Skip to main content

Current Prospects for the Use of Molecular Markers in Treatment of Bladder Cancer by Cystectomy or Bladder-Conserving Approaches

  • Chapter
  • 134 Accesses

Part of the book series: Current Clinical Urology ((CCU))

Abstract

Clinically, “superficial” bladder tumors (stages Ta, Tis, and Ti) account for 75% to 85% of urothelial neoplasms, while the remaining 15–25% are invasive (T2, T3, T4) or metastatic (N+,M+) lesions at the time of initial presentation (1). Over 70% of patients with superficial tumors will have one or more recurrences after initial treatment, and about one-third of those patients will progress and eventually succumb to their disease (2). It is for these reasons that new methods are being developed to identify and monitor those patients presenting with superficial tumors who are likely to develop recurrent and invasive carcinoma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prout GR. Bladder carcinoma and a TNM system of classifiction. J Urol 1977; 117: 583–588.

    PubMed  Google Scholar 

  2. Reuter VE, Melamed MR. The lower urinary tract, In: Diagnostic Surgical Pathology ( Sternberg SS, ed.). Raven, New York, NY, pp. 1355.

    Google Scholar 

  3. Murray AW, Hunt T. The cell cycle, an introduction. Freeman, New York, NY, 1993.

    Google Scholar 

  4. Nurse P. Universal control mechanism in regulating onset of M-phase. Nature 1990; 344: 503–508.

    Article  CAS  PubMed  Google Scholar 

  5. Reed SI. The role of p34 kinases in the GI to S-phase transition. Ann Rev Cell Biol 1992; 8: 529–561.

    Article  CAS  PubMed  Google Scholar 

  6. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 1983; 33: 389–396.

    Article  CAS  PubMed  Google Scholar 

  7. Lewin B. Driving the cell cycle: M phase kinase, its partners, and substrates. Cell 1990; 61: 743–752.

    Article  CAS  PubMed  Google Scholar 

  8. Kastan MB, Onkyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51: 6304–6311.

    CAS  PubMed  Google Scholar 

  9. Zambetti G, Bargonetti J, Walker K, Prives C, Levine AJ. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev 1992; 6: 1143–1152.

    Article  CAS  PubMed  Google Scholar 

  10. Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW, Vogelstein B. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 1992; 256: 827–830.

    Article  CAS  PubMed  Google Scholar 

  11. Fields S, Jang SK. Presence of a potent transcription activating sequence in the p53 protein. Science 1990; 249: 1046–1049.

    Article  CAS  PubMed  Google Scholar 

  12. Friend SH, Horowitz JM, Gerber MR, Wang XF, Bogenmann E, Li FP, Weinberg RA. Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein. Proc Nati Acad Sci USA 1987; 84: 9059–9063.

    Article  CAS  Google Scholar 

  13. Lee W-H, Shew J-Y, Hong FD, Sery TW, Donoso LA, Young LJ, et al. The retino-blastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 1987; 329: 642–645.

    Article  CAS  PubMed  Google Scholar 

  14. Fung Y-K, Murphree AL, T’Ang A, Qian J, Hinrichs SH, Benedict WF. Structural evidence for the authenticity of the human retinoblastoma gene. Science 1987; 236: 1657–1661.

    Article  CAS  PubMed  Google Scholar 

  15. DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 1989; 58: 1085–1095.

    Article  CAS  PubMed  Google Scholar 

  16. Buchkovich K, Duffy LA, Harlow E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 1989; 58: 1097–1105.

    Article  CAS  PubMed  Google Scholar 

  17. Chen PL, Scully P, Shew J-Y, Wang JY, Lee WH. Phosphorylation of the retino-blastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 1989; 58: 1193–1198.

    Article  CAS  PubMed  Google Scholar 

  18. Mittnacht S, Weinberg RA. G1/S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. Cell 1991; 65: 381–393.

    Article  CAS  PubMed  Google Scholar 

  19. DeFeo-Jones D, Huang PS, Jones RE, Haskell KM, Vuocolo GA, Hanobik MG, et al. Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product. Nature 1991; 352: 251–254.

    Article  CAS  PubMed  Google Scholar 

  20. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR. The E2F transcription factor is a cellular target for the RB protein. Cell 1991; 65: 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  21. Kovesdi I, Reichel R, Nevins JR. Identification of a cellular transcription factor involved in E1A trans-activation. Cell 1986; 45: 219–228.

    Article  CAS  PubMed  Google Scholar 

  22. Johnson DJ, Schwarz JK, Cress WD, Nevins JR. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 1993; 365: 349–352.

    Article  CAS  PubMed  Google Scholar 

  23. Weintraub SJ, Prater CA, Dean C. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 1992; 358: 259–261.

    Article  CAS  PubMed  Google Scholar 

  24. Fakharzadeh SS, Trusko SP, George DL. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 1991; 10: 1565–1569.

    CAS  PubMed  Google Scholar 

  25. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  26. Oliner JD, Kinzler KW, Metlzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53 associated protein in human sarcomas. Nature 1992; 358: 80–83.

    Article  CAS  PubMed  Google Scholar 

  27. Xiong Y, Zhang H, Beach D. Subunit rearrangement of the cylin-dependent kinases is associated with cellular transformation. Genes Dev 1993; 7: 1572–1583.

    Article  CAS  PubMed  Google Scholar 

  28. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805–816.

    Article  CAS  PubMed  Google Scholar 

  29. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  30. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366: 701–704.

    Article  CAS  PubMed  Google Scholar 

  31. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366: 704–707.

    Article  CAS  PubMed  Google Scholar 

  32. Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-(3-induced cell cycle arrest. Nature 1994; 371: 257–261.

    Article  CAS  PubMed  Google Scholar 

  33. Polyak K, Kato J-Y, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A. p27/6PI, a cylin-Cdk inhibitor, links transforming growth factor-(3 and contact inhibition to cell cycle arrest. Genes Develop 1994; 8: 9–22.

    Article  CAS  PubMed  Google Scholar 

  34. Polyak K, Lee M-H, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J. Cloning of p27K’Pl, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994; 78: 59–66.

    Article  CAS  PubMed  Google Scholar 

  35. Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-cdk protein kinase activity, is related to p21. Cell 1994; 78: 67–74.

    Article  CAS  PubMed  Google Scholar 

  36. Guan K-L, Jenkins CW, Li Y, Nichols MA, Wu X, O’Keefe CL, et al. Growth suppression by p18, a p161NK4/MTS1_ and p141NK4B/MTS2_related CDK6 inhibitor, correlates with wild-type pRB function. Genes Develop 1994; 8: 2939–2952.

    Article  CAS  PubMed  Google Scholar 

  37. Gibas Z, Prout GR, Connolly JG, Pontes JE, Sandberg AA. Nonrandom chromosomal changes in transitional cell carcinoma of the bladder. Cancer Res 1984; 44: 1257.

    CAS  PubMed  Google Scholar 

  38. Tsai YC, Nichols PW, Hiti AL, Williams Z, Skinner DG, Jones PA. Allelic losses of chromosomes 9, 11, and 17 in human bladder cancer. Cancer Res 1990; 50: 44.

    CAS  Google Scholar 

  39. Dalbagni G, Presti J, Reuter V, Fair WR, Cordon-Cardo C. Genetic alterations in bladder cancer. Lancet 1993; 324: 469.

    Article  Google Scholar 

  40. Habuchi T, Ogawa O, Kakehi Y, et al. Accumulated allelic losses in the development of invasive urothelial cancer. Int J Cancer 1993; 53: 579.

    Article  CAS  PubMed  Google Scholar 

  41. Miyao N, Tsai YC, Lerner SP, et al. Role of chromosome 9 in human bladder cancer. Cancer Res 1993; 53: 4066.

    CAS  PubMed  Google Scholar 

  42. Cairns P, Shaw ME, Knowles MA. Preliminary mapping of the deleted region of chromosome 9 in bladder cancer. Cancer Res 1993; 53: 1230.

    CAS  PubMed  Google Scholar 

  43. Ruppert JM, Tokino K, Sidransky D. Evidence for two bladder cancer supressor loci on human chromosome 9. Cancer Res 1994; 53: 5093.

    Google Scholar 

  44. Orlow I, Lianes P, Lacombe L, Dalbagni G, Reuter VE, Cordon-Cardo C. Chromosome 9 deletions and microsatellite alterations in human bladder tumors. Cancer Res 1994; 54: 2848.

    Google Scholar 

  45. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264: 436.

    Article  CAS  PubMed  Google Scholar 

  46. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366: 704.

    Article  CAS  PubMed  Google Scholar 

  47. Hannon GJ, Beach D. p151NK4B is a potential effector of TGF-13-induced cell cycle arrest. Nature 1994; 371: 257.

    Article  CAS  PubMed  Google Scholar 

  48. Cordon-Cardo C. Mutation of cell cycle regulators: biological and clinical implications for human neoplasias. Am J Path 1995; 147: 545.

    CAS  PubMed  Google Scholar 

  49. Kamb A, Liu Q, Harshman K, Tavtigian S, Cordon-Cardo C, Skolnick MH. Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science 1994; 265: 416.

    Article  CAS  PubMed  Google Scholar 

  50. Spruck CH, Gonzalez-Zulueta M, Shibata A, et al. p16 gene in uncultured tumours. Nature 1994; 370: 183.

    Article  PubMed  Google Scholar 

  51. Williamson M, Elder PA, Shaw ME, Devlin J, Knowles M. p16(CDKN2) is a major deletion target at 9p21 in bladder cancer. Hum Mol Genet 1995; 4: 1569.

    Article  CAS  PubMed  Google Scholar 

  52. Cairns P, Polascik TJ, Eby Y, et al. Frequency of homozygous deletion at p16/ CDKN2 in primary human tumours. Nature Genet 1995; 11: 210.

    Article  CAS  PubMed  Google Scholar 

  53. Gruis NA, Weaver-Feldhaus J, Liu Q, et al. Genetic evidence in melanoma and bladder cancers that p16 and p53 function in separate pathways of tumor suppression. Am J Pathol 1995; 146: 1199.

    CAS  PubMed  Google Scholar 

  54. Orlow I, Lacombe L, Hannon GJ, et al. Deletion of the p16 and p15 genes in human bladder tumors. J Nati Cancer Inst 1995; 87: 1524.

    Article  CAS  Google Scholar 

  55. Sarkis AS, Dalbagni G, Cordon-Cardo C, et al. Association of p53 nuclear over-expression and tumor progression in carcinoma in situ of the bladder. J Urol 1994; 152: 388.

    CAS  PubMed  Google Scholar 

  56. Spruck CH, Ohneseit PE, Gonzalez-Zulueta M, et al. Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res 1994; 54: 784.

    CAS  PubMed  Google Scholar 

  57. Cordon-Cardo C, Wartinger D, Petrylak D, et al. Altered expression of the retino-blastoma gene product is a prognostic indicator in bladder cancer. J Natl Cancer Inst 1992; 84: 1251.

    Article  CAS  PubMed  Google Scholar 

  58. Logothetis CJ, Xu H-J, Ro JY, et al. Altered retinoblastoma protein expression and known prognostic variables in locally advanced bladder cancer. J Natl Cancer Inst 1992; 84: 1257.

    Google Scholar 

  59. Sidransky D, Von Eschenbach A, Tsai YC, et al. Identification of p53 gene mutations in bladder cancers and urine samples. Science 1991; 252: 706.

    Article  CAS  PubMed  Google Scholar 

  60. Fujimoto K, Yamada Y, Okajima E, et al. Frequent association of p53 gene mutation in invasive bladder cancer. Cancer Res 1992; 52: 1393.

    CAS  PubMed  Google Scholar 

  61. Dalbagni G, Presti JC, Reuter VE, et al. Molecular genetic alterations of chromosome 17 and p53 nuclear overexpression in human bladder cancer. Diag Mol Pathol 1993; 2: 4.

    CAS  Google Scholar 

  62. Cordon-Cardo C, Dalbagni D, Saez GT, et al. TP53 mutations in human bladder cancer: genotypic versus phenotypic patterns. Int J Cancer 1994; 56: 347.

    Article  CAS  PubMed  Google Scholar 

  63. Sarkis AS, Dalbagni G, Cordon-Cardo C, et al. Nuclear overexpression of p53 protein in transditional cell bladder carcinoma: a marker for disease progression. J Natl Cancer Inst 1993; 85: 53.

    Article  CAS  PubMed  Google Scholar 

  64. Sarkis AS, Zhang Z-F, Cordon-Cardo C, et al. p53 nuclear overexpression and disease progression in Ta bladder carcinoma. Int J Oncol 1993; 3: 355.

    CAS  PubMed  Google Scholar 

  65. Sarkis AS, Dalbagni G, Cordon-Cardo C, et al. Association of p53 nuclear over-expression and tumor progression in carcinoma in situ of the bladder. J Urol 1994; 152: 388.

    CAS  PubMed  Google Scholar 

  66. Lipponen PK. Over-expression of p53 nuclear oncoprotein in transitional-cell bladder cancer and its prognostic value. Int J Cancer 1993; 53: 365.

    Article  CAS  PubMed  Google Scholar 

  67. Esrig D, Elmajian D, Groshen S, et al. Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med 1994; 331: 1259.

    Article  CAS  PubMed  Google Scholar 

  68. Sarkis AS, Bajorin DF, Reuter VE, et al. The prognostic value of p53 nuclear over-expression in patientes with invasive bladder cancer treated with neoadjuvant M-VAC. J Clin Oncol 1995; 13: 1384.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dalbagni, G., Cordon-Cardo, C., Sheinfeld, J. (2001). Current Prospects for the Use of Molecular Markers in Treatment of Bladder Cancer by Cystectomy or Bladder-Conserving Approaches. In: Droller, M.J. (eds) Bladder Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-097-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-097-1_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-202-5

  • Online ISBN: 978-1-59259-097-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics