis in B cells. J Biol Chem 5–7–1999; 274:13, 637–13, 642.

    Google Scholar 

  23. Weller M, Constam DB, Malipiero U, Fontana A. Transforming growth factor-beta 2 induces apoptosis of murine T cell clones without down-regulating bc1–2 mRNA expression. Eur J Immunol 1994; 24: 1293–1300.

    Article  PubMed  CAS  Google Scholar 

  24. Nishihara T, Okahashi N, Ueda N. Activin A induces apoptotic cell death. Biochem Biophys Res Commun 1993; 197: 985–991.

    Article  PubMed  CAS  Google Scholar 

  25. Begue-Kirn C, Smith AJ, Loriot M, Kupferle C, Ruch JV, Lesot H. Comparative analysis of TGF beta s, BMPs, IGF1, msxs, fibronectin, osteonectin and bone sialoprotein gene expression during normal and in vitro-induced odontoblast differentiation. Int J Dey Biol 1994; 38: 405–420.

    CAS  Google Scholar 

  26. Begue-Kirn C, Smith AJ, Ruch JV, Wozney JM, Purchio A, Hartmann D, et al. Effects of dentin proteins, transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblast in vitro. Int J Dev Biol 1992; 36: 491–503.

    PubMed  CAS  Google Scholar 

  27. Yamashita H, Shimizu A, Kato M, Nishitoh H, Ichijo H, Hanyu A, et al. Growth/differentiation factor-5 induces angiogenesis in vivo. Exp Cell Res 1997; 235: 218–226.

    Article  PubMed  CAS  Google Scholar 

  28. Pepper MS, Vassalli JD, Orci L, Montesano R. Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis. Exp Cell Res 1993; 204: 356–363.

    Article  PubMed  CAS  Google Scholar 

  29. Thomsen GH. Antagonism within and around the organizer: BMP inhibitors in vertebrate body patterning. Trends Genet 1997; 13: 209–211.

    Article  Google Scholar 

  30. Thomsen GH. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development 1996; 122: 2359–2366.

    Google Scholar 

  31. Dosch R, Gawantka V, Delius H, Blumenstock C, Niehrs C. Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 1997; 124: 2325–2334.

    PubMed  CAS  Google Scholar 

  32. Massague J, Chen YG. Controlling TGF–beta signaling. Genes Dev 3–15–2000; 14: 627 – 644.

    Google Scholar 

  33. Massague J. TGF-beta signal transduction. Annu Rev Biochem 1998; 67: 753–791.

    Article  PubMed  CAS  Google Scholar 

  34. Massague J, Wotton D. Transcriptional control by the TGF–beta/Smad signaling system. EMBO J 4–17–2000; 19: 1745 – 1754.

    Google Scholar 

  35. Ulloa L, Doody J, Massague J. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 1999; 397: 710–713.

    Article  PubMed  CAS  Google Scholar 

  36. Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A, Beg AA, Rojkind M, et al. E.P.A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/Re!A. Genes Dev 2000; 14: 187–197.

    PubMed  CAS  Google Scholar 

  37. Piek E, Heldin CH, ten Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 1999; 13: 2105–2124.

    PubMed  CAS  Google Scholar 

  38. de Caestecker MP, Piek E, Roberts AB. Role of Transforming Growth Factor-beta Signaling in Cancer. J Natl Cancer lnst 2000; 92: 1388–1402.

    Article  Google Scholar 

  39. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000; 342: 1350–1358.

    Article  PubMed  CAS  Google Scholar 

  40. Hahn SA, Schutte M, Hogue AT, Moskaluk CA, da Costa LT, Rozenblum E, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996; 271: 350–353.

    Article  PubMed  CAS  Google Scholar 

  41. Howe JR, Roth S, Ringold JC, Summers RW, Jarvinen HJ, Sistonen P, et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 1998; 280: 1086–1088.

    Article  PubMed  CAS  Google Scholar 

  42. Vogel G. A new blocker for the TGF-beta pathway. Science 1999; 286: 665.

    Article  PubMed  CAS  Google Scholar 

  43. Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S, et al. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 1998; 394: 92–96.

    Article  PubMed  CAS  Google Scholar 

  44. Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H. The t(3;21) fusion product, AMLl/Evi1, interacts with Smad3 and blocks transforming growth factor-beta-mediated growth inhibition of myeloid cells. Blood 1998; 92: 4003–4012.

    PubMed  CAS  Google Scholar 

  45. Shipley GD, Pittelkow MR, Wille JJ, Jr, Scott RE, Moses HL. Reversible inhibition of normal human prokeratinocyte proliferation by type beta transforming growth factor-growth inhibitor in serum-free medium. Cancer Res 1986; 46: 2068–2071.

    PubMed  CAS  Google Scholar 

  46. Kimchi A, Wang XF, Weinberg RA, Cheifetz S, Massague J. Absence of TGF-beta receptors and growth inhibitory responses in retinoblastoma cells. Science 1988; 240: 196–199.

    Article  PubMed  CAS  Google Scholar 

  47. Yang HK, Kang SH, Kim YS, Won K, Bang YJ, Kim SJ. Truncation of the TGF-beta type II receptor gene results in insensitivity to TGF-beta in human gastric cancer cells. Oncogene 1999; 18: 2213–2219.

    Article  PubMed  CAS  Google Scholar 

  48. Park K, Kim SJ, Bang YJ, Park JG, Kim NK, Roberts AB, et al. Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-beta. Proc Natl Acad Sci USA 1994; 91: 8772–8776.

    Article  PubMed  CAS  Google Scholar 

  49. Chen T, Carter D, Garrigue–Antar L, Reiss M. Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res 11–1–1998; 58: 4805 – 4810.

    Google Scholar 

  50. Takenoshita S, Tani M, Nagashima M, Hagiwara K, Bennett WP, Yokota J, et al. Mutation analysis of coding sequences of the entire transforming growth factor beta type II receptor gene in sporadic human colon cancer using genomic DNA and intron primers. Oncogene 1997; 14: 1255–1258.

    Article  PubMed  CAS  Google Scholar 

  51. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995; 268: 1336–1338.

    Article  PubMed  CAS  Google Scholar 

  52. Grady WM, Rajput A, Myeroff L, Liu DF, Kwon K, Willis J, et al. Mutation of the type II transforming growth factor-beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res 1998; 58: 3101–3104.

    PubMed  CAS  Google Scholar 

  53. Kim Si, Im YH, Markowitz SD, Bang YJ. Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev 2000; 11: 159–168.

    Google Scholar 

  54. Im YH, Kim HT, Lee C, Poulin D, Welford S, Sorensen PH, et al. EWS-FLI1, EWS-ERG, and EWSETV1 oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor beta type II receptor gene. Cancer Res 2000; 60: 1536–1540.

    PubMed  CAS  Google Scholar 

  55. Hahm KB, Cho K, Lee C, Im YH, Chang J, Choi SG, et al. Repression of the gene encoding the TGFbeta type II receptor is a major target of the EWS-FLIT oncoprotein. Nat Genet 1999; 23: 222–227.

    Article  PubMed  CAS  Google Scholar 

  56. DeCoteau JF, Knaus PI, Yankelev H, Reis MD, Lowsky R, Lodish HF, et al. Loss of functional cell surface transforming growth factor beta (TGF-beta) type 1 receptor correlates with insensitivity to TGF-beta in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 1997; 94: 5877–5881.

    Article  PubMed  CAS  Google Scholar 

  57. Capocasale RJ, Lamb RJ, Vonderheid EC, Fox FE, Rook AH, Nowell PC, et al. Reduced surface expression of transforming growth factor beta receptor type II in mitogen-activated T cells from Sezary patients. Proc Natl Acad Sci USA 1995; 92: 5501–5505.

    Article  PubMed  CAS  Google Scholar 

  58. Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999; 397: 530–534.

    Article  PubMed  CAS  Google Scholar 

  59. Welch DR, Fabra A, Nakajima M. Transforming growth factor beta stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci USA 1990; 87: 7678–7682.

    Article  PubMed  CAS  Google Scholar 

  60. Teicher BA, Maehara Y, Kakeji Y, Ara G, Keyes SR, Wong J, et al. Reversal of in vivo drug resistance by the transforming growth factor-beta inhibitor decorin. Int J Cancer 1997; 71: 49–58.

    Google Scholar 

  61. Teicher BA, Ikebe M, Ara G, Keyes SR, Herbst RS. Transforming growth factor-beta 1 overexpression produces drug resistance in vivo: reversal by decorin. In Vivo 1997; 11: 463–472.

    PubMed  CAS  Google Scholar 

  62. Schwarte-Waldhoff I, Volpert, OV, Bouck NP, Sipos B, Hahn SA, et al. Smad4yDPC4-mediated tumor suppression through suppression of angiogenesis. Proc Nat Acad Sci USA 2000; 97 (17): 9624–9629.

    Article  PubMed  CAS  Google Scholar 

  63. Haak-Frendscho M, Wynn TA, Czuprynski CJ, Paulnock D. Transforming growth factor-beta 1 inhibits activation of macrophage cell line RAW 264.7 for cell killing. Clin Exp Immunol 1990; 82: 404–410.

    Article  PubMed  CAS  Google Scholar 

  64. Alleva DG, Burger CJ, Elgert KD. Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. JImmunol 1994; 153: 1674–1686.

    CAS  Google Scholar 

  65. Maeda H, Tsuru S, Shiraishi A. Improvement of macrophage dysfunction by administration of anti-transforming growth factor-beta antibody in EL4-bearing hosts. Jpn J Cancer Res 1994; 85: 1137–1143.

    Article  PubMed  CAS  Google Scholar 

  66. Alleva DG, Walker TM, Elgert KD. Induction of macrophage suppressor activity by fibrosarcomaderived transforming growth factor-beta 1: contrasting effects on resting and activated macrophages. J Leukoc Biol 1995; 57: 919–928.

    PubMed  CAS  Google Scholar 

  67. Hoefer M, Anderer FA. Anti-(transforming growth factor beta) antibodies with predefined specificity inhibit metastasis of highly tumorigenic human xenotransplants in nu/nu mice. Cancer Immunol Immunother 1995; 41: 302–308.

    Article  PubMed  CAS  Google Scholar 

  68. Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT. Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Investig 1993; 92: 2569–2576.

    Article  PubMed  CAS  Google Scholar 

  69. Tada T, Ohzeki S, Utsumi K, Takiuchi H, Muramatsu M, Li XF, et al. Transforming growth factorbeta-induced inhibition of T cell function. Susceptibility difference in T cells of various phenotypes and functions and its relevance to immunosuppression in the tumor-bearing state. J Immunol 1991; 146: 1077–1082.

    PubMed  CAS  Google Scholar 

  70. Berg DJ, Lynch RG. Immune dysfunction in mice with plasmacytomas. I. Evidence that transforming growth factor-beta contributes to the altered expression of activation receptors on host B lymphocytes. J Immunol 1991; 146: 2865–2872.

    PubMed  CAS  Google Scholar 

  71. Weiskirch LM, Bar-Dagan Y, Mokyr MB. Transforming growth factor-beta-mediated down-regulation of antitumor cytotoxicity of spleen cells from MOPC-315 tumor-bearing mice engaged in tumor eradication following low-dose melphalan therapy. Cancer Immunol Immunother 1994; 38: 215–224.

    Article  PubMed  CAS  Google Scholar 

  72. Torre-Amione G, Beauchamp RD, Koeppen H, Park BH, Schreiber H, Moses HL, et al. A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. Proc Natl Acad Sci USA 1990; 87: 1486–1490.

    Article  PubMed  CAS  Google Scholar 

  73. Dorigo O, Shawler DL, Royston I, Sobol RE, Berek JS, Fakhrai H. Combination of transforming growth factor beta antisense and interleukin-2 gene therapy in the murine ovarian teratoma model. Gynecol Oncol 1998; 71: 204–210.

    Article  PubMed  CAS  Google Scholar 

  74. Liau LM, Fakhrai H, Black KL. Prolonged survival of rats with intracranial C6 gliomas by treatment with TGF-beta antisense gene. Neurol Res 1998; 20: 742–747.

    PubMed  CAS  Google Scholar 

  75. Matthews E, Yang T, Janulis L, Goodwin S, Kundu SD, Karpus WJ, et al. Down-regulation of TGFbetal production restores immunogenicity in prostate cancer cells. Br J Cancer 2000; 83: 519–525.

    Article  PubMed  CAS  Google Scholar 

  76. Erickson HP. Gene knockouts of c-src, transforming growth factor beta 1, and tenascin suggest superfluous, nonfunctional expression of proteins. J Cell Biol 1993; 120: 1079–1081.

    Article  PubMed  CAS  Google Scholar 

  77. Doetschman T. Interpretation of phenotype in genetically engineered mice. Lab Anim Sci 1999; 49: 137–143.

    PubMed  CAS  Google Scholar 

  78. Letterio JJ, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB. Maternal rescue of transforming growth factor-beta 1 null mice. Science 1994; 264: 1936–1938.

    Article  PubMed  CAS  Google Scholar 

  79. Tang B, Bottinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR, et al. Transforming growth factor-betal is a new form of tumor suppressor with true haploid insufficiency. Nat Med 1998; 4: 802–807.

    Article  PubMed  CAS  Google Scholar 

  80. Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS, Doetschman T. Transforming growth factor betal suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 7–15–1999; 59: 3379 – 3386.

    Google Scholar 

  81. Takaku K, Miyoshi H, Matsunaga A, Oshima M, Sasaki N, Taketo MM. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res 1999; 59: 6113–6117.

    PubMed  CAS  Google Scholar 

  82. Zhu Y, Richardson JA, Parada LF, Graff JM. Smad3 mutant mice develop metastatic colorectal cancer. Cell 1998; 94: 703–714.

    Article  PubMed  CAS  Google Scholar 

  83. Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 1998; 92: 645–656.

    Article  PubMed  CAS  Google Scholar 

  84. Taketo MM, Takaku K. Gastro-intestinal tumorigenesis in Smad4 mutant mice. Cytokine Growth Factor Rev 2000; 11: 147–157.

    Article  PubMed  CAS  Google Scholar 

  85. Glick A, Popescu N, Alexander V, Ueno H, Bottinger E, Yuspa SH. Defects in transforming growth factor-beta signaling cooperate with a ras oncogene to cause rapid aneuploidy and malignant transformation of mouse. Proc Natl Acad Sci USA 1999; 96: 14949–14954.

    Article  PubMed  CAS  Google Scholar 

  86. Tremain R, Marko M, Kinnimulki V, Ueno H, Bottinger E, Glick A. Defects in TGF–beta signaling overcome senescence of mouse keratinocytes expressing v–Ha–ras. Oncogene 3–23–2000; 19: 1698 – 1709.

    Google Scholar 

  87. Shida N, Ikeda H, Yoshimoto T, Oshima M, Taketo MM, Miyoshi I. Estrogen-induced tumorigenesis in the pituitary gland of TGF-beta(+/-) knockout mice. Biochim Biophys Acta 1998; 1407: 79–83.

    Article  PubMed  CAS  Google Scholar 

  88. Shibata MA, Liu ML, Knudson MC, Shibata E, Yoshidome K, Bandey T, et al. Haploid loss of bax leads to accelerated mammary tumor development in C3(1)/SV40-TAg transgenic mice: reduction in protective apoptotic response at the preneoplastic stage. EMBO J 1999; 18: 2692–2701.

    Article  PubMed  CAS  Google Scholar 

  89. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ. The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 1998; 396: 177–180.

    Article  PubMed  CAS  Google Scholar 

  90. Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 1997; 124: 2659–2670.

    PubMed  CAS  Google Scholar 

  91. Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 1995; 11: 415–421.

    Google Scholar 

  92. Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, et al. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet 1995; 11: 409–414.

    Article  PubMed  CAS  Google Scholar 

  93. Li J, Foitzik K, Calautti E, Baden H, Doetschman T, Dotto GP. TGF-beta3, but not TGF-betal, protects keratinocytes against 12-O-tetradecanoylphorbol-l3-acetate-induced cell death in vitro and in vivo. J Biol Chem 1999; 274: 4213–4219.

    Article  PubMed  CAS  Google Scholar 

  94. Glick AB, Kulkarni AB, Tennenbaum T, Hennings H, Flanders KC, O’Reilly M. Loss of expression of transforming growth factor beta in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc Natl Acad Sci USA 1993; 90: 6076–6080.

    Article  PubMed  CAS  Google Scholar 

  95. Glick AB, Lee MM, Darwiche N, Kulkarni AB, Karlsson S, Yuspa SH. Targeted deletion of the TGFbeta 1 gene causes rapid progression to squamous cell carcinoma. Genes Dev 1994; 8: 2429–2440.

    Article  PubMed  CAS  Google Scholar 

  96. Wang Xi, Greenhalgh DA, Bickenbach JR, Jiang A, Bundman DS, Krieg T, et al. Expression of a dominant-negative type II transforming growth factor beta (TGF-beta) receptor in the epidermis of transgenic mice blocks TGF-beta-mediated growth inhibition. Proc Natl Acad Sci USA 1997; 94: 2386–2391.

    Google Scholar 

  97. Go C, Li P, Wang XJ. Blocking transforming growth factor beta signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis. Cancer Res 1999; 59: 2861–2868.

    PubMed  CAS  Google Scholar 

  98. Amendt C, Schirmacher P, Weber H, Blessing M. Expression of a dominant negative type II TGFbeta receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene 1998; 17: 25–34.

    Article  PubMed  CAS  Google Scholar 

  99. Gorska AE, Joseph H, Derynck R, Moses HL, Serra R. Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ 1998; 9: 229–238.

    PubMed  CAS  Google Scholar 

  100. Bottinger EP, Jakubczak JL, Haines DC, Bagnall K, Wakefield LM. Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumori-genesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]anthracene. Cancer Res 1997; 57: 5564–5570.

    PubMed  CAS  Google Scholar 

  101. Joseph H, Gorska AE, Sohn P, Moses HL, Serra R. Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell 1999; 10: 1221–1234.

    PubMed  CAS  Google Scholar 

  102. Kundu SD, Kim IY, Yang T, Doglio L, Lang S, Zhang X, et al. Absence of proximal duct apoptosis in the ventral prostate of transgenic mice carrying the C3(1)-TGF-beta type II dominant negative receptor. Prostate 2000; 43: 118–124.

    Article  PubMed  CAS  Google Scholar 

  103. Serra R, Johnson M, Filvaroff EH, LaBorde J, Sheehan DM, Derynck R, et al. Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol 1997; 139: 541–552.

    Article  PubMed  CAS  Google Scholar 

  104. Filvaroff E, Erlebacher A, Ye J, Gitelman SE, Lotz J, Heillman M, et al. Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development 1999; 126: 4267–4279.

    PubMed  CAS  Google Scholar 

  105. Bottinger EP, Jakubczak JL, Roberts IS, Mumy M, Hemmati P, Bagnall K, et al. Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGFbeta in regulation of growth and differentiation in the exocrine pancreas. EMBO J 1997; 16: 2621–2633.

    Article  PubMed  CAS  Google Scholar 

  106. Hahm KB, Im YH, Lee C, Parks WT, Bang YJ, Green JE, et al. Loss of TGF-beta signaling contributes to autoimmune pancreatitis. J Clin Investig 2000; 105: 1057–1065.

    Article  PubMed  CAS  Google Scholar 

  107. Lucas PJ, Kim SJ, Melby SJ, Gress RE. Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor beta II receptor. J Exp Med 2000; 191: 1187–1196.

    Article  PubMed  CAS  Google Scholar 

  108. Gorelik I, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12: 171–181.

    Article  PubMed  CAS  Google Scholar 

  109. Qi Z, Atsuchi N, Ooshima A, Takeshita A, Ueno H. Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci USA 1999; 96: 2345–2349.

    Article  PubMed  CAS  Google Scholar 

  110. Ueno H, Sakamoto T, Nakamura T, Qi Z, Astuchi N, Takeshita A, et al. A soluble transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats. Hum Gene Ther 2000; 11: 33–42.

    Article  PubMed  CAS  Google Scholar 

  111. Le Y, Sauer B. Conditional gene knockout using cre recombinase. Methods Mol Biol 2000; 136: 477–485.

    PubMed  CAS  Google Scholar 

  112. Sauer B. Inducible gene targeting in mice using the Cre/lox system. Methods 1998; 14: 381–392.

    Article  PubMed  CAS  Google Scholar 

  113. Rickert RC, Rajewsky K, Roes J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 1995; 376: 352–355.

    Article  PubMed  CAS  Google Scholar 

  114. Cazac BB, Roes J. TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 2000; 13: 443–451.

    Article  PubMed  CAS  Google Scholar 

  115. Smeland EB, Blomhoff HK, Holte H, Ruud E, Beiske K, Funderud S, et al. Transforming growth factor type beta (TGF beta) inhibits G1 to S transition, but not activation of human B lymphocytes. Exp Cell Res 1987; 171: 213–222.

    Article  PubMed  CAS  Google Scholar 

  116. Lomo J, Blomhoff HK, Beiske K, Stokke T, Smeland EB. TGF-beta 1 and cyclic AMP promote apoptosis in resting human B lymphocytes. J Immunol 1995; 154: 1634–1643.

    PubMed  CAS  Google Scholar 

  117. Amoroso SR, Huang N, Roberts AB, Potter M, Letterio JJ. Consistent loss of functional transforming growth factor beta receptor expression in murine plasmacytomas. Proc Natl Acad Sci USA 1998; 95: 189–194.

    Article  PubMed  CAS  Google Scholar 

  118. Lotz M, Ranheim E, Kipps TJ. Transforming growth factor beta as endogenous growth inhibitor of chronic lymphocytic leukemia B cells. J Exp Med 1994; 179: 999–1004.

    Article  PubMed  CAS  Google Scholar 

  119. Kumar A, Rogers T, Maizel A, Sharma S. Loss of transforming growth factor beta 1 receptors and its effects on the growth of EBV-transformed human B cells. J Immunol 1991; 147: 998–1006.

    PubMed  CAS  Google Scholar 

  120. Fernandez TM, Amoroso SR, Potter M, Letterio J. Acquired TGF-beta receptor trafficking defect in murine plasmacytomagenesis. Proc Am Assoc Canc Res 2000; 41: 358–359.

    Google Scholar 

  121. Weinstein M, Yang X, Deng C. Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev 2000; 11: 49–58.

    Article  PubMed  CAS  Google Scholar 

  122. Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 1999; 126: 1631–1642.

    PubMed  CAS  Google Scholar 

  123. Chang H, Zwijsen A, Vogel H, Huylebroeck D, Matzuk MM. Smad5 is essential for left-right asymmetry in mice. Dev Biol 2000; 219: 71–78.

    Article  PubMed  CAS  Google Scholar 

  124. Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci USA 1998; 95: 9378–9383.

    Article  PubMed  CAS  Google Scholar 

  125. Yang X, Castilla LH, Xu X, Li C, Gotay J, Weinstein M, et al. Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development 1999; 126: 1571–1580.

    PubMed  CAS  Google Scholar 

  126. Yang X, Li C, Xu X, Deng C. The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci USA 1998; 95: 3667–3672.

    Article  PubMed  CAS  Google Scholar 

  127. Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 1999; 18: 1280–1291.

    Article  PubMed  CAS  Google Scholar 

  128. Datto MB, Frederick JP, Pan L, Borton Ai, Zhuang Y, Wang XF. Targeted disruption of smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol 1999; 19: 2495–2504.

    PubMed  CAS  Google Scholar 

  129. Zhu Y, Richardson JA, Parada LF, Graff JM. Smad3 mutant mice develop metastatic colorectal cancer. Cell 1998; 94: 703–714.

    Article  PubMed  CAS  Google Scholar 

  130. Datto M, Wang X. The Smads: transcriptional regulation and mouse models. Cytokine Growth Factor Rev 2000; 11: 37–48.

    Article  PubMed  CAS  Google Scholar 

  131. Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L, et al. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 2000; 19: 1868–1874.

    Article  PubMed  CAS  Google Scholar 

  132. Oshima H, Oshima M, Kobayashi M, Tsutsumi M, Taketo MM. Morphological and molecular processes of polyp formation in Apc(delta716) knockout mice. Cancer Res 1997; 57: 1644–1649.

    PubMed  CAS  Google Scholar 

  133. Sellheyer K, Bickenbach JR, Rothnagel JA, Bundman D, Longley MA, Krieg T. Inhibition of skin development by overexpression of transforming growth factor beta 1 in the epidermis of transgenic mice. Proc Natl Acad Sci USA 1993; 90: 5237–5241.

    Article  PubMed  CAS  Google Scholar 

  134. Glick AB, Weinberg WC, Wu IH, Quan W, Yuspa SH. Transforming growth factor beta 1 suppresses genomic instability independent of a G1 arrest, p53, and Rb. Cancer Res 1996; 56: 3645–3650.

    PubMed  CAS  Google Scholar 

  135. Fowlis DJ, Handers KC, Duffle E, Balmain A, Akhurst RJ. Discordant transforming growth factor beta 1 RNA and protein localization during chemical carcinogenesis of the skin. Cell Growth Differ 1992; 3: 81–91.

    PubMed  CAS  Google Scholar 

  136. Stamp GW, Nasim M, Cardillo M, Sudhindra SG, Lalani EN, Pignatelli M. Transforming growth factor-beta distribution in basal cell carcinomas: relationship to proliferation index. Br J Dermatol 1993; 129: 57–64.

    Article  PubMed  CAS  Google Scholar 

  137. Furstenberger G, Rogers M, Schnapke R, Bauer G, Hofler P, Marks F. Stimulatory role of transforming growth factors in multistage skin carcinogenesis: possible explanation for the tumor-inducing effect of wounding in initiated NMRI mouse skin. Int J Cancer 1989; 43: 915–921.

    Article  PubMed  CAS  Google Scholar 

  138. Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A, et al. TGFbetal inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996; 86: 531–542.

    Article  PubMed  CAS  Google Scholar 

  139. Fowlis DJ, Cui W, Johnson SA, Balmain A, Akhurst RJ. Altered epidermal cell growth control in vivo by inducible expression of transforming growth factor beta 1 in the skin of transgenic mice. Cell Growth Differ 1996; 7: 679–687.

    PubMed  CAS  Google Scholar 

  140. Blessing M, Nanney LB, King LE, Hogan BL. Chemical skin carcinogenesis is prevented in mice by the induced expression of a TGF-beta related transgene. Teratog Carcinog Mutagen 1995; 15: 11–21.

    Article  PubMed  CAS  Google Scholar 

  141. Blessing M, Nanney LB, King LE, Jones CM, Hogan BL. Transgenic mice as a model to study the role of TGF-beta-related molecules in hair follicles. Genes Dev 1993; 7: 204–215.

    Article  PubMed  CAS  Google Scholar 

  142. Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW. Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development 1991; 113: 867–878.

    PubMed  CAS  Google Scholar 

  143. Silberstein GB, Flanders KC, Roberts AB, Daniel CW. Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta 1. Dev Biol 1992; 152: 354–362.

    Article  PubMed  CAS  Google Scholar 

  144. Jhappan C, Geiser AG, Kordon EC, Bagheri D, Hennighausen L, Roberts AB, et al. Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J 1993; 12: 1835–1845.

    PubMed  CAS  Google Scholar 

  145. Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH. Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol 1995; 168: 47–61.

    Article  PubMed  CAS  Google Scholar 

  146. Pierce DF, Jr, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev 1993; 7: 2308–2317.

    Article  PubMed  CAS  Google Scholar 

  147. Pierce DF, Jr, Gorska AE, Chytil A, Meise KS, Page DL, Coffey RJ, Jr, et al. Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA 1995; 92: 4254–4258.

    Article  PubMed  CAS  Google Scholar 

  148. Clouthier DE, Comerford SA, Hammer RE. Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-betal transgenic mice. J Clin Investig 1997; 100: 2697–2713.

    Article  PubMed  CAS  Google Scholar 

  149. Sanderson N, Factor V, Nagy P, Kopp J, Kondaiah P, Wakefield L, et al. Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci USA 1995; 92: 2572–2576.

    Article  PubMed  CAS  Google Scholar 

  150. Braun L, Gruppuso P, Mikumo R, Fausto N. Transforming growth factor beta 1 in liver carcinogenesis: messenger RNA expression and growth effects. Cell Growth Differ 1990; 1: 103–111.

    PubMed  CAS  Google Scholar 

  151. Factor VM, Kao CY, Santoni-Rugiu E, Woitach JT, Jensen MR, Thorgeirsson SS. Constitutive expression of mature transforming growth factor betal in the liver accelerates hepatocarcinogenesis in transgenic mice. Cancer Res 1997; 57: 2089–2095.

    PubMed  CAS  Google Scholar 

  152. Schnur J, Nagy P, Sebestyen A, Schaff Z, Thorgeirsson SS. Chemical hepatocarcinogenesis in trans-genic mice overexpressing mature TGF beta-1 in liver. Eur J Cancer 1999; 35: 1842–1845.

    Article  PubMed  CAS  Google Scholar 

  153. Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, Bottinger EP, et al. Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Investig 1996; 74: 991–1003.

    PubMed  CAS  Google Scholar 

  154. Bottinger EP, Factor VM, Tsang ML, Weatherbee JA, Kopp JB, Qian SW, et al. The recombinant proregion of transforming growth factor betal (latency-associated peptide) inhibits active transforming growth factor betal in transgenic mice. Proc Natl Acad Sci USA 1996; 93: 5877–5882.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Letterio, J.J. (2002). Cancer Models. In: Teicher, B.A. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-100-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-100-8_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6883-1

  • Online ISBN: 978-1-59259-100-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics