Skip to main content

Abasic Site Repair in Higher Eukaryotes

  • Chapter
DNA Damage and Repair

Part of the book series: Contemporary Cancer Research ((CCR))

  • 238 Accesses

Abstract

Base-excision repair (BER) refers to a repair pathway that generates and repairs abasic sites in double-stranded (ds) DNA (Fig. 1) (101,134,222,264). BER is important not only in maintaining the integrity of nuclear DNA but also in protecting mitochondrial DNA against oxidative onslaught from FADH2 and NADH and the reactive oxygen species generated during O2 reduction (42). Estimates of the number of abasic sites generated per mammalian cell per day run as high as 106/cell/d (88). Abasic sites are unstable, degrading spontaneously into DNA strand-breaks by β-elimination (132) that retard DNA polymerases (43,44,50,66,91,237). They are highly mutagenic because of nontemplated DNA (59,108,273) and RNA (66,216,217,283) synthesis. Moreover, abasic sites engage in suicide reactions with topoisomerase I, leading to permanent DNA damage and premature cell death (196) and can form covalent complexes with topoisomerase II that cause DNA double-strand breaks (107), which can bind poly (ADP-ribose) polymerase (2,152,153). Despite the large number of abasic sites generated per cell per day, the number of resulting mutations is extremely low. The difference reflects the elaborate mechanisms that the cell has devised to repair abasic sites (134).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, J., V. S. Kraynov, X. Zhong, B. G. Werneburg, and M. D. Tsai. 1998. DNA polymerase beta: effects of gapped DNA substrates on dNTP specificity, fidelity, processivity and conformational changes. Biochem. J. 331: 79–87.

    PubMed  CAS  Google Scholar 

  2. Althaus, F. R., H. E. Kleczkowska, M. Malanga, C. R. Muntener, J. M. Pleschke, M. Ebner, and B. Auer. 1999. Poly ADP-ribosylation: a DNA break signal mechanism. Mol. Cell. Biochem. 193: 5–11.

    PubMed  CAS  Google Scholar 

  3. Anson, R. M., D. L. Croteau, R. H. Stierum, C. Filburn, R. Parsell, and V. A. Bohr. 1998. Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA. Nucleic Acids Res. 26: 662–668.

    PubMed  CAS  Google Scholar 

  4. Augeri, L., Y.-M. Lee, A. B. Barton, and P. W. Doetsch. 1997. Purification, characterization, gene cloning and expression of Saccharomyces cerevisiae redoxyendonuclease, a homolog of Escherichia coli endonuclease III Biochemistry (Wash.) 36: 721–729.

    CAS  Google Scholar 

  5. Bambara, R. A., R. S. Murante, and L. A. Henricksen. 1997. Enzymes and reactions at the eukaryotic DNA replication fork. J. Biol. Chem. 272: 4647–4650.

    PubMed  CAS  Google Scholar 

  6. Barrows, L. R., J. A. Holden, M. Anderson, and P. D’Arpa. 1998. The CHO XRCC1 mutant, EM9, deficient in DNA ligase III activity, exhibits hypersensitivity to camptothecin independent of DNA replication. Mutat. Res. 408: 103–110.

    PubMed  CAS  Google Scholar 

  7. Barsky, D., N. Foloppe, S. Ahmadia, D. M. Wilson III, and A. D. MacKerell Jr. 2000. New insights into the structure of abasic DNA from molecular dynamics simulations. Nucleic Acids Res. 28: 2613–2626.

    PubMed  CAS  Google Scholar 

  8. Barzilay, G. and I. D. Hickson. 1995. Structure and function of apurinic/apyrimidinic endonucleases. Bioessays 17: 713–710.

    PubMed  CAS  Google Scholar 

  9. Barzilay, G., C. D. Mol, C. N. Robson, L. J. Walker, R. P. Cunningham, J. A. Tainer, and I. D. Hickson. 1995. Identification of critical active-site residues in the multifunctional human DNA repair enzyme HAP]: identification of residues important from AP endonuclease and Rnase H activity. Nucleic Acids Res. 23: 1544–1550.

    PubMed  CAS  Google Scholar 

  10. Barzilay, G., L. J. Walker, C. N. Robson, and I. D. Hickson. 1995. Site-directed mutagenesis of the human DNA repair enzyme HAP1. Nature Struct. Biol. 2: 561–568.

    PubMed  CAS  Google Scholar 

  11. Beard, W. A., W. P. Osheroff, R. Prasad, M. R. Sawaya, M. Jaju, T. G. Wood, et al. 1996. Enzyme-DNA interactions required for efficient nucleotide incorporation and discrimination in human DNA polymerase beta. J. Biol. Chem. 271: 12,141–12, 144.

    Google Scholar 

  12. Beger, R. D. and P. H. Bolton. 1998. Structures of apurinic and apyrimidinic sites in duplex DNAs. J. Biol. Chem. 273: 15,565–15, 573.

    Google Scholar 

  13. Bennett, R. A., D. M. Wilson, 3rd, D. Wong, and B. Demple. 1997. Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proc. Natl. Acad. Sci. USA 94: 7166–7169.

    PubMed  CAS  Google Scholar 

  14. Bennett, S. E., R. J. Sanderson, and D. W. Mosbaugh. 1995. Processivity of Escherichia coli and rat liver mitochondrial uracil-DNA glycosylase is affected by NaC1 concentration. Biochemistry 34: 6109–6119.

    PubMed  CAS  Google Scholar 

  15. Bentley, D. J., J. Selfridge, J. K. Millar, K. Samuel, N. Hole, J. D. Ansell, and D. W. Melton. 1996. DNA ligase I is required for fetal liver erythropoiesis but is not essential for mammalian cell viability. Nature Genetics 13: 489–491.

    PubMed  CAS  Google Scholar 

  16. Berdal, K. G., R. F. Johansen, and E. Seeberg. 1998. Release of normal bases from intact DNA by a native DNA repair enzyme. EMBO J. 17: 363–367.

    PubMed  CAS  Google Scholar 

  17. Biade, S., R. W. Sobol, S. H. Wilson, and Y. Matsumoto. 1998. Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA. J. Biol. Chem. 273: 898–902.

    PubMed  CAS  Google Scholar 

  18. Biswas, E. E., F. X. Zhu, and S. B. Biswas. 1997. Stimulation of RTH1 nuclease of the yeast Saccharomyces cerevisiae by replication protein A. Biochemistry (Wash.) 36: 5955–5962.

    CAS  Google Scholar 

  19. Bochkareva, E., L. Frappier, A. M. Edwards, and A. Bochkarev. 1998. The RPA32 subunit of human replication protein A contains a single-stranded DNA-binding domain. J Biol. Chem. 273: 3932–3936.

    PubMed  CAS  Google Scholar 

  20. Bogenhagen, D. E and K. G. Pinz. 1998. The action of DNA ligase at abasic sites in DNA. J. Biol. Chem. 273: 7888–7893.

    PubMed  CAS  Google Scholar 

  21. Burgers, P. M. 1998. Eukaryotic DNA polymerases in DNA replication and repair. Chromo-soma 107: 218–227.

    CAS  Google Scholar 

  22. Burns, J. L., S. N. Guzder, P. Sung, S. Prakash, and L. Prakash. 1996. An affinity of human replication protein A for ultraviolet-damaged DNA. J Biol. Chem. 271: 11,607–11, 610.

    Google Scholar 

  23. Cai, J., M. F. Uhlmann, E Gibbs, H. Flores-Rozas, C. G. Lee, B. Phillips, et al. 1996. Reconstitution of human replication factor C from its five subunits in baculovirus-infected insect cells. Proc. Natl. Acad. Sci. USA 93: 12,896–12, 901.

    Google Scholar 

  24. Cai, J., N. Yao, E. Gibbs, J. Finkelstein, B. Phillips, M. O’Donnell, and J. Hurwitz. 1998. ATP hydrolysis catalyzed by human replication factor C requires participation of multiple subunits. Proc. Natl. Acad. Sci. USA 95: 11,607–11, 612.

    Google Scholar 

  25. Caldecott, K. W., S. Aoufouchi, P. Johnson, and S. Shall. 1996. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular ‘nick-sensor’ in vitro. Nucleic Acids Res. 24: 4387–4394.

    PubMed  CAS  Google Scholar 

  26. Caldecott, K. W., C. K. McKeown, J. D. Tucker, S. Ljungquist, and L. H. Thompson. 1994. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol. Cell Biol. 14: 68–76.

    PubMed  CAS  Google Scholar 

  27. Canitrot, Y., C. Cazaux, M. Frechet, K. Bouyadi, C. Lesca, B. Salles, and J. S. Hoffman. 1998. Overexpression of DNA polymerase beta in cells results in a mutator phenotype and a decreased sensitivity to anticancer drugs. Proc. Natl. Acad. Sci. USA 95: 12,586–12, 590.

    Google Scholar 

  28. Cannizzaro, L. A., E J. Bollum, K. Huebner, C. M. Croc, L. C. Cheung, X. Xu, et al. 1988. Chromosome sublocalization of a cDNA for human DNA polymerase-beta to 8p11[???]p12 Cytogenet. Cell Genet. 47: 121–124.

    CAS  Google Scholar 

  29. Carey, D. C. and P. R. Strauss. 1999. Human apurinic/apyrimidinic endonuclease is processive. Biochemistry 38: 16, 553–16, 560.

    Google Scholar 

  30. Carty, M. P., M. Zernik-Kobak, S. McGrath, and K. Dixon. 1994. UV light-induced synthisis arrest in HeLa cells associated with changes in phosphorylation of human single stranded binding protein. EMBO J. 13: 2114–2123.

    PubMed  CAS  Google Scholar 

  31. Chan, D. W. and S. P. Lees-Miller. 1996. The DNA-dependent protein kinase is inactivated by autophosphorylation of the catalytic subunit. J. Biol. Chem. 271: 8936–8941.

    PubMed  CAS  Google Scholar 

  32. Chagovetz, A. M., J. B. Sweasy, and B. D. Preston. 1997. Increased activity and fidelity of DNA polymerase beta on single-nucleotide gapped DNA. J. Biol. Chem. 272: 27,501–27, 504.

    Google Scholar 

  33. Chaudhry, M. A. and M. Weinfeld. 1995. Induction of double-strand breaks by S1 nuclease, mung bean nuclease and nuclease P1 in DNA containing abasic sites and nicks. Nucleic Acids Res. 23: 3805–3809.

    PubMed  CAS  Google Scholar 

  34. Chaudhry, M. A. and M. Weinfeld. 1997. Reactivity of human apurinic/apyrimidinic endonuclease and Escherichia coli exonuclease III with bistranded abasic sites in DNA. J. Biol. Chem. 272: 15,650–15, 655.

    Google Scholar 

  35. Chen, D. S., T. Herman, and B. Demple. 1991. Two distinct human DNA diesterases that hydrolyze 3’-blocking deoxyribose fragments from oxidized DNA. Nucleic. Acids Res. 19: 5907–5914.

    PubMed  CAS  Google Scholar 

  36. Chen, J., A. E. Tomkinson, W. Ramos, Z. B. Mackey, S. Danehower, C. A. Walter, et al. 1995. Mammalian DNA ligase III: molecular cloning, chromosomal localization, and expression in spermatocytes undergoing meiotic recombination. Mol. Cell. Biol. 15: 5412–5422.

    PubMed  CAS  Google Scholar 

  37. Chen, K. H., F. M. Yakes, D. K. Srivastava, R. K. Singhal, R. W. Sobol, J. K. Horton, et al. 1998. Up-regulation of base excision repair correlates with enhanced protection against a DNA damaging agent in mouse cell lines. Nucleic Acids Res. 26: 2001–2997.

    PubMed  CAS  Google Scholar 

  38. Chen, U., S. Chen, P. Saha, and A. Dutta. 1996. p210P1/Wafl disrupts the recruitment of human Fenl by proliferating-cell nuclear antigen into the DNA replication complex. Proc. Natl. Acad. Sci. USA 93: 11,597–11,602.

    Google Scholar 

  39. Clairmont, C. A. and J. B. Sweasy. 1998. The pol f3–14 dominant negative rat DNA polymerase mutator mutant commits errors during the gap-filling step of base excision repair in Saccharomyces cerevisiae. J. Bacteriol. 180: 2292–2297.

    CAS  Google Scholar 

  40. Clawson, G. A., C. M. Benedict, M. R. Kelley, and J. Weisz. 1997. Focal nuclear hepatocyte response to oxidative damage following low dose thioacetamid intoxication. Carcino gene sis 18: 1663–1668.

    CAS  Google Scholar 

  41. Connor, D. A., A. M. Falick, M. C. Young, and M. D. Shetlar. 1998. Probing the binding region of the single-stranded DNA-binding domain of rat DNA polymerase beta using nanosecond-pulse laser-induced cross-linking and mass spectrometry. Photochem. Photobiol. 68: 299–308.

    PubMed  CAS  Google Scholar 

  42. Cooper, P. K., T. Nouspikel, S. G. Clarkson, and S. A. Leadon. 1997. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science 275: 990–993.

    PubMed  CAS  Google Scholar 

  43. Croteau, D. L. and V. A. Bohr. 1997. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J. Biol. Chem. 272: 25,409–25, 412.

    Google Scholar 

  44. Cuniasse, P., G. V. Fazakerly, W. Guschlbauer, B. E. Kaplan, and L. C. Sowers. 1990. The abasic site as a challenge to DNA polymerase. A nuclear magnetic resonance study of G, C and T opposite a model abasic site. J. Mol. Biol. 213: 303–314.

    PubMed  CAS  Google Scholar 

  45. Cuniasse, P., L. C. Sowers, R. Eritja, B. Kaplan, M. F. Goodman, J. A. Cognet, et al. 1987. An abasic site in DNA. Solution conformation determined by proton NMR and molecular mechanics calculations. Nucleic Acids Res. 15: 8003–8022.

    PubMed  CAS  Google Scholar 

  46. Cunningham, R. P. 1997. DNA glycosylases. Mutation Res. 383: 189–196.

    PubMed  CAS  Google Scholar 

  47. David, S. S., and S. D. Williams. 1998. Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem. Rev. 98: 1221–1261.

    PubMed  CAS  Google Scholar 

  48. DeMott, M. S., B. Shen, M. S. Park, R. A. Bambara, and S. Zigman. 1996. Human RAD2 homologl 5’- to 3’-exo/endonuclease can efficienctly excise a displaced DNA fragment containing a 5’ terminal abasic lesion by endonuclease activity. J. Biol. Chem. 271: 30,068–30, 076.

    Google Scholar 

  49. DeMott, M. S., S. Zigman, and R. A. Bambara. 1998. Replication protein A stimulates long patch DNA base excision repair. J. Biol Chem. 273: 27,492–27, 498.

    Google Scholar 

  50. de Murcia, G. and J. M. de Murcia. 1994. Poly (ADP-ribose) polymerase: a molecular nick-sensor Trends. Biochem. Sci. 19: 172–176.

    Google Scholar 

  51. de Murcia, G., V. Schreiber, M. Molinete, B. Saulier, O. Poch, M. Masson, et al. 1994. Structure and function of poly(ADP-ribose) polymerase. Mol. Cell. Biochem. 138: 15–24.

    PubMed  Google Scholar 

  52. Demple. B. and L. Harrison. 1994. Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63: 915–948.

    Google Scholar 

  53. Demple. B., T. Herman and D. S. Chen. 1991. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc. Natl. Acad. Sci. USA 88: 11,450–11, 454.

    Google Scholar 

  54. Dianov, G. and T. Lindahl. 1994. Reconstitution of the DNA base excision-repair pathway. Curr. Biol. 4: 1069–1076.

    PubMed  CAS  Google Scholar 

  55. Dianov, G., C. Bischoff, J. Piotrowski, and V. A. Bohr. 1998. Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts. J. Biol. Chem. 273: 33,811–33, 816.

    Google Scholar 

  56. Dianov, G. L., B. R. Jensen, M. K. Kenny, and V. A. Bohr. 1999. Replication protein A stimulates proliferating cell nuclear antigen-dependent repair of abasic sites in DNA by human cell extracts. Biochemistry (Wash.) 38: 11, 021–11, 025.

    Google Scholar 

  57. Dianov, G. L., R. Prasad, S. H. Wilson, and V. A. Bohr. 1999. Role of DNA polymerase 13 in the excision step of long patch mammalian base excision repair. J. Biol. Chem. 274: 13,741–13, 743.

    Google Scholar 

  58. Dianov, G., A. Price, and T. Lindahl. 1992. Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol. Cell. Biol. 12: 1605–1612.

    PubMed  CAS  Google Scholar 

  59. Dimitriadis, E. K., R. Prasad, M. K. Vaske, L. Chen, A. E. Tomkinson, M. S. Lewis, and S. H. Wilson. 1998. Thermodynamics of human DNA ligase I trimerization and association with DNA polymerase beta. J. Biol. Chem. 273: 20,540–20, 550.

    Google Scholar 

  60. Doetsch, P. W. and R. P. Cunningham. 1990. The enzymology of apurinic/apyrimidinic endonucleases. Mutas. Res. 236: 173–201.

    CAS  Google Scholar 

  61. Efrati, E., G. Tocco, R. Eritja, S. H. Wilson, and M. F. Goodman. 1997. Abasic translesion synthesis by DNA polymerase beta violates the “A-rule.” Novel types of nucleotide incorporation by human DNA polymerase beta at an abasic lesion in different sequence contexts. J. Biol. Chem. 272: 2559–2569.

    PubMed  CAS  Google Scholar 

  62. Erzberger, J. P., D. Barsky, O. D. Scharer, M. E. Colvin, and III, D. M. Wilson. 1998. Elements in abasic site recognition by the major human and Escherichia coli apurinic/apyrimidinic endonucleases. Nucleic Acids Res. 26: 2771–2778.

    PubMed  CAS  Google Scholar 

  63. Erzberger, J. P. and D. M. Wilson, III. 1999. The role of Mgt+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: New insights from the EDTAresistant incision of acyclic abasic site analogs and site directed mutagenesis. J. Mol. Biol. 290: 447–457.

    CAS  Google Scholar 

  64. Feng, J. A., C. J. Crasto, and Y. Matsumoto. 1998. Deoxyribose phosphate excision by the N-terminal domain of the polymerase beta: the mechanism revisited. Biochemistry (Wash.) 37: 9605–9611.

    CAS  Google Scholar 

  65. Fortini, P., B. Pascucci, E. Parlanti, R. W. Sobol, S. H. Wilson, and E. Dogliotti. 1998. Different DNA polymerases are involved in the short-and long-patch base excision repair in mammalian cells. Biochemistry (Wash.) 37: 3575–3580.

    CAS  Google Scholar 

  66. Fortini, P., E. Parlanti, O. M. Sidorkina, J. Laval, and E. Dogliotti. 1999. The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J. Biol. Chem. 274: 15,230–15, 236.

    Google Scholar 

  67. Fotedar, R., R. Mossi, P. Fitzgerald, T. Rousselle, G. Maga, H. Brickner, et al. 1996. A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells. EMBO J. 15: 4423–4433.

    PubMed  CAS  Google Scholar 

  68. Friedberg, E. C., G. C. Walker, and W. Seide. 1995. DNA Repair and Mutagenesis. ASM Press, Washington DC.

    Google Scholar 

  69. Frosina, G., P. Fortini, O. Rossi, F. Carrozzino, G. Raspagilo, L. S. Cox, et al. 1996. Two pathways for base excision repair in mammalian cells. J. Biol. Chem. 271: 9573–9578.

    PubMed  CAS  Google Scholar 

  70. Fung, H., Y. W. Kow, B. Van Houten, D. J. Taatjes, Z. Hatahet, Y. M. W. Janssen, et al. 1998. Asbestos increases mammalian AP-endonuclease gene expression, protein levels, and enzyme activity in mesothelial cells. Cancer Res. 58: 189–194.

    PubMed  CAS  Google Scholar 

  71. Gaiddon, C., N. C. Moorthy, and C. Prives. 1999. Ref-1 regulates the transactivation and proapoptotic functions of p53. in vivo EMBO J. 18: 5609–5621

    CAS  Google Scholar 

  72. Gartel, A. L., M. S. Serfa, and A. L. Tyner. 1996. p21-negative regulator of the cell cycle. Proc. Soc. Exp. Biol. Med. 213: 138–149.

    Google Scholar 

  73. Gary, R., K. Kim, H. L. Cornelius, M. S. Park, and Y. Matsumoto. 1999. Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair. J. Biol. Chem. 274: 4354–4363.

    PubMed  CAS  Google Scholar 

  74. Gary, R., D. L. Ludwig, H. L. Cornelius, M. A. Maclnnes, and M. S. Park. 1997. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J. Biol. Chem. 272: 24,522–24, 529.

    Google Scholar 

  75. Gelfand, C. A., G. E. Plum, A. P. Grollman, F. Johnson, and K. J. Breslauer. 1996. The impact of a bistrand abasic lesion on DNA duplex properties. Biopolymers 38: 439–445

    PubMed  CAS  Google Scholar 

  76. Gelfand, C. A., G. E. Plum, A. P. Grollman, F. Johnson, and K. J. Breslauer. 1998. Thermodynamic consequences of an abasic lesion in duplex DNA are strongly dependent on base sequence. Biochemistry 37: 7321–7327.

    PubMed  CAS  Google Scholar 

  77. Gomes, X. V. and M. S. Wold. 1995. Structural analysis of human replication protein A. Mapping functional domains of the 70-kDa subunit. J. Biol. Chem. 270: 4534–4543.

    PubMed  CAS  Google Scholar 

  78. Gorman, M. A., S. Morera, D. G. Rothwell, E. de La Fortelle, C. D. Mol, J. A. Tainer, et al. 1997. The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J. 16: 6548–6558.

    PubMed  CAS  Google Scholar 

  79. Gowen, L. C., A. V. Avrutskaya, A. M. Latour, B. H. Koller, and S. A. Leadon. 1998. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281: 1009–1012.

    PubMed  CAS  Google Scholar 

  80. Graves, S. W., A. A. Johnson, and K. A. Johnson. 1998. Expression, purification and initial characterization of the large subunit of the human mitochondrial DNA polymerase. Biochemistry (Wash.) 37: 6050–6058.

    CAS  Google Scholar 

  81. Gruskin, E. A. and R. S. Lloyd. 1986. The DNA scanning mechanism of T4 endonuclease V. Effect of NaC1 concentration on processive nicking activity. J. Biol. Chem. 261: 9607–9613.

    PubMed  CAS  Google Scholar 

  82. Gu, L., Y. Hong, S. McCulloch, H. Watanabe, and G. M. Li. 1998. ATP dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res. 26: 1173–1178.

    PubMed  CAS  Google Scholar 

  83. a. Hadi, M. Z., M. A. Coleman, K. Fidelis, H. W. Mohrenweiser, and D. M. Wilson III. 2000. Functional characterization of Ape 1 variants identified in the human population. Nucleic Acids Res. In press.

    Google Scholar 

  84. Harrington, J. J., and M. R. Lieber. 1994. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J. 13: 1235–1246.

    PubMed  CAS  Google Scholar 

  85. Harrison, L., G. Ascione, J. C. Menninger, D. C. Ward, and B. Demple. 1992. Human apurinic endonuclease gene (APE): structure and genomic mapping (chromosome 14g11.2–12). Hum. Mol. Genet. 1: 677–680.

    PubMed  CAS  Google Scholar 

  86. Hatahet, Z., A. A. Purmal, and S. S. Wallace. 1994. Oxidative DNA lesions as blocks to in vitro transcription by phage T7 RNA polymerase. Ann. NY Acad. Sci. 726: 346–348.

    PubMed  CAS  Google Scholar 

  87. Herzog, H., B. U. Zabel, R. Schneider, B. Auer, M. Hirsch-Kauffmann, and M. Schweiger. 1989. Human nuclear NAD+ ADP-ribosyltransferase: localization of the gene on chromosome 1q41-q42 and expression of an active human enzyme in Esche ri chia coli. Proc. Natl. Acad. Sci. USA 86: 3514–3518.

    CAS  Google Scholar 

  88. Hicks, R. and N. V. Raikhel. 1995. Protein import into the nucleus: an integrated view. Ann. Rev. Cell Dey. Biol. 11: 155–188.

    CAS  Google Scholar 

  89. Hiraoka L. R., J. J. Harrington, D. S. Gerhard, M. R. Lieber, and C. L. Hsieh. 1995. Sequence of human FEN-1, a structure-specific endonuclease, and chromosomal localization of the gene (FEN1) in mouse and human Genomics 25: 220–225.

    CAS  Google Scholar 

  90. Hirota, H. K., M. Matusi, S. Iwata, A. Nishyama, K. Mori, and J. Yodoi. 1997. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc. Natl. Acad. Sci. USA 94: 3633–3638.

    PubMed  CAS  Google Scholar 

  91. Holmquist, G. P. 1998. Endogenous lesions, S phase-independent spontaneous mutations and evolutionary strategies. Mutat. Res. 400: 59–68.

    PubMed  CAS  Google Scholar 

  92. Hoeijmakers, J. H. 1994. Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. Eur. J. Cancer 30A: 1912–1921.

    Google Scholar 

  93. Huang, L. E., Z. Arany, D. M. Livingston, and H. F. Bunn. 1996. Activation of hypoxiainducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J. Biol. Chem. 271: 32,253–32, 259.

    Google Scholar 

  94. Ide, H., H. Murayama, A. Murakami, A. Morii, and K. Makino. 1992. Effects of base damages on DNA replication-mechanism of preferential purine nucleotide insertion opposite abasic site in template DNA. Nucleic Acids Symp. Ser 27: 167–168.

    PubMed  CAS  Google Scholar 

  95. Ikeda, S., T. Biswas, R. Roy, T. Izumi, I. Boldogh, A. Kurosky, A. H. Sarker, S. Seki, and S. Mitra. 1998. Purification and characterization of hNTH1, a homolog of Escherichia coli endonuclease III: direct identification of lys-212 as the active nucleophilic residue. J. Biol. Chem. 273: 21,585–21, 593.

    Google Scholar 

  96. Izumi, T., I. Boldogh, C.V. Ramana, C.-C. Hsieh, H. Saito, J. Papaconstantinou, and S. Mitra. 1999. Repair of oxidative DNA damage and aging: central role of AP-endonuclease, in. NATO ASI Proceedings on DNA Damage and Repair: Oxygen Radical Effects, Cellular Protection, and Biological Consequences (Dizdaroglu, M., ed.), Antalya, Turkey, pp. 295–311.

    Google Scholar 

  97. Izumi, T., J. Malecki, M. A. Chaudhry, M. Weinfeld, J. H. Hill, J. C. Lee, and S. Mitra. 1999. Intragenic suppression of an active site mutation in the human apurinic/apyrimidinic endonuclease. J. Mol. Biol. 287: 47–57.

    PubMed  CAS  Google Scholar 

  98. Izumi, T. and S. Mitra. 1998. Deletion analysis of human AP-endonuclease: minimum sequence required for the endonuclease activity. Carcinogenesis 19: 525–527.

    PubMed  CAS  Google Scholar 

  99. Jayaraman, L., K. G. Murthy, C. Zhu, T. Curran, S. Xanthoudakis, and C. Prives. 1997. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dey. 11: 558–570.

    CAS  Google Scholar 

  100. Jezewska, M. J., S. Rajendran, and W. Bujalowski. 1998. Transition between different binding modes in rat DNA polymerase beta-ssDNA complexes. J. Mol. Biol. 284: 1113–1131.

    PubMed  CAS  Google Scholar 

  101. Johnson, R. E., C. A. Torres-Ramos, T. Izumi, S. Mitra, S. Prakash, and T. Prakash. 1998. Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites. Genes Dey. 12: 3137–3143.

    CAS  Google Scholar 

  102. Jonsson, Z. O., R. Hindges, and U. Hubscher. 1998. Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J. 17: 2412–2425.

    PubMed  CAS  Google Scholar 

  103. Jonsson, Z. O. and U. Hubscher. 1997. Proliferating cell nuclear antigen: more than a clamp for DNA polymerases. BioEssays 19: 967–975.

    PubMed  CAS  Google Scholar 

  104. Kelley, M. R. and L. Erickson. 1998. DNA repair, in Atlas of Clinical Oncology Citation. In press.

    Google Scholar 

  105. Kelley, M. R., Y. Xu, R. Tritt, and K. A. Robertson. 1998. The multifunctional DNA base excision repair and redox protein AP endonuclease (APE/ref-1) and its role in germ cell tumours, in Germ Cell Tumours IV ( ones, W. G., et al., eds.), John Libbey and Co., Ltd., pp. 81–86.

    Google Scholar 

  106. Kemper, R. R., E. R. Ahn, P. Zhang, M. Y. W. T. Lee, and M. Rabin. 1992. Human DNA polymerase delta gene maps to region 19g13.3-g13.4 by in situ hybridization. Genomics 14: 205–206.

    PubMed  CAS  Google Scholar 

  107. Kim, C. Y., B. Shen, M. S. Park, and G. A. Olah. 1999. Structural changes measured by X-ray scattering from human flap endonuclease-1 complexed with Mgt+ and flap DNA substrate. J. Biol. Chem. 274: 1233–1239.

    PubMed  CAS  Google Scholar 

  108. Kim, K., S. Biade, and Y. Matsumoto. 1998. Involvement of flap endonuclease 1 in base excision DNA repair. J. Biol. Chem. 273: 8842–2248.

    PubMed  CAS  Google Scholar 

  109. Kim, K., T. Naito, D. Beach, and Y. Matsumoto. 2000. Inhibition of proliferating cell nuclear antigen-dependent repair of apurinic/apyrimidinic sites by p21c1P/wafl Personal communication.

    Google Scholar 

  110. Kingma, P. S. and N. Osheroff. 1997. Apurinic sites are position-specific topoisomerase II poisons. J. Biol. Chem. 272: 1148–1155.

    PubMed  CAS  Google Scholar 

  111. Klinedinst, D. K. and N. R. Drinkwater. 1992. Mutagenesis by apurinic sites in normal and Ataxia telangiectasia human lymphoblastoid cells. Mol. Carcinog. 6: 32–42.

    PubMed  CAS  Google Scholar 

  112. Klungland, A. and T. Lindahl. 1997. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1) EMBO J. 16: 3341–3348.

    PubMed  CAS  Google Scholar 

  113. Klungland, A., M. Hoss, D. Gunz, S. G. Clarkson, P. W. Doetsch, P. H. Bolton. et al. 1999. Base excision-repair of oxidative DNA damage activated to XPG protein. Mol. Cell. 3: 33–42.

    PubMed  CAS  Google Scholar 

  114. Kolodner, R. 1996. Biochemistry and genetics of eukaryotic mismatch repair. Genes. Dey. 10: 1433–1442.

    CAS  Google Scholar 

  115. Kornberg, A. and T. Baker. 1992. DNA Replication, 2nd ed. W. H. Freeman, New York.

    Google Scholar 

  116. Kow, Y. W., S. S. Wallace, and B. Van Houten. 1990. UvrABC nuclease complex repairs thymine glycol, an oxidative DNA base damage. Mutat. Res. 235: 147–156.

    PubMed  CAS  Google Scholar 

  117. Krishna, T. S. R., X.-P. Kong, S. Gary, P. M. Burgers, and Kuriyan. 1994. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79: 1233–1243.

    PubMed  CAS  Google Scholar 

  118. Krokan, H. E., R. Standal, and G. Slupphaug. 1997. DNA glycosylases in the base excision repair of DNA. Biochem. J. 325: 1–16.

    PubMed  CAS  Google Scholar 

  119. Kubota, Y., R. A. Nash, A. Klungland, P. Schar, D. Barnes, and T. Lindahl. 1996. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase 13 and the XRCC 1 protein. EMBO J. 15: 6662–6670.

    PubMed  CAS  Google Scholar 

  120. Kumar, A., J. Abbotts, E. M. Karawya, and S. H. Wilson. 1990. Identification and properties of the catalytic domain of mammalian DNA polymerase beta. Biochemistry (Wash.) 29: 7156–7159.

    CAS  Google Scholar 

  121. Kumar, A., S. G. Widen, K. R. Williams, P. Kedar, R. L. Karpel, and S. H. Wilson. 1990. Studies of the domain structure of mammalian DNA polymerase beta: identification of a discrete template binding domain. J. Biol. Chem. 265: 2124–2131.

    PubMed  CAS  Google Scholar 

  122. Kunkel, T. A. 1985. The mutational specificity of DNA polymerase-beta during in vitro DNA synthesis. Production of frameshift, base substitution, and deletion mutations. J. Biol. Chem. 260: 5787–5796.

    PubMed  CAS  Google Scholar 

  123. Kunkel, T. A. and P. S. Alexander. 1986. The base substitution fidelity of eucaryotic DNA polymerases. Mispairing frequencies, site preferences, insertion preferences, and base substitution by dislocation../. Biol. Chem. 261: 160–166.

    CAS  Google Scholar 

  124. Lakshmipathy, U. and C. Campbell. 1999. The human DNA ligase III gene encodes nuclear and mitochondrial proteins. Mol. Cell. Biol. 19: 3869–3876.

    PubMed  CAS  Google Scholar 

  125. Lamerdin, J. E., M. A. Montgomery, S. A. Stilwagen, L. K. Scheidecker, R. S. Tebbs, K. W. Brookman, et al. 1995. Genomic sequence comparison of the human and mouse XRCC1 DNA repair gene regions. Genomics 25: 547–554.

    PubMed  CAS  Google Scholar 

  126. Laspia, M. F. and S. S. Wallace. 1988. Excision repair of thymine glycols, urea residues, and apurinic sites in Escherichia coli. J. Bacteriol. 170: 3359–3366.

    CAS  Google Scholar 

  127. Leadon, S. A. and A. V. Avrutskaya. 1997. Differential involvement of the human mismatch repair proteins, hMLH1 and hMSH2, in transcription coupled repair. Cancer. Res. 57: 3784–3791.

    PubMed  CAS  Google Scholar 

  128. Leadon, S. A. and R K. Cooper. 1993. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome. Proc. Natl. Acad. Sci. USA 90: 10,499–10, 503.

    Google Scholar 

  129. Lee, S.-H., Z.-Q. Pan, A. D. Kwong, R M. J. Burgers, and J. Hurwitz. 1991. Synthesis of DNA by DNA polymerase epsilon in vitro. J. Biol. Chem. 266: 22,707–22, 717.

    Google Scholar 

  130. Levin, D. S., W. Bai, N. Yao, M. O’Donnell, and A. E. Tomkinson. 1997. An interaction between DNA ligase I and proliferating cell nuclear antigen: implications for Okazaki fragment synthesis and joining. Proc. Natl. Acad. Sci. USA 94: 12,863–12, 868.

    Google Scholar 

  131. Li, X., J. Li, J. Harrington, M. R. Lieber, and P. M. Burgers. 1995. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem. 270: 22,109–22, 112.

    Google Scholar 

  132. Li, Y., H. Asahara, V. S. Patel, S. Zhou, and S. Linn. 1997. Purification, cDNA cloning and gene mapping of the small subunit of human DNA polymerase epsilon. J. Biol. Chem. 272: 32,337–32, 344.

    Google Scholar 

  133. Lin, Y.-L., M. K. K. Shivji, C. Chen, R. Kolodner, R. D. Wood, and A. Dutta. 1998. The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair. J. Biol. Chem. 273: 1453–1461.

    PubMed  CAS  Google Scholar 

  134. Lin, Z., and C. de los Santos. 2001. NMR characterization of clustered bistrand abasic site lesions: Effect of orientation on their solution structure J. Mol. Biol. In press.

    Google Scholar 

  135. Lin, Z., K.-N. Hung, A. P. Grollman, and C. de los Santos. 1998. Solution structure of duplex DNA containing an extrahelical abasic site analog determined by NMR spectroscopy and molecular dynamics. Nucleic Acids Res. 26: 2385–2391.

    PubMed  CAS  Google Scholar 

  136. Lindahl, T. 1990. Repair of intrinsic DNA lesions. Mutat. Res. 238: 305–311.

    PubMed  CAS  Google Scholar 

  137. Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362: 709–715.

    PubMed  CAS  Google Scholar 

  138. Lindahl, T. 1999. DNA lesions generated in vivo by reactive oxygen species, their accumulation and repair, in DNA Damage and Repair: Oxygen Radical Effects, Cellular Protection and Biological Consequences ( Dizdaroglu, M. ed.), Plenum Press, In press

    Google Scholar 

  139. Lindahl, T. and D. E. Barnes. 1992. Mammalian DNA ligases. Annu. Rev. Biochem. 61: 251–281.

    PubMed  CAS  Google Scholar 

  140. Lindahl, T., P. Karran, and R. D. Wood. 1997. DNA excision repair pathways. Curr. Opin. Genet. Dev. 7: 158–169.

    PubMed  CAS  Google Scholar 

  141. Liu, V. F. and D. T. Weaver. 1993. The ionizing radiation-induced replication protein A phosphorylation response differs between Ataxia telangectasia and normal human cells. Mol. Cell. Bio. 13: 7222–7231.

    CAS  Google Scholar 

  142. Longley, M. J., A. J. Pierce, and P. Modrich. 1997. DNA polymerase delta is required for human mismatch repair in vitro. J. Biol. Chem. 272: 10,917–10, 921.

    Google Scholar 

  143. Longley, M. J., R. Prasad, D. K. Srivastava, S. H. Wilson, and W. C. Copeland. 1998. Identification of 5’-deoxyribose phosphate lyase activity in human DNA polymerase gamma and its role in mitochondrial base excision repair in vitro. Proc. Natl. Acad. Sci. USA 95: 12,233–12, 248.

    Google Scholar 

  144. Longley, M. J., P. A. Ropp, S. E. Lim, and W. C. Copeland. 1998. Characterization of the native and recombinant catalytic subunit of human polymerase gamma: Identification of residues critical for exonuclease activity and dideoxynucleotide sensitivity. Biochemistry (Wash.) 37: 10, 529–10, 539.

    Google Scholar 

  145. Lucas, J. A., Y. Masuda, R. A. O. Bennett, N. S. Strauss, and P. R. Strauss. 1999. Single-turnover analysis of mutant human apurinic/apyrimidinic endonuclease. Biochemistry (Wash.) 38: 4958–4964.

    CAS  Google Scholar 

  146. Luckow, B., F. Bunz, B. Stillman, P. Lichter, and G. Schutz. 1994. Cloning, expression, and chromosomal localization of the 140-kilodalton subunit of replication factor C from mice and humans. Mol. Cell. Biol. 14: 1626–1634.

    PubMed  CAS  Google Scholar 

  147. Lundquist, R. C., and B. M. Olivera. 1982. Transient generation of displaced single-stranded DNA during nick translation. Cell 31: 53–60.

    PubMed  CAS  Google Scholar 

  148. Lyamichev, V., M. A. Brow, and J. E. Dahlberg. 1993. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science 260: 778–783.

    PubMed  CAS  Google Scholar 

  149. Maga, G. and U. Hubscher. 1995. DNA polymerase epsilon interacts with proliferating cell nuclear antigen in primer recognition and elongation. Biochemistry (Wash.) 34: 891–901.

    CAS  Google Scholar 

  150. Maga, G., R. Mossi, R. Fisher, M. W. Berchtold, and U. Hubscher. 1997. Phosphorylation of the PCNA binding domain of the large subunit of replication factor C by Cat+/calmodulin-dependent protein kinase II inhibits DNA synthesis. Biochemistry (Wash.) 36: 5300–5310.

    CAS  Google Scholar 

  151. Marathias, V. M., B. Jerkovic, and P. H. Bolton. 1999. Damage increases the flexibility of duplex DNA. Nucleic Acids Res. 27: 1854–1858.

    PubMed  CAS  Google Scholar 

  152. Marintchev, A., M. A. Mullen, M. W. Maciejewski, B. Pan, M. R. Gryk, and G. P. Mullen. 1999. Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nature Struct. Biol. 6: 884–893.

    PubMed  CAS  Google Scholar 

  153. Masson, M., C. Niedergang, V. Schreiber, S. Muller, J. Menisser-de Murcia, and G. de Murcia. 1998. XRCC1 is specifically associated with poly (ADP)-ribose) polymerase and negatively regulates its activity following DNA damage. Mol. Cell. Biol. 18: 3563–3571.

    PubMed  CAS  Google Scholar 

  154. Masuda„ Y., R. A. O. Bennett, and B. Demple. 1998. Dynamics of the interaction of human apurinic endonuclease (Ape 1) with its substrate and product. J. Biol. Chem. 273: 30,352–30, 359.

    Google Scholar 

  155. Masuda, Y., R. A. Bennett, and B. Demple. 1998. Rapid dissociation of human apurinic endonuclease (Apel) from incised DNA induced by magnesium. J. Biol. Chem. 273: 30,360–30, 365.

    Google Scholar 

  156. Masutani, M., T. Nozaki, E. Nishiyama, T. Shimokawa, Y. Tachi, H. Nakagama. et al. 1999. Function of poly(ADP-ribose) polymerase in response to DNA damage: gene-disruption study in mice. Mol. Cell. Biochem. 193: 149–152.

    PubMed  CAS  Google Scholar 

  157. Masutani, M., T. Nozaki, K. Wakabayashi, and T. Sugimura. 1995. Role of poly(ADPribose)polymerase in cell-cycle checkpoint mechanisms following gamma-irradiation. Biochimie 77: 462–465.

    PubMed  CAS  Google Scholar 

  158. Matsumoto, Y. and D. F. Bogenhagen. 1991. Repair of a synthetic abasic site involves concerted reactions of DNA synthesis followed by excision and ligation. Mol. Cell. Biol. 11: 4441–4447.

    PubMed  CAS  Google Scholar 

  159. Matsumoto, Y. and K. Kim. 1995. Excision of deoxyribose phosphate residues by DNA polymerase [3 during DNA repair. Science 269: 699–702.

    PubMed  CAS  Google Scholar 

  160. Matsumoto, Y., K. Kim, and D. F. Bogenhagen. 1994. Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternating pathway of base excision repair. Mol. Cell. Biol. 14: 6187–6197.

    PubMed  CAS  Google Scholar 

  161. Matsumoto, Y., K. Kim, D. S. Katz, and J. A. Feng. 1998. Catalytic center of DNA polymerase beta for excision of deoxyribose phosphate groups. Biochemistry 37: 6456–6464.

    PubMed  CAS  Google Scholar 

  162. Matsumoto, Y., K. Kim, J. Hurwitz, M. Park, and A. Tomkinson. 1999. Reconstitution of proliferating cell nuclear antigen-dependent repair of apurinic/apyrimidinic sites with purified human proteins. J. Biol. Chem. 274: 33,703–33, 708.

    Google Scholar 

  163. McCullough, A. K., M. L. Dodson, and R. S. Lloyd. 1999. Initiation of base excision repair: Glycosylase mechanisms and structures. Annu. Rev. Biochem. 68: 255–285.

    PubMed  CAS  Google Scholar 

  164. Meira, L. B., D. L. Cheo, R. E. Hammer, D. K. Burns, A. Reis, and E. C. Friedberg. 1997. Genetic interaction between HAP1/REF-1 and p53. Nature Genet. 17: 145.

    PubMed  CAS  Google Scholar 

  165. Menge, K. L., Z. Hostomsky, B. R. Nodes, G. O. Hudson, S. Rahmati, E. W. Moomaw. et al. 1995. Structure-function analysis of the mammalian DNA polymerase beta active site: role of aspartic acid 256, arginine 254, and arginine 258 in nucleotidyl transfer. Biochemistry (Wash.) 34: 15, 934–15, 942.

    Google Scholar 

  166. Mitra, S., T. K. Hazra, R. Roy, S. Ikeda, T. Biswas, J. Lock, I. Boldogh, and T. Izumi. 1997. Complexities of DNA base excision repair in mammalian cells. Mol. Cells 7: 305–312.

    PubMed  CAS  Google Scholar 

  167. Modrich, R and R. Lahue. 1996. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65: 101–133.

    PubMed  CAS  Google Scholar 

  168. a.Mol, C. D., T. Izumi, S. Mitra, and J. A. Tamer. 2000. DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature 403: 451–456.

    Google Scholar 

  169. Morozov, V. E., M. Falzon, C. W. Anderson, and E. L. Kuff. 1994. DNA-dependant protein kinase is activated by nicks and larger single stranded gaps. J. Biol. Chem. 269: 16,684–16, 688.

    Google Scholar 

  170. Mossi, R., E. Ferrari, and U. Hubscher. 1998. DNA ligase I selectively affects DNA synthesis by DNA polymerases delta and epsilon suggesting different functions in DNA replication and repair. J. Biol. Chem. 273: 14,322–14, 330.

    Google Scholar 

  171. Mossi, R. and U. Hubscher. 1998. Clamping down on clamps and clamp loaders. Eur. J. Biochem. 254: 209–216.

    PubMed  CAS  Google Scholar 

  172. Mozzherin, D. J. and P. A. Fisher. 1996. Human DNA polymerase epsilon: enzymologic mechanism and gap filling synthesis. Biochemistry (Wash.) 35: 3572–3577.

    CAS  Google Scholar 

  173. Mozzherin, D. J., M. McConnell, M. V. Jasko, A. A. Krayevsky, C. K. Tan, K. M. Downey, and P. A. Fisher. 1996. Proliferating cell nuclear antigen promotes misincorporation catalyzed by calf thymus DNA polymerase delta. J. Biol. Chem. 271: 31,711–31, 717.

    Google Scholar 

  174. Mozzherin, D. J., S. Shibutani, C. K. Tan, K. M. Downey, and P. A. Fisher. 1997. Proliferating cell nuclear antigen promotes DNA synthesis past template lesions by mammalian DNA polymerase delta. Proc. Natl. Acad. Sci. USA 94: 6126–6131.

    PubMed  CAS  Google Scholar 

  175. Muller-Weeks, S. J. and S. Cradonna. 1996. Specific association of cyclin-like uracil-DNA glycosylase with the proliferating cell nuclear antigen. Exp. Cell. Res. 226: 346–355.

    PubMed  CAS  Google Scholar 

  176. Murante, R. S., L. Rust, and R. A. Bambara. 1995. Calf 5’ to 3’ exo/endonuclease must slide from a 5’ end of the substrate to perform structure-specific cleavage. J. Biol. Chem. 270: 30,377–30, 383.

    Google Scholar 

  177. Nagelhus, T. A., T. Haug, K. K. Singh, K. F. Keshav, E. Skorpen, M. Otterlei, S. Bharati, T. Lindmo, S. Benichou, R. Benarous, and H. E. Krokan. 1997. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J. Biol. Chem. 272: 6561–6566.

    PubMed  CAS  Google Scholar 

  178. Nakai, K. and M. Kanehisa. 1992. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897–911.

    PubMed  CAS  Google Scholar 

  179. Nash, R. A., K. W. Caldecott, D. E. Barnes, and T. Lindahl. 1997. XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry (Wash.) 36: 5207–5211.

    CAS  Google Scholar 

  180. Nealon, K., I. D. Nicholl, and M. K. Kenny. 1996. Characteristics of the DNA polymerase requirements of human base excision repair. Nucleic Acids Res. 24: 3763–3770.

    PubMed  CAS  Google Scholar 

  181. Ng, L., C. K. Tan, K. M. Downey, and P. A. Fisher. 1991. Enzymologic mechanism of calf thymus DNA polymerase delta. J. Biol. Chem. 266: 11,699–11, 704.

    Google Scholar 

  182. a.Nguyen, L. H., D. Barsky, J. P. Erzberger, and D. M. Wilson III. 2000. Mapping the protein-DNA interface and the metal-binding site of the major human apurinic/apyrimidinic endonuclease. J. Mo. Biol. 298: 447–459.

    Google Scholar 

  183. Nicholl, I. D., K. Nealon, and M. K. Kenny. 1997. Reconstitution of human base excision repair with purified proteins. Biochemistry (Wash.) 36: 7557–7566.

    CAS  Google Scholar 

  184. Nichols, A. F. and A. Sancar. 1992. Purification of PCNA as a nucleotide excision repair protein. Nucleic Acids. Res. 20: 2441–2446.

    PubMed  CAS  Google Scholar 

  185. Nouspikel, T., P. Lalle, S. A. Leadon, P. K. Cooper, and S. G. Clarkson. 1997. A common mutational pattern in Cockayne syndrome patients from Xeroderma pigmentosum group G: Implications for a second XPG function. Proc. Natl. Acad. Sci. USA 94: 3116–3121.

    PubMed  CAS  Google Scholar 

  186. Ochs, K., R. W. Sobol, S. H. Wilson, and B. Kaina. 1999. Cells deficient in DNA polymerase beta are hypersensitive to alkylating agent-induced apoptosis and chromosomal breakage. Cancer Res. 59. 1544–1551.

    PubMed  CAS  Google Scholar 

  187. Offer, H., R. Wolkowicz, D. Matas, S. Blumenstein, Z. Livneh, and V. Rotter. 1999. Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery. FEBS Lett. 450: 197–204.

    PubMed  CAS  Google Scholar 

  188. Ohashi, Y., A. Itaya, Y. Tanaka, K. Yoshihara, T. Kamiya, and A. Matsukage. 1986. Poly(ADPribosyl)ation of DNA polymerase beta in vitro. Biochem. Biophys. Res. Commun. 140: 666–673.

    CAS  Google Scholar 

  189. Okazaki, T., U. Chung, T. Nishishita, S. Ebisu, S. Usuda, S. Mishiro, S. Xanthoudakis, T. Igarashi, and E. Ogata. 1994. A redox factor protein, refl, is involved in negative gene regulation by extracellular calcium. J. Biol. Chem. 269: 27,855–27, 862.

    Google Scholar 

  190. Okumura, K., M. Nogami, H. Taguchi, F. B. Dean, M. Chen. Z. Q. Pan. et al. 1995. Assignment of the 36.5-kDa (RFC5), 37-kDa (RFC4), 38-kDa (RFC3), and 40-kDa (RFC2) subunit genes of human replication factor C to chromosome bands 12g24.2-q24.3, 3q27, 13g12.3-q13, and 7q11.23. Genomics 25: 274–278.

    PubMed  CAS  Google Scholar 

  191. Opresko, P. L., J. B. Sweasy, and K. A. Eckert. 1998. The mutator form of polymerase beta with amino acid substitution at tyrosine 265 in the hinge region displays an increase in both base substitution and frame shift errors. Biochemistry (Wash.) 37: 2111–2119.

    CAS  Google Scholar 

  192. Op het Veld, C. W., J. Jansen, M. Z. Zdzienicka, H. Vrieling, and A. A. van Zeeland. 1998. Methyl methanesulfonate-induced hprt mutation spectra in the Chinese hamster cell line CHO9 and its xrccl-deficient derivative EM-Cl1. Mutat. Res. 398: 83–92.

    PubMed  CAS  Google Scholar 

  193. Osheroff W. P., W. A. Beard, S. H. Wilson, and T. A. Kunkel. 1999. Base substitution specificity of DNA polymerase beta depends on interactions in the DNA minor groove. J. Biol. Chem. 274: 20,749–20, 752.

    Google Scholar 

  194. Osheroff, W. P., H. K. Jung, W. A. Beard, S. H. Wilson, and T. A. Kunkel. 1999. The fidelity of DNA polymerase beta during distributive and processive DNA synthesis. J. Biol. Chem. 274: 3642–3650.

    PubMed  CAS  Google Scholar 

  195. Pelletier, H. 1994. Polymerase structures and mechanism. Science 266: 2025–2026.

    PubMed  CAS  Google Scholar 

  196. Pelletier, H., M. R. Sawaya, W. Wolfle, S. H. Wilson, and J. Kraut. 1996. Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity. Biochemistry (Wash.) 35: 12, 742–12, 761.

    Google Scholar 

  197. Piersen, C. E., R. Prasad, S. H. Wilson, and R. S. Lloyd. 1996. Evidence for an imino intermediate in the DNA polymerase 13 deoxyribose phosphate excision reaction. J. Biol. Chem. 271: 17,811–17, 815.

    Google Scholar 

  198. Pinz, K. G. and D. F. Bogenhagen. 1998. Efficient repair of abasic sites in DNA by mitochondrial enzymes. Mol. Cell. Biol. 18: 1257–1265.

    PubMed  CAS  Google Scholar 

  199. Pinz, K. G., S. Shibutani, and D. F. Bogenhagen. 1995. Action of mitochondrial DNA polymerase gamma at sites of base loss or oxidative damage. J. Biol. Chem. 270: 9202–9206.

    PubMed  CAS  Google Scholar 

  200. Podust, V. N., N. Tiware, R. Ott, and E. Fanning. 1998. Functional interactions among the subunits of replication factor C potentiate and modulate its ATPase activity. J. Biol. Chem. 273: 12,935–12, 942.

    Google Scholar 

  201. Podust, V. N., N. Tiwari, S. Stephan, and E. Fanning. 1998. Replication factor C disengages from proliferating cell nuclear antigen (PCNA) upon sliding clamp formation, and PCNA itself tethers DNA polymerase delta to DNA. J. Biol. Chem. 273: 31,992–31, 999.

    Google Scholar 

  202. Pourquier, P., L.-M. Ueng, G. Kohlhagen, A. Mazumder, M. Gupta, K. W. Kohn, and Y. Pommier. 1997. Effects of uracil incorporation, DNA mismatches and abasic sites on cleavage and religation activities of mammalian topoisomerase I. J. Biol. Chem. 272: 7792–7796.

    PubMed  CAS  Google Scholar 

  203. Prasad, R., W. A. Beard, J. Y. Chyan, M. W. Maciejewski, G. P. Mullen, and S. H. Wilson. 1998. Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase beta as revealed by site-directed mutagenesis. DNA binding and 5’-deoxyribose phosphate lyase activities. J. Biol. Chem. 273: 11,121–11, 126.

    Google Scholar 

  204. Prasad, R., W. A. Beard, P. R. Strauss, and S. H. Wilson. 1998. Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. J. Biol. Chem. 273: 15,263–15, 270.

    Google Scholar 

  205. Prasad, R., W. A. Beard, and S. H. Wilson. 1994. Studies of gapped DNA substrate binding by mammalian DNA polymerase beta. Dependence on 5’-phosphate group. J. Biol. Chem. 269: 18,096–18, 101.

    Google Scholar 

  206. Prasad, R., R. K. Singhal, D. K. Srivastava, J. T. Molina, A. E. Tomkinson, and S. H. Wilson. 1996. Specific interaction of DNA polymerase 3 and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J. Biol. Chem. 271: 16,000–16, 007.

    Google Scholar 

  207. Qin, J., G. M. Clore, W. P. Kennedy, J. Kuszewski, and A. M. Gronenborn. The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal. 1996. Structure 4: 613–620.

    PubMed  CAS  Google Scholar 

  208. Radman, M. 1989. Mismatch repair and the fidelity of genetic recombination. Genome 31: 68–73.

    PubMed  CAS  Google Scholar 

  209. Rajendran, S., M. J. Jezewska, and W. Bujalowski. 1998. Human DNA polymerase beta recognizes single-stranded DNA using two different binding modes. J. Biol. Chem. 273: 31,021–32, 031.

    Google Scholar 

  210. Ramana, C. V., I. Boldogh, T. Izumi, and S. Mitra. 1998. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc. Natl. Acad. Sci. USA 95: 5061–5066.

    PubMed  CAS  Google Scholar 

  211. Rao, V. V., S. Schnittger, and I. Hansmann. 1991. Chromosomal localization of the human proliferating cell nuclear antigen (PCNA) gene to or close to 20p12 by in situ hybridization Cytogenet. Cell. Genet. 56: 169–170.

    CAS  Google Scholar 

  212. Robertson, K. A., D. P. Hill, Y. Xu, L. Liu, S. Van Eppa, D. M. Hockenbery, et al. 1997. Down regulation of apurinic/apyrimidinic endonuclease expression is associated with the induction of apoptosis in differentiating myeloid leukemia cells. Cell Growth Differ. 8: 443–449.

    PubMed  CAS  Google Scholar 

  213. Robins, P., D. J. Pappin, R. D. Wood, and T. Lindahl. 1994. Structural and functional homology between mammalian DNase IV and the 5’-nuclease domain of Escherichia coli DNA polymerase I. J. Biol. Chem. 269: 28,535–28, 538.

    Google Scholar 

  214. Robson, C. N., D. Hochhauser, R. Craig, K. Rack, V. J. Buckle, and I. D. Hickson. 1992. Structure of the human DNA repair gene HAP1 and its localization to chromosome 14q 11.2–12. Nucleic Acids Res. 20: 4417–4421.

    PubMed  CAS  Google Scholar 

  215. Robson, C. N. and I. D. Hickson. 1991. Isolation of cDNA clones encoding a human apurinic/ apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res. 19: 5519–5523.

    PubMed  CAS  Google Scholar 

  216. Ropp, P. A. and W. C. Copeland. 1996. Cloning and characterization of the human mitochondria) DNA polymerase, DNA polymerase gamma. Genomics 36: 449–458.

    PubMed  CAS  Google Scholar 

  217. Rothwell, D. G., B. Hang, M. A. Gorman, P. S. Freemont, B. Singer, and I. D. Hickson. 2000. Substitution of Asp-210 in HAP1 (APE/Ref-1) eliminates endonuclease activity but stabilizes substrate binding. Nucleic Acids Res. 28: 2207–2213.

    PubMed  CAS  Google Scholar 

  218. Rothwell, D. G. and I. D. Hickson. 1996. Asparagine 212 is essential for abasic site recognition by the human DNA repair endonuclease HAP1. Nucleic Acids Res. 24: 4217–4221.

    PubMed  CAS  Google Scholar 

  219. Ruf, A., V. Rolli, G. deMurcia, and G. E. Schulz. 1998. The mechanism of the elongation and branching reaction of poly(ADP-ribose) polymerase as derived from crystal structures and mutagenesis. J. Mol. Biol. 278: 57–65.

    PubMed  CAS  Google Scholar 

  220. Ruscetti, T., B. E. Lehnert, J. Halbrook, H. Le Trong, M. F. Hoekstra, D. J. Chen, and S. R. Peterson. 1998. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J. Biol. Chem. 273: 14,461–14, 467.

    Google Scholar 

  221. Salazar, J. J. and B. Van Houten. 1997. Preferential mitochondrial DNA injury caused by glucose oxidase as a steady generator of hydrogen peroxide in human fibroblasts. Mutat. Res. 385: 139–149.

    PubMed  CAS  Google Scholar 

  222. Sancar, A. 1996. DNA excision repair. Annu. Rev. Biochem. 65: 43–81.

    PubMed  CAS  Google Scholar 

  223. Sanchez, G. and M. D. Mamet-Bradley. 1994. Transcription by T7 RNA polymerase of DNA containing abasic sites. Environ. Mol. Mutagen. 23: 32–36.

    PubMed  CAS  Google Scholar 

  224. Sanchez, G., J. F. Racine, and M. D. Mamet-Bradley. 1994. Effect of abasic sites on bacteriophage T7 protein synthesis. Mutat. Res. 325: 39–45.

    PubMed  CAS  Google Scholar 

  225. Sandigursky, M., A. Yacoub, M. R. Kelley, W. A. Deutsch, and W. A. Franklin. 1997. The Drosophila ribosomal protein S3 contains a DNA deoxyribose phosphodiesterase (dRPase) activity. J. Biol. Chem. 272: 17,480–17, 484.

    Google Scholar 

  226. Sandigursky, M., A. Yacoub, M. R. Kelley, Y. Xu, W. A. Franklin, and W. A. Deutsch. 1998. The yeast 8-oxoguanine DNA glycosylase (Oggi) contains a DNA deoxyribophosphodiesterase (dRpase) activity. Nucleic Acids Res. 26: 1282–1287.

    PubMed  CAS  Google Scholar 

  227. Sawaya, M. R., H. Pelletier, A. Kumar, S. H. Wilson, and J. Kraut. 1994. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science 264: 1930–1935.

    PubMed  CAS  Google Scholar 

  228. Sawaya, M. R., R. Prasad, S. H. Wilson, J. Kraut, and H. Pelletier. 1997. Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry (Wash.) 36: 11, 205–11, 215.

    Google Scholar 

  229. Seeberg, E., L. Eide, and M. Bjoras. 1995. The base excision repair pathway Trends. Biochem. Sci. 20: 391–397.

    CAS  Google Scholar 

  230. Seki, S., M. Hatsushika, S. Watanabe, K. Akiyama, K. Nagao, and K. Tsutsui. 1992. cDNA cloning, sequencing, expression and possible domain structure of human APEX nuclease homologous to Escherichia coli exonuclease III. Biochim. Biophys. Acta. 1131: 287–289.

    Google Scholar 

  231. Shivji, K. K., M. K. Kenny, and R. D. Wood. 1992. Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69: 367–74.

    PubMed  CAS  Google Scholar 

  232. Singhal, R. K., R. Prasad, and S. H. Wilson. 1995. DNA polymerase 3 conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis extract. J. Biol. Chem. 270: 949–957.

    PubMed  CAS  Google Scholar 

  233. Singhal, R. K. and S. H. Wilson. 1993. Short gap-filling synthesis by DNA polymerase 13 is processive. J. Biol. Chem. 268: 15,906–15, 911.

    Google Scholar 

  234. Sobol, R. W., J. K. Horton, R. Kuhn, H. Gu, R. K. Singhal, R. Prasad, K. Rajewsky, and S. H. Wilson. 1996. Requirement of mammalian DNA polymerase-f3 in base excision repair. Nature 379: 183–186.

    PubMed  CAS  Google Scholar 

  235. Srivastava, D. K., R. K. Evans, A. Kumar, W. A. Beard, and S. H. Wilson. 1996. dNTP binding site in rat DNA polymerase beta revealed by controlled proteolysis and azido photoprobe cross-linking. Biochemistry (Wash.) 35: 3728–3734.

    Google Scholar 

  236. Srivastava, D. K., B. J. Vande Berg, R. Prasad, J. T. Molina, W. A. Beard, A. E. Tomkinson, and S. H. Wilson. 1998. Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. J. Biol. Chem. 273: 21,203–32, 309.

    Google Scholar 

  237. Strauss, R. R., W. A. Beard, T. A. Patterson, and S. A. Wilson. 1997. Substrate binding by human apurinic/apyrimidinic endonuclease indicates a Briggs-Haldane mechanism. J. Biol. Chem. 272: 1302–1307.

    PubMed  CAS  Google Scholar 

  238. Strauss, R. R. and C. M. Holt. 1998. Domain mapping of human apurinic/apyrimidinic endonuclease. J. Biol. Chem. 273: 14,435–14, 441.

    Google Scholar 

  239. Stucki, M., B. Pascucci, E. Parlanti, R. Fortini, S. H. Wilson, U. Hubscher, and E. Dogliotti. 1998. Mammalian base excision repair by DNA polymerases S and e Oncogene 17: 835–843.

    PubMed  CAS  Google Scholar 

  240. Syvaoja, J. E. 1990. DNA polymerase epsilon: the latest member in the family of mammalian DNA polymerases. Bioessays 12: 533–536.

    PubMed  CAS  Google Scholar 

  241. Suh, D., D. M. III, Wilson, and L. F. Povrik. 1997. 3’-phosphodiesterase activity of human apurinic/apyrimidinic endonuclease at DNA double-strand break ends. Nucleic Acids Res. 25: 2495–2500.

    Google Scholar 

  242. Szpirer, J., F. Pedeutour, T. Kesti, M. Riviera, J. Syvaoja, C. Turc-Carel, and C. Szpirer. 1994. Localization of the gene for DNA polymerase epsilon (POLE) to human chromosome 12q 24.3 and rat chromosome 12 by somatic cell hybrid panels and fluorescence in situ hybridization. Genomics 20: 223–226.

    PubMed  CAS  Google Scholar 

  243. Taguchi, T., M. Ogihara, T. Maekawa, F. Hanaoka, and M. Tanno. 1995. Stimulation of DNA polymerase gamma activity by proliferating cell nuclear antigen. Biochem. Biophys. Res. Commun. 216: 715–722.

    PubMed  CAS  Google Scholar 

  244. Takeshita, M. and W. Eisenberg. 1994. Mechanism of mutation on DNA templates containing synthetic abasic sites: study with a double strand vector. Nucleic Acids Res., 22: 1897–1902.

    PubMed  CAS  Google Scholar 

  245. Thomas, D. C., J. D. Roberts, R. D. Sabatino, T. W. Myers, C.-K. Tan, K. M. Downey, et al. 1991. Fidelity of mammalian DNA replication and replicative DNA polymerases. Biochemistry 30: 11, 751–11, 759.

    Google Scholar 

  246. Thompson, L. H., K. W. Brookman, N. J. Jones, S. A. Allen, and A. V. Carrano. 1990. Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol. Cell. Biol. 10: 6160–6171.

    PubMed  CAS  Google Scholar 

  247. Tokui, T., M. Inagaki, K. Nishizawa, R. Yatani, M. Kusagawa, Y. Nishimoto, T. Date, and A. Matsukage. 1991. Inactivation of DNA polymerase beta by in vitro phosphorylation with protein kinase C. J. Biol. Chem. 266: 10, 820–10, 824.

    Google Scholar 

  248. Tomkinson, A. E. and Z. B. Mackey. 1998. Structure and function of mammalian DNA ligases. Mutat. Res. 407: 1–9.

    PubMed  CAS  Google Scholar 

  249. Tomkinson, A. E., J.-W. Chen, J. Besterman and I. Husain. 1998. Cellular functions of mammalian DNA ligases, in DNA Damage and Repair, vol. 2 ( Nickoloff, J. A. and Hoekstra, M. E, eds.), Humana Press, Totowa, NJ, pp. 181–198.

    Google Scholar 

  250. Troelstra, C., A. van Gool, J. de Wit, W. Vermeulen, D. Bootsma, and J. H. Hoeijmakers. 1992. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71: 939–953.

    PubMed  CAS  Google Scholar 

  251. Trucco, C., F. J. Oliver, G. de Murcia, and J. Menissier-de Murcia. 1998. DNA repair defect in poly (ADP-ribose) polymerase-deficient cell lines. Nucleic. Acids Res. 26: 2644–2649.

    PubMed  CAS  Google Scholar 

  252. Tsurimoto, T. 1998. PCNA, a multifunctional ring on DNA. Biochim. Biophys. Acta. 1443: 23–39.

    PubMed  CAS  Google Scholar 

  253. Uhlmann, E, J. Cai, E. Gibbs, M. O’Donnell, and J. Hurwitz. 1997. Deletion analysis of the large subunit p140 in human replication factor C reveals regions required for complex formation and replication activities. J. Biol. Chem. 272: 10,058–10, 064.

    Google Scholar 

  254. Umar, A., A. B. Buermeyer, J. A. Simon, D. C. Thomas, A. B. Clark, R. M. Liskay, and T. A. Kunkel. 1996. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87: 65–73.

    PubMed  CAS  Google Scholar 

  255. van Gool, A. J., G. T. van der Horst, E. Citterio, and J. H. Hoeijmakers. 1997. Cockayne syndrome: defective repair of transcription? EMBO J. 16: 4155–4162.

    PubMed  Google Scholar 

  256. Vermeulen, W., A. J. van Vuuren, M. Chipoulet, L. Schaeffer. E. Appeldoorn, G. Weeda, N. G. Jaspers, A. Priestley, C. F. Arlett, and A. R. Lehmann. 1994. Three unusual repair deficiencies associated with transcription factor BTF2(TFIIH): evidence for the existence of a transcription syndrome Cold Spring. Harb. Symp. Quant. Biol. 59: 317–329.

    CAS  Google Scholar 

  257. von Sonntag, C. 1987. The Chemical Basis of Radiation Biology. Taylor and Francis, London.

    Google Scholar 

  258. Waga, S., G. J. Hannon, D. Beach, and B. Stillman. 1994. The p21 inhibitor of cyclin-dependant kinases controls DNA replication by interaction with PCNA. Nature 369: 574–578.

    PubMed  CAS  Google Scholar 

  259. Walker, R. L., P. Anziano, and P. S. Meltzer. 1997. A PAC containing the human mitochondrial DNA polymerase gamma gene (POLG) maps to chromosome 15q25. Genomics 40: 376–378.

    PubMed  CAS  Google Scholar 

  260. Wang, K. Y., S. A. Parker, I. Goljer, and P. H. Bolton. 1997. Solution structure of a duplex DNA with an abasic site in a dA tract. Biochemistry (Wash.) 36: 11, 629–11, 639.

    Google Scholar 

  261. Walker, L. J., C. N. Robson, E. Black, D. Gillespie, and I. D. Hickson. 1993. Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol. Cell. Biol. 13: 5370–5376.

    PubMed  CAS  Google Scholar 

  262. Warbrick, E., D. P. Lane, D. M. Glover, and L. S. Cox. 1997. Homologous regions of Fenl and p21°’PI compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair. Oncogene 14: 2313–2321.

    PubMed  CAS  Google Scholar 

  263. Ward, J. F. 1988. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog. Nucleic Acid. Res. Mol. Biol. 35: 95–125.

    PubMed  CAS  Google Scholar 

  264. Waters, T. R., P. Gallinary, J. Jiricny, and P. F. Swann. 1999. Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1. J. Biol. Chem. 274: 67–74.

    PubMed  CAS  Google Scholar 

  265. Webb, G., P. Parsons, and G. Chenevix-Trench. 1990. Localization of the gene for human proliferating nuclear antigen/cyclin by in situ hybridization. Hum. Genet. 86: 84–86.

    PubMed  CAS  Google Scholar 

  266. Wei, Y. F., P. Robins, K. Carter, K. Caldecott, D. J. Pappin, G. L. Yu, et al. 1995. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol. Cell. Biol. 15: 3206–3232.

    PubMed  CAS  Google Scholar 

  267. Werneburg, B. G., J. Ahn, X. Zhong, R. J. Hondal, V. S. Kraynov, and M. D. Tsai. 1996. DNA polymerase beta: pre-steady state kinetic analysis and roles of arginine-283 in catalysis and fidelity. Biochemistry (Wash.) 35: 7041–7050.

    CAS  Google Scholar 

  268. Wiesel, P., L. C. Foster, A. Pellacani, M. D. Layne, C.-M. Hsieh, G. S. Huggins, P. R. Strauss, S.-F. Yet, and M. A. Perrella. 2000. Thioredoxin facilitates the induction of heme oxygenase-1 in response to inflammatory mediators. J. Biol. Chem. 275: 4840–4846.

    Google Scholar 

  269. Wilson, D. M. III, M. Takeshita, and B. Demple. 1997. Abasic site binding by the human apurinic endonuclease, Ape, and determination of the DNA contact sites. Nucleic. Acids. Res. 25: 933–939.

    PubMed  CAS  Google Scholar 

  270. Wilson, D. M. III, M. Takeshita, A. P. Grollman, and B. Demple. 1995. Incision activity of human apurinic endonuclease (Ape) at abasic site analogs in DNA. J. Biol. Chem. 270: 16,002–16, 007.

    Google Scholar 

  271. Wilson, S. H. Mammalian base excision repair and DNA polymerase beta. 1998. Mutat. Res. 407: 203–215.

    PubMed  CAS  Google Scholar 

  272. Wilson, T. M., S. A. Rivkees, W. A. Deutsch, and M. R. Kelley. 1996. Differential expression of the apurinic/apyrimidinic endonuclease (APE/ref-1) multifunctional DNA base excision repair gene during fetal development and in adult rat brain and testis. Mutat. Res. 362: 237–248.

    PubMed  Google Scholar 

  273. Winters, T. A., W. D. Henner, P. S. Russell, A. McCullough, and T. J. Jorgensen. 1994. Removal of 3’-phosphoglycolate from DNA strand-break damage in an oligonucleotide substrate by recombinant human apurinic/apyrimidinic endonuclease 1. Nucleic Acids Res. 22: 1866–1873.

    PubMed  CAS  Google Scholar 

  274. Wold, M. S. 1997. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66: 61–92.

    PubMed  CAS  Google Scholar 

  275. Wood, R. D. 1996. DNA repair in eukaryotes. Annu. Rev. Biochem. 65: 135–167.

    PubMed  CAS  Google Scholar 

  276. Wu, X., J. Li, X. Li, C. L. Hsieh, P. M. Burgers, and M. R. Lieber. 1996. Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA. Nucleic Acids Res. 24: 2036–2043.

    PubMed  CAS  Google Scholar 

  277. Xanthoudakis, S., G. G. Miao, and T. Curran. 1994. The redox and DNA repair activities of Ref-1 are encoded by nonoverlapping domains. Proc. Natl. Acad. Sci. USA 91: 23–27.

    PubMed  CAS  Google Scholar 

  278. Xanthoudakis, S., G. Miao, F. Wang, Y. C. Pan, and T. Curran. 1992. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 11: 3323–3335.

    PubMed  CAS  Google Scholar 

  279. Xanthoudakis, S., R. J. Smeyne, J. D. Wallace, and T. Curran. 1996. The redox/DNA repair protein, Ref-1, is essential for early embryonic development. Proc. Natl. Acad. Sci. USA 93: 8919–8923.

    PubMed  CAS  Google Scholar 

  280. Xiao, W. and L. Samson. 1993. In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Proc. Natl. Acad. Sci. USA 90: 2117–2121.

    CAS  Google Scholar 

  281. Xu, Y., D. H. Moore, J. Broshears, L. Liu, T. Wilson, and M. R. Kelley. 1997. The apurinic/apyrimidinic endonuclease (APE/ref-1) DNA repair enzyme is elevated in premalignant and malignant cervical cancer. Anticancer Res. 17: 3713–3720.

    PubMed  CAS  Google Scholar 

  282. Yao, K. S., S. Xanthoudakis, T. Curran, and P. J. O’Dwyer. 1994. Activation of AP-1 and of a nuclear redox factor, REF-1, in the response of HT29 colon cancer cells to hypoxia. Mol. Cell. Biol. 14: 5997–6003.

    PubMed  CAS  Google Scholar 

  283. Yacoub, A., M. R. Kelley, and W. A. Deutsch. 1997. The DNA repair activity of human edox/repair protein APE/Ref-1 is inactivated by phosphorylation. Cancer Res. 57: 5457–5459.

    PubMed  CAS  Google Scholar 

  284. Yet, S.-F., A. Pellacani, C. Patterson, L. Tan, S. C. Folta, L. Foster, W.-S. Lee, C.-M. Hsieh, and M. A. Perrella. 1997. Induction of heme oxygenase-1 expression in vascular smooth muscle cells. A link to endotoxic shock. J. Biol. Chem. 272: 4295–4301.

    PubMed  CAS  Google Scholar 

  285. Yoder, B. L. and P. M. J. Burgers. 1991. Saccharomyces cerevisiae replication factor C.I. purification and characterization of its ATP-ase activity. J. Biol. Chem. 266: 22,689–22,697.

    Google Scholar 

  286. You, H. J., R. L. Swanson, and R. W. Doetsch. 1998. Saccharomyces cerevisiae possesses two functional homologues of Escherichia coli endonuclease III. Biochemistry (Wash.) 37: 6033–6040.

    CAS  Google Scholar 

  287. Zhang, J., C. K. Tan, B. McMullen, K. M. Downey, and A. G. So. 1995. Cloning of the cDNAs for the small subunits of bovine and human DNA polymerase delta and chromosomal location of the human gene (POLD2). Genomics 29: 179–86.

    Google Scholar 

  288. Zhang, X., S. Morera, P. A. Bates, P. C. Whitehead, A. I. Coffer, K. Hainbucher, R. A. Nash, M. J. Sternberg, T. Lindahl, and P. Freemont. 1998. Structure of an XRCC1 BRCT domain: a new protein-protein interaction module. EMBO J. 17: 6404–6411.

    PubMed  CAS  Google Scholar 

  289. Zhong, X., S. S. Patel, B. G. Werneburg, and M. D. Tsai. 1997. DNA polymerase beta: multiple conformational changes in the mechanism of catalysis. Biochemistry (Wash.) 36: 11, 891–11, 900.

    Google Scholar 

  290. Zhou, W. and P. W. Doetsch. 1993. Effects of abasic sites and DNA single-strand breaks on prokaryotic RNA polymerases. Proc. Natl. Acad. Sci. USA 90: 6601–6605.

    PubMed  CAS  Google Scholar 

  291. Zhou, Z. Q. and C. A. Walter. 1995. Expression of the DNA repair gene XRCC1 in baboon tissues. Mutat. Res. 348: 111–116.

    PubMed  CAS  Google Scholar 

  292. Zhou, J.Q, H. He, C. K. Tan, K. M. Downey, and A. G. So. 1997. The small subunit is required for functional interaction of DNA polymerase delta with the proliferating cell nuclear antigen. Nucleic. Acids Res. 25: 1094–1099.

    PubMed  CAS  Google Scholar 

  293. Zullo, S. J., L. Butler, R. J. Zahorchak, M. M. Macville, C. Wilkes, and C. R. Merril. 1997. Localization by fluorescence in situ hybridization (FISH) of human mitochondrial polymerase gamma (POLG) to human chromosome band 15g25-q26, and of mouse mitochondrial polymerase gamma (Poly) to mouse chromosome band 7E, with confirmation by direct sequence analysis of bacterial artificial chromosomes (BACs) Cytogenet. Cell. Genet. 78: 281–284.

    CAS  Google Scholar 

  294. Barnes, D. E., K. Kodama, K. Tynan, B. J. Trask, M. Christensen, P. J. De Jong, et al. 1992. Assignment of the gene encoding DNA ligase I to human chromosome 19q13.2–13.3. Genomics 12: 164–166.

    PubMed  CAS  Google Scholar 

  295. Umbricht, C. B., C. A. Griffin, A. L. Hawkins, K. H. Grzeschik, P. O’Connell, R. Leach, et al. High-resolution genomic mapping of the three human replication protein A genes (RPA1, RPA2, and RPA3) 1994. Genomics 20: 249–257.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Strauss, P.R., O’Regan, N.E. (2001). Abasic Site Repair in Higher Eukaryotes. In: Nickoloff, J.A., Hoekstra, M.F. (eds) DNA Damage and Repair. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-095-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-095-7_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9635-2

  • Online ISBN: 978-1-59259-095-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics