Skip to main content

Conservation of Eukaryotic DNA Repair Mechanisms

  • Chapter
DNA Damage and Repair

Part of the book series: Contemporary Cancer Research ((CCR))

  • 241 Accesses

Abstract

The fundamental importance of DNA repair for all organisms has become widely acknowledged in recent years. Evidence for the crucial role of DNA repair for the survival of all organisms comes from (1) the diversity of different repair processes; (2) the remarkable finding that about 2% of the Escherichia coli chromosome encodes proteins involved in DNA repair processes; (3) the extraordinary degree of evolutionary conservation of DNA repair mechanisms and proteins in all organisms. DNA repair pathways have been largely conserved from bacteria to mammals. In the vast majority of cases, the proteins that carry out these repair processes are conserved in structure and function in eukaryotes, and in some cases in bacteria as well. This conservation has been of great value in assisting our understanding of the mechanisms of DNA repair. The different strengths of working with yeasts on the one hand, which are very amenable to genetic analysis, and human cells on the other hand, which are often more amenable to biochemistry and provide relationships to human diseases, has greatly accelerated work in this area. Conclusions derived from the genetic and biochemical analysis of repair pathways in yeast can be extrapolated to human systems, and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, D. W., M. L. Freeman, and J. T. Holt. 1998. Double-strand break repair deficiency and radiation sensitivity in BRCA2 mutant cancer cells. J. Natl. Cancer Inst. 90: 978–985.

    Article  PubMed  CAS  Google Scholar 

  2. Akiyama, Y., H. Sato, T. Yamada, H. Nagasaki, A. Tsuchiya, R. Abe, and Y. Yuasa. 1997. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res. 57: 3920–393.

    PubMed  CAS  Google Scholar 

  3. Albala, J. S., M. P. Thelen, C. Prange, W. Fan, M. Christensen, L. H. Thompson, and G. G. Lennon. 1997. Identification of a novel human RAD51 homolog, RAD51 B. Genomics 46: 476–479.

    Article  CAS  Google Scholar 

  4. Al-Khodairy, E, E. Fotou, K. S. Sheldrick, D. J. F. Griffiths, A. R. Lehmann, and A. M. Carr. 1994. Identification and characterisation of new elements involved in checkpoints and feedback controls in fission yeast. Mol. Biol. Cell 5: 147–160.

    PubMed  CAS  Google Scholar 

  5. Allen, J. B., Z. Zhou, W. Siede, E. C. Friedberg, and S. J. Elledge. 1994. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dey. 8: 2401–2415.

    Article  CAS  Google Scholar 

  6. Araki, H., S.-H. Leem, A. Phongdara, and A. Sugino. 1995. Dpbl1, which interacts with DNA polymerase II (e) in Saccharomyces cerevisiae, has a dual role in S phase progression and at a cell cycle checkpoint. Proc. Natl. Acad. Sci. USA 92: 11,791–11, 795.

    Google Scholar 

  7. Asahina, H., I. Kuraoka, M. Shirakawa, E. H. Morita, N. Miura, I. Miyamoto, et al. 1994. The XPA protein is a zinc metalloprotein with an ability to recognize various kinds of DNA damage. Mutat. Res. 315: 229–237.

    Article  PubMed  CAS  Google Scholar 

  8. Aspinwall, R., D. G. Rothwell, T. Roldan-Arjona, C. Anselmino, C. J. Ward, J. P. Cheadle, et al. 1997. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc. Natl. Acad. Sci. USA 94: 109–114.

    Article  PubMed  CAS  Google Scholar 

  9. Bankmann, M., L. Prakash, and S. Prakash. 1992. Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins. Nature 355: 555–558.

    Article  PubMed  CAS  Google Scholar 

  10. Bardwell, A. J., L. Bardwell, A. E. Tomkinson, and E. C. Friedberg. 1994. Specific cleavage of model recombination and repair intermediates by the yeast Radl-Rad10 DNA endonuclease. Science 265: 2082–2085.

    Google Scholar 

  11. Bardwell, L., A. J. Cooper, and E. C. Friedberg. 1992. Stable and specific association between the yeast recombination and DNA repair proteins RAD1 and RADIO in vitro. Mol. Cell. Biol. 12: 3041–3049.

    PubMed  CAS  Google Scholar 

  12. Baumann, P., and S. C. West. 1997. The human Rad51 protein: polarity of strand transfer and stimulation by hRP-A. EMBO J. 16: 5198–5206.

    Article  PubMed  CAS  Google Scholar 

  13. Beamish, H., and M. F. Lavin. 1994. Radiosensitivity in ataxia-telangiectasia: anomalies in radiation-induced cell cycle delay. Int. J. Radiat. Biol. 65: 175–184.

    Article  PubMed  CAS  Google Scholar 

  14. Bennett, R. A. 1999. The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous muta-genesis. Mol. and Cell. Biol. 19: 1800–1809.

    CAS  Google Scholar 

  15. Bentley, N. J., D. A. Holtzman, G. Flaggs, K. S. Keegan, A. DeMaggio, J. C. Ford, et al. 1996. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 15: 6641–6651.

    PubMed  CAS  Google Scholar 

  16. Blasina, A., I. V. de Weyer, M. C. Laus, W. Luyten, A. E. Parker, and C. H. McGowan. 1999. A human homologue of the checkpoint kinase Cdsl directly inhibits Cdc25 phosphatase. Curr. Biol. 9: 1–10.

    Article  PubMed  CAS  Google Scholar 

  17. Bork, P., K. Hofmann, P. Bucher, A. E. Neuwald, S. F. Altschul, and E. V. Koonin. 1997. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11: 68–76.

    PubMed  CAS  Google Scholar 

  18. Boulton, S. J., and S. P. Jackson. 1996. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double-strand break repair and in telomeric maintenance. Nucl. Acids Res. 24: 4639–4648.

    Article  PubMed  CAS  Google Scholar 

  19. Boulton, S. J., and S. P. Jackson. 1996. Saccharomyces cervisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15: 5093–5103.

    PubMed  CAS  Google Scholar 

  20. Bressan, D. A., B. K. Baxter, and J. H. Petrini. 1999. The Mrel l-Rad50-xrs2 protein complex facilitates homologous recombination-based double-strand break repair in saccharomyces cerevisiae. Mol. Cell Biol. 19: 7681–7687.

    PubMed  CAS  Google Scholar 

  21. Caldecott, K. W., C. K. McKeown, J. D. Tucker, S. Ljungquist, and L. H. Thompson. 1994. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol. Cell. Biol. 14: 68–76.

    PubMed  CAS  Google Scholar 

  22. Callebaut, I., and J. P. Mornon. 1997. From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett. 400: 25–30.

    Article  PubMed  CAS  Google Scholar 

  23. Carney, J. P., R. S. Maser, H. Olivares, E. M. Davis, M. Le Beau, J. R. Yates III, et al. 1998. The hMrel l/hRad50 protein complex and Nijmegen breakage-syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93: 477–486.

    Article  PubMed  CAS  Google Scholar 

  24. Carr, A. M., H. Schmidt, S. Kirchhoff, W. J. Muriel, K. S. Sheldrick, D. J. Griffiths, C. N. Basmacioglu, S. Subramani, M. Clegg, A. Nasim, and A. R. Lehmann. 1994. The radl6 gene of Schizosaccharomyces pombe: a homolog of the RAD] gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 2029–2040.

    PubMed  CAS  Google Scholar 

  25. Carr, A. M., K. S. Sheldrick, J. M. Murray, R. Al-Harithy, F. Z. Watts, and A. R. Lehmann. 1993. Evolutionary conservation of excision repair in Schizosaccharomyces pombe: evidence for a family of sequences related to the Saccharomyces cerevisiae RAD2 gene. Nucl. Acids Res. 21: 1345–1349.

    Article  PubMed  CAS  Google Scholar 

  26. Cartwright, R., A. M. Dunn, P. J. Simpson, C. E. Tambini, and J. Thacker. 1998. Isolation of novel human and mouse genes of the recA/RAD51 recombination-repair gene family. Nucl. Acids Res. 26: 1653–1659.

    Article  PubMed  CAS  Google Scholar 

  27. Cartwright, R., C. E. Tambini, P. J. Simpson, and J. Thacker. 1998. The XRCC2 gene from human and mouse encodes a novel member of the recA/RAD51 family. Nucl. Acids Res. 29: 3084–3089.

    Article  Google Scholar 

  28. Caspari, T. 2000. How to activate p53. Curr. Biol. 10: R315–317.

    Article  PubMed  CAS  Google Scholar 

  29. Caspari, T., and A. M. Carr. 1999. DNA structure checkpoint pathways in Schizosaccharomyces pombe. Biochimie 81: 173–181.

    Article  CAS  Google Scholar 

  30. Caspari, T., M. Dahlen, G. Kanter-Smoler, H. D. Lindsay, K. Hofmann, K. Papadimitriou, et al. 2000. Characterization of Schizosaccharomyces pombe Husl: a PCNA-related protein that associates with Radl and Rad9. Mol. Cell. Biol. 20: 1254–1262.

    Article  PubMed  CAS  Google Scholar 

  31. Chen, J., B. Derfler, and L. Samson. 1990. Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E.coli and is induced in response to DNA alkylation damage. EMBO J. 9: 4569–4575.

    PubMed  CAS  Google Scholar 

  32. Cimprich, K. A., T. B. Shin, C. T. Keith, and S. L. Schreiber. 1996. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc. Natl. Acad. Sci. USA 93: 2850–2855.

    Google Scholar 

  33. Clever, B., H. Interthal, J. Schmuckli-Maurer, J. King, M. Sigrist, and W. D. Heyer. 1997. Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins. EMBO J. 16: 2535–2544.

    Article  PubMed  CAS  Google Scholar 

  34. Cohen-Fix, O., and D. Koshland. 1997. The anaphase inhibitor of Saccharomyces cerevisiae Pdslp is a target of the DNA damage checkpoint pathway. Proc. Natl. Acad. Sci. USA 94: 14,361–14, 366.

    Google Scholar 

  35. Connor, F., D. Bertwistle, P. J. Mee, G. M. Ross, S. Swift, E. Grigorieva, et al. 1997. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nature Genetics 17: 423–430.

    Article  PubMed  CAS  Google Scholar 

  36. Critchlow, S. E., R. P. Bowater, and S. P. Jackson. 1997. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr. Biol. 7: 588–598.

    Article  PubMed  CAS  Google Scholar 

  37. de Laat, W. L., A. M. Sijbers, H. Odijk, N. G. J. Jaspers, and J. H. J. Hoeijmakers. 1998. Mapping of interaction domains between human repair proteins ERCC1 and XPF. Nucleic Acids Res. 26: 4146–4152.

    Article  PubMed  Google Scholar 

  38. Demple, B., T. Herman, and D. S. Chen. 1991. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc. Natl. Acad. Sci. USA 88: 11,450–11, 454.

    Google Scholar 

  39. Di Leonardo, A., S. P. Linke, K. Clarkin, and G. M. Wahl. 1994. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8: 2450–2551.

    Google Scholar 

  40. Dolganov, G. M., R. S. Maser, A. Novikov, L. Tosto, S. Chong, D. A. Bressan, and J. H. Petrini. 1996. Human Rad50 is physically associated with human Mrel1: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol. 16: 4832–4841.

    PubMed  CAS  Google Scholar 

  41. Dosanjh, M. K., D. W. Collins, W. Fan, G. G. Lennon, J. S. Albala, Z. Shen, and D. Schild. 1998. Isolation and characterisation of Rad51 C, a new human member of the RAD51 family of related genes. Nucl. Acids Res. 26: 1179–1184.

    Article  PubMed  CAS  Google Scholar 

  42. Edwards, R. J., N. J. Bentley, and A. M. Carr. 1999. A Rad3-Rad26 complex acts upstream in the DNA damage checkpoint. Nat. Cell Biol. 1: 393–398.

    Article  PubMed  CAS  Google Scholar 

  43. Eide, L., M. Bjoras, M. Pirovano, I. Alseth, K. G. Berdal, and E. Seeberg. 1996. Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli. Proc. Natl. Acad. Sci. USA 93: 10,735–10, 740.

    Google Scholar 

  44. El-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, et al. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  PubMed  CAS  Google Scholar 

  45. Essers, J., R. W. Hendriks, S. M. A. Swagemakers, C. Troelstra, J. De Wit, D. Bootsma, et al. 1997. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89: 195–204.

    Article  PubMed  CAS  Google Scholar 

  46. Evans, E., J. Fellows, A. Coffer, and R. D. Wood. 1997. Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J. 16: 625–638.

    Article  PubMed  CAS  Google Scholar 

  47. Evans, E., J. G. Moggs, J. R. Hwang, J. M. Egly, and R. D. Wood. 1997. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 16: 6559–6573.

    Article  PubMed  CAS  Google Scholar 

  48. Feaver, W. J., N. L. Henry, Z. Wang, X. Wu, J. Q. Svejstrup, D. A. Bushnell, et al. 1997. Genes for Tfb2, Tfb3, and Tfb4 subunits of yeast transcription/repair factor IIH. J. Biol. Chem. 272: 19,319–19, 327.

    Google Scholar 

  49. Feldmann, H., and E. L. Winnacker. 1993. A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J. Biol. Chem. 268: 12,895–12, 900.

    Google Scholar 

  50. Fenech, M., A. M. Carr, J. M. Murray, F. Z. Watts, and A. R. Lehmann. 1991. Cloning and characterisation of the rad4 gene of Schizosaccharomyces pombe. Nucl. Acids Res. 19: 6737–6741.

    Article  PubMed  CAS  Google Scholar 

  51. Fishel, R., M. K. Lescoe, M. Rao, N. G. Copeland, N. A. Jenkins, J. Garber, et al. 1993. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038.

    Article  PubMed  CAS  Google Scholar 

  52. Fishel, R., and T. Wilson. 1997. MutS homologs in mammalian cells. Curr. Op. Gen. Dev. 7: 105–113.

    Article  CAS  Google Scholar 

  53. Flaggs, G., A. W. Plug, K. M. Dunks, K. E. Mundt, J. C. Ford, M. R. E. Quiggle, et al. 1997. ATM- and ATR-dependent interactions of a mammalian CHK1 homolog with meiotic chromosomes. Curr. Biol. 7: 977–986.

    Article  PubMed  CAS  Google Scholar 

  54. Flores-Rozas, H., and R. D. Kolodner. 1998. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc. Natl. Acad. Sci. USA 95: 12,404–12, 409.

    Google Scholar 

  55. Ford, J. C., F. Al–Khodairy, E. Fotou, K. S. Sheldrick, D. Griffiths, J. F., and A. M. Can. 1994. 14–3–3 protein homologs required for the DNA damage checkpoint in fission yeast. Science 265: 533 – 535.

    Google Scholar 

  56. Freire, R., J. R. Murguia, M. Tarsounas, N. F. Lowndes, P. B. Moens, and S. P. Jackson. 1998. Human and mouse homologs of Schizosaccharomyces pombe radi (+) and Saccharomyces cerevisiae RAD17: linkage to checkpoint control and mammalian meiosis. Genes Dey. 12: 2560–2573.

    Article  CAS  Google Scholar 

  57. Friedberg, E. C. 1997. Correcting the blueprint of life: an historical account of the discovery of DNA repair mechanisms. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  58. Friedberg, E. C., G. C. Walker, and W. Siede. 1995. DNA Repair and Mutagenesis. ASM Press, Washington, USA.

    Google Scholar 

  59. Fujii, H., and T. Shimada. 1989. Isolation and characterization of cDNA clones derived from the divergently transcribed gene in the region upstream from the human dihydrofolate reductase gene. J. Biol. Chem. 264: 10,057–10, 064.

    Google Scholar 

  60. Funabiki, H., K. Kumada, and M. Yanagida. 1996. Fission yeast Cutl and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J. 15: 6617–6628.

    PubMed  CAS  Google Scholar 

  61. Furnari, B., N. Rhind, and P. Russell. 1997. Cdc25 mitotic inducer targeted by Chkl DNA damage checkpoint kinase. Science 277: 1495–1497.

    Article  PubMed  CAS  Google Scholar 

  62. Gallinari, P., and J. Jiricny. 1996. A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase. Nature 383: 735–738.

    Article  PubMed  CAS  Google Scholar 

  63. Grawunder, U., M. Wilm, X. Wu, P. Kulesza, T. E. Wilson, M. Mann, and M. R. Lieber. 1997. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388: 492–495.

    Article  PubMed  CAS  Google Scholar 

  64. Green, C. M., H. Erdjument-Bromage, P. Tempst, and N. F. Lowndes. 2000. A novel Rad24 checkpoint protein complex closely related to replication factor C [published erratum appears in Curr. Biol. 2000, Feb. 24; 10: [R1711. Curr. Biol. 10: 39–42.

    Article  PubMed  CAS  Google Scholar 

  65. Greenwell, P. W., S. L. Kronmal, S. E. Porter, J. Gassenhuber, B. Obermaier, and T. D. Petes. 1995. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82: 823–829.

    CAS  Google Scholar 

  66. Griffiths, D. J. F., N. C. Barbet, S. McCready, A. R. Lehmann, and A. M. Carr. 1995. Fission yeast rad17: a homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins. EMBO J. 14: 5812–5823.

    PubMed  CAS  Google Scholar 

  67. Gu, Y., C. W. Turck, and D. O. Morgan. 1993. Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366: 707–710.

    Article  PubMed  CAS  Google Scholar 

  68. Guzder, S. N., Y. Habraken, P. Sung, L. Prakash, and S. Prakash. 1995. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J. Biol. Chem. 270: 12,973–12, 976.

    Google Scholar 

  69. Guzder, S. N., P. Sung, L. Prakash, and S. Prakash. 1993. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA. Proc. Natl. Acad. Sci. USA 90: 5433–5437.

    Article  PubMed  CAS  Google Scholar 

  70. Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge. 1993. The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816.

    Article  PubMed  CAS  Google Scholar 

  71. Hartley, K. O., D. Gell, G. C. M. Smith, H. Zhang, N. Divecha, M. A. Connelly, et al. 1995. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82: 849–856.

    Article  PubMed  CAS  Google Scholar 

  72. Hayakawa, H., G. Koike, and M. Sekiguchi. 1990. Expression and cloning of complementary DNA for a human enzyme that repairs 06-methylguanine in DNA. J. Mol. Biol 213: 739–747.

    Article  PubMed  CAS  Google Scholar 

  73. Hays, S. L., A. A. Firmenich, and P. Berg. 1995. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc Nail Acad Sci USA 92: 6925–9.

    Article  CAS  Google Scholar 

  74. Hellmann, G., T. Lindahl, and P. Schar. 1998. Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J. 17: 4188–4198.

    Google Scholar 

  75. Hiramoto, T., T. Nakanishi, T. Sumiyoshi, T. Fukuda, S. Matsuura, H. Tauchi, et al. 1999. Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer. Oncogene 18: 3422–3426.

    Article  PubMed  CAS  Google Scholar 

  76. Hirao, A., Y.-Y. Kong, S. Matsuoka, A. Wakeman, J. Ruland, H. Yoshida, et al. 2000. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287: 1824–1827.

    Article  PubMed  CAS  Google Scholar 

  77. Hoeijmakers, J. H. J., J.-M. Egly, and W. Vermeulen. 1996. TFIIH: a key component in multiple DNA transactions. Curr. Op. Gen. Dey. 6: 26–33.

    Article  CAS  Google Scholar 

  78. Jeggo, P. A., G. E. Taccioli, and S. P. Jackson. 1995. Menage à trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays 17: 949–957.

    Article  PubMed  CAS  Google Scholar 

  79. Johnson, R. E., C. A. Torres-Ramos, T. Izumi, S. Mitra, S. Prakash, and L. Prakash. 1998. Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites. Genes Dev. 12: 3137–3143.

    Article  PubMed  CAS  Google Scholar 

  80. Johzuka, K., and H. Ogawa. 1995. Interaction of Mrel1 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139: 1521–1532.

    CAS  Google Scholar 

  81. Kanaar, R., C. Troelstra, S. M. A. Swagemakers, J. Essers, B. Smit, J.-H. Franssen, et al. Human and mouse homologs of the Saccharomyces cerevisiae RAD54 DNA repair gene: evidence for functional conservation. Curr. Biol. 6: 828–838.

    Google Scholar 

  82. Kans, J. A., and R. K. Mortimer. 1991. Nucleotide sequence of the RAD57 gene of Saccharomyces cerevisiae. Gene 105: 139–140.

    CAS  Google Scholar 

  83. Kastan, M. B., Q. Zhan, W. S. El-Deiry, F. Carrier, T. Jacks, W. V. Walsh, et al. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–597.

    Article  PubMed  CAS  Google Scholar 

  84. Kato, R., and H. Ogawa. 1994. An essential gene, ESRJ, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucl. Acids Res. 22: 3104–3112.

    Article  CAS  Google Scholar 

  85. Keegan, K. S., D. A. Holtzman, A. W. Plug, E. R. Christenson, E. E. Brainerd, G. Flaggs, et al. 1996. The Atr and Atm protein-kinases associate with different sites along meiotically pairing chromosomes. Genes Dev. 10: 2423–2437.

    Article  PubMed  CAS  Google Scholar 

  86. Kim, S. T., K. Malhotra, C. A. Smith, J. S. Taylor, and A. Sancar. 1994. Characterization of (6–4) photoproduct DNA photolyase. J. Biol. Chem. 269: 8535–8540.

    PubMed  CAS  Google Scholar 

  87. Ko, L. J., and C. Prives. 1996. p53: puzzle and paradigm. Genes Dey. 10: 1054–1072.

    Google Scholar 

  88. Kondo, T., K. Matsumoto, and K. Sugimoto. 1999. Role of a complex containing Radl7, Mec3, and Ddcl in the yeast DNA damage checkpoint pathway. Mol. Cell. Biol. 19: 1136–1143.

    PubMed  CAS  Google Scholar 

  89. Kostrub, C., K. Knudsen, S. Subramani, and T. Enoch. 1998. Huslp, a conserved fission yeast checkpoint protein, interacts with Radlp and is phosphorylated in response to DNA damage. EMBO J. 17: 2055–2066.

    Article  PubMed  CAS  Google Scholar 

  90. Kostrub, C. F., F. al-Khodairy, H. Ghazizadeh, A. M. Carr, and T. Enoch. 1997. Molecular analysis of husl+, a fission yeast gene required for S-M and DNA damage checkpoints. Molec. Gen. Genet. 254: 389–399.

    PubMed  CAS  Google Scholar 

  91. Krishna, T. S., X. P. Kong, S. Gary, P. M. Burgers, and J. Kuriyan. 1994. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79: 1233–1243.

    Article  PubMed  CAS  Google Scholar 

  92. Krokan, H. E., R. Standal, and G. Slupphaug. 1997. DNA glycosylases in the base excision repair of DNA. Biochem. J. 325: 1–16.

    PubMed  CAS  Google Scholar 

  93. Legerski, R., and C. Peterson. 1992. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature 359: 70–73.

    Article  PubMed  CAS  Google Scholar 

  94. Li, Z., T. Otevrel, Y. Gao, H.-L. Cheng, B. Seed, T. D. Stamato, G. E. Taccioli, and F. W. Alt. 1995. The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 83: 1079–1089.

    Article  PubMed  CAS  Google Scholar 

  95. Lieberman, H. B., K. M. Hopkins, M. Nass, D. Demetrick, and S. Davey. 1996. A human homologue of the Schizosaccharomyces pombe rad9+ checkpoint control gene. Proc. Natl. Acad. Sci. USA 93: 13,890–13, 895.

    Google Scholar 

  96. Lindsay, H. D., D. J. E Griffiths, R. J. Edwards, P. U. Christensen, J. M. Murray, F. Osman, et al. 1998. S-phase specific activation of Cds 1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12: 382–395.

    Article  CAS  Google Scholar 

  97. Liu, N., J. E. Lamerdin, R. S. Tebbs, D. Schild, J. D. Tucker, M. R. Shen, et al. 1998. XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol. Cell 1: 783–793.

    Article  PubMed  CAS  Google Scholar 

  98. Liu, Q., S. Guntuku, X. S. Cui, S. Matsuoka, D. Cortez, K. Tamai, et al. 2000. Chkl is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 14: 1448–1459.

    Article  PubMed  CAS  Google Scholar 

  99. Longhese, M. P., M. Foiani, M. Muzi-Falconi, G. Lucchini, and P. Plevani. 1998. DNA damage checkpoint in budding yeast. EMBO J. 17: 5525–5528.

    Article  PubMed  CAS  Google Scholar 

  100. Longhese, M. P., V. Paciotti, R. Fraschini, R. Zaccarini, P. Plevani, and G. Lucchini. 1997. The novel DNA damage checkpoint protein ddclp is phosphorylated periodically during the cell cycle and in response to DNA damage in budding yeast. EMBO J. 16: 5216–5226.

    Article  PubMed  CAS  Google Scholar 

  101. Lovett, S. T. 1994. Sequence of the RAD55 gene of Saccharomyces cerevisiae: similarity of RAD55 to prokaryotic RecA and other RecA-like proteins. Gene 142: 103–106.

    Article  PubMed  CAS  Google Scholar 

  102. Lu, A. L., and W. P. Fawcett. 1998. Characterization of the recombinant MutY homolog, an adenine DNA glycosylase, from yeast Schizosaccharomyces pombe. J. Biol. Chem. 273: 25,098–25, 105.

    Google Scholar 

  103. Lydall, D., and T. Weinert. 1995. Yeast checkpoint genes in DNA damage processing: Implications for repair and arrest. Science 270: 1488–1491.

    Article  PubMed  CAS  Google Scholar 

  104. Masutani, C., K. Sugasawa, J. Yanagisawa, T. Sonoyama, M. Ui, T. Enomoto. 1994. Purification and cloning of a nucleotide excision-repair complex involving the xeroderma-pigmentosum group-C protein and a human homolog of yeast RAD23. EMBO J. 13: 1831–1843.

    PubMed  CAS  Google Scholar 

  105. Matsumoto, Y., and K. Kim. 1995. Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269: 699–702.

    Article  PubMed  CAS  Google Scholar 

  106. Matsuoka, S., M. Huang, and S. J. Elledge. 1998. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282: 1893–1897.

    Article  PubMed  CAS  Google Scholar 

  107. McCready, S. J., H. Burkill, S. Evans, and B. S. Cox. 1989. The Saccharomyces cerevisiae RAD2 gene complements a Schizosaccharomyces pombe repair mutation. Curr. Genet. 15: 27–30.

    Article  PubMed  CAS  Google Scholar 

  108. Milne, G. T., S. Jin, K. B. Shannon, and D. T. Weaver. 1996. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 4189–4198.

    CAS  Google Scholar 

  109. Milne, G. T., and D. T. Weaver. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 7: 1755–1765.

    Article  PubMed  CAS  Google Scholar 

  110. Morrow, D. M., D. A. Tagle, Y. Shiloh, E S. Collins, and P. Hieter. 1995. TEL., an S. cerevisiae Homologue of the Human Gene Mutated in Ataxia Telangiectasia, Is Functionally Related to the Yeast Checkpoint Gene MEC1. Cell 82: 831–840.

    CAS  Google Scholar 

  111. Murakami, H., and H. Okayama. 1995. A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374: 817–819.

    Article  PubMed  CAS  Google Scholar 

  112. Muris, D. F. R., O. Bezzubova, J. M. Buerstedde, K. Vreeken, A. S. Balajee, C. J. Osgood, et al. 1994. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination. Mutat. Res. 315: 295–305.

    Google Scholar 

  113. Muris, D. F. R., K. Vreeden, A. M. Carr, B. C. Broughton, A. R. Lehmann, P. H. M. Lohman, and A. Pastink. 1993. Cloning the RAD51 homologue of Schizosaccharomyces pombe. Nucl. Acids Res. 21: 4586–4591.

    Article  CAS  Google Scholar 

  114. Muris, D. F. R., K. Vreeken, A. M. Carr, C. Smidt, P. H. M. Lohman, and A. Pastink. 1996. Isolation of the Schizosaccharomyces pombe RAD54 homolog, rhp54+, a gene involved in the repair of radiation damage and replication fidelity. J Cell Sci. 109: 73–81.

    PubMed  CAS  Google Scholar 

  115. Murray, J. M., A. M. Carr, A. R. Lehmann, and F. Z. Watts. 1991. Cloning and characterization of the DNA repair gene, rad9, from Schizosaccharomyces pombe. Nucl. Acids Res. 19: 3525–3531.

    Article  CAS  Google Scholar 

  116. Murray, J. M., C. Doe, R. Schenk, A. M. Carr, A. R. Lehmann, and F. Z. Watts. 1992. Cloning and characterisation of the S. pombe rad15 gene, a homologue to the S. cerevisiae RAD3 and human ERCC2 genes. Nucl. Acids Res. 20: 2673–2678.

    Article  PubMed  CAS  Google Scholar 

  117. Naito, T., A. Matsuura, and F. Ishikawa. 1998. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nat Genet 20: 203–206.

    Article  PubMed  CAS  Google Scholar 

  118. New, L., K. Liu, and G. F. Crouse. 1993. The yeast gene MSH3 defines a new class of eukaryotic MutS homologues. Molec. Gen. Genet. 239: 97–108.

    PubMed  CAS  Google Scholar 

  119. Nicolaides, N. C., N. Papadopoulos, B. Liu, Y. E Wei, K. C. Carter, S. M. Ruben, et al. 1994. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371: 75–80.

    Article  PubMed  CAS  Google Scholar 

  120. O’Connell, M. J., N. C. Walworth, and A. M. Carr. 2000. The G2-phase DNA-damage checkpoint. Trends Cell Biol. 10: 296–303.

    Article  PubMed  Google Scholar 

  121. O’Connor, T. R., and F. Laval. 1990. Isolation and structure of a cDNA expressing a mammalian 3- methyladenine-DNA glycosylase. EMBO J. 9: 3337–3342.

    PubMed  Google Scholar 

  122. O’Donovan, A., A. A. Davies, J. G. Moggs, S. C. West, and R. D. Wood. 1994. XPG endonuclease makes the 3’ incision in human DNA nucleotide excision repair. Nature 371: 432–435.

    Article  PubMed  Google Scholar 

  123. Ogawa, T., X. Yu, A. Shinohara, and E. H. Egelman. 1993. Similarity of the yeast Rad51 filament to the bacterial RecA filament. Science 259: 1896–1899.

    Article  PubMed  CAS  Google Scholar 

  124. Olsen, L. C., R. Aasland, N. E. Krokan, and D. E. Helland. 1991. Human uracil-DNA glycosylase complements E. coli ung mutants. Nucl. Acid. Res. 19: 4473–4475.

    Article  CAS  Google Scholar 

  125. Ostermann, K., A. Lorentz, and H. Schmidt. 1993. The fission yeast rad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog to Rad52 of Saccharomyces cerevisiae. Nucl. Acids Res. 21: 5940–5944.

    Article  CAS  Google Scholar 

  126. Paciotti, V., M. Clerici, G. Lucchini, and M. R. Longhese. 2000. The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec and is regulated by Mecl-dependent phosphorylation in budding yeast. Genes Dev. 14: 2046–2059.

    PubMed  CAS  Google Scholar 

  127. Paciotti, V., G. Lucchini, R. Plevani, and M. P. Longhese. 1998. Meclp is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc 1p, which physically interacts with Mec3p. EMBO J. 17: 4199–4209.

    Article  PubMed  CAS  Google Scholar 

  128. Painter, R. B., and B. R. Young. 1980. Radiosensitivity in ataxia-telangiectasia: A new explanation. Proc. Natl. Acad. Sci. USA 77: 7315–7317.

    Article  PubMed  CAS  Google Scholar 

  129. Palombo, F., R Gallinari, I. Iaccarino, T. Lettieri, M. Hughes, A. D’Arrigo, et al. 1995. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268: 1912–1914.

    Article  PubMed  CAS  Google Scholar 

  130. Papadopoulos, N., N. C. Nicolaides, Y. E Wei, S. M. Ruben, K. C. Carter, C. A. Rosen, et al. 1994. Mutation of a mutL homolog in hereditary colon cancer. Science 263: 1625–1629.

    Article  PubMed  CAS  Google Scholar 

  131. Park, E., S. N. Guzder, M. H. M. Koken, I. Jaspers-Dekker, G. Weeda, J. H. J. Hoeijmakers, et al. 1992. RAD25 (SSL2),the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability. Proc. Natl. Acad. Sci. USA 89: 11,416–11,420.

    Google Scholar 

  132. Park, M. S. 1995. Expression of human RAD52 confers resistance to ionizing radiation in mammalian cells. J. Biol. Chem. 270: 15,467–15, 470.

    Google Scholar 

  133. Parker, A. E., I. Van de Weyer, M. C. Laus, P. Verhasselt, and W. H. Luyten. 1998. Identification of a human homologue of the Schizosaccharomyces pombe rad17+ checkpoint gene. J. Biol. Chem. 273: 18,340–18, 346.

    Google Scholar 

  134. Parsons, R., G.-M. Li, M. J. Longley, W. Fang, N. Papadopoulos, et al. 1993. Hypermutability and mismatch repair deficiency in RER+ tumour cells. Cell 75: 1227–1236.

    Article  PubMed  CAS  Google Scholar 

  135. Paulovich, A. G., and L. H. Hartwell. 1995. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82: 841–847.

    Article  PubMed  CAS  Google Scholar 

  136. Peng, C.–Y., P. R. Graves, R. S. Thoma, Z. Wu, A. S. Shaw, and H. Piwnica–Worms. 1997. Mitotic and G2 checkpoint control: regulation of 14–3–3 protein binding by phosphorylation of Cdc25C on serine–216. Science 277: 1501 – 1505.

    Article  PubMed  CAS  Google Scholar 

  137. Petrini, J. H., M. E. Walsh, C. DiMare, X. N. Chen, J. R. Korenberg, and D. T. Weaver. 1995. Isolation and characterization of the human MREJI homologue. Genomics 29: 80–86.

    Article  PubMed  CAS  Google Scholar 

  138. Pittman, D. L., L. R. Weinberg, and J. C. Schimenti. 1998. Identification, characterization, and genetic mapping of Rad51 d, a new mouse and human RADS]/RecA-related gene. Genomics 49: 103–111.

    Article  PubMed  CAS  Google Scholar 

  139. Popoff, S. C., A. I. Spira, A. W. Johnson, and B. Demple. 1990. Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV. Proc. Natl. Acad. Sci. USA 87: 4193–4197.

    Article  PubMed  CAS  Google Scholar 

  140. Radicella, J. P., C. Dherin, C. Desmaze, M. S. Fox, and S. Boiteux. 1997. Cloning and characterization of hOGGJ, a human homolog of the OGGI gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94: 8010–8015.

    Article  PubMed  CAS  Google Scholar 

  141. Rijkers, T., J. Van Den Ouweland, B. Morolli, A. G. Rolink, W. M. Baarends, P. P. H. Van Sloun, et al. 1998. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Biol. Cell 18: 6423–6429.

    CAS  Google Scholar 

  142. Robson, C. N., and I. D. Hickson. 1991. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucl. Acids Res. 19: 5519–5523.

    Article  CAS  Google Scholar 

  143. Rodel, C., S. Kirchhoff, and H. Schmidt. 1992. The protein sequence and some intron positions are conserved between the switching gene swi10 of Schizosaccharomyces pombe and the human excision repair gene ERCC]. Nucl. Acids Res. 20: 6347–6353.

    Article  CAS  Google Scholar 

  144. Roldan-Arjona, T., Y.-P. Wei, K. C. Carter, A. Klungland, C. Anselmino, R.-P. Wang, et al. 1997. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine DNA glycosylase. Proc. Natl. Acad. Sci. USA 94: 8016–8020.

    Article  PubMed  CAS  Google Scholar 

  145. Rydberg, B., N. Spurr, and P. Karran. 1990. cDNA cloning and chromosomal assignment of the human 06-methylguanine-DNA methyltransferase. J. Biol. Chem. 265: 9563–9569.

    Google Scholar 

  146. Saka, Y., F. Esashi, T. Matsusaka, S. Mochida, and M. Yanagida. 1997. Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with CutS and Chkl. Genes Dev. 11: 3387–3400.

    Article  PubMed  CAS  Google Scholar 

  147. Saka, Y., and M. Yanagida. 1993. Fission yeast cut5, required for S phase onset and M phase restraint, is identical to the radiation-damage repair gene rad4+. Cell 74: 383–393.

    Article  CAS  Google Scholar 

  148. Samson, L., B. Derfler, M. Boosalis, and K. Call. 1991. Cloning and characterization of a 3methyladenine DNA glycosylase cDNA from human cells whose gene maps to chromosome 16. Proc. Natl. Acad. Sci. USA 88: 9127–9131.

    Article  PubMed  CAS  Google Scholar 

  149. Sanchez, Y., B. A. Desany, W. J. Jones, Q. Liu, B. Wang, and S. J. Elledge. 1996. Regulation of RAD53 by the ATM-like kinases MEC] and TELL in yeast cell cycle checkpoint pathways. Science 271: 357–360.

    Article  PubMed  CAS  Google Scholar 

  150. Sanchez, Y., C. Wong, R. S. Thoma, R. Richman, Z. Wu, H. Piwnica-Worms, and S. J. Elledge. 1997. Conservation of the Chkl checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277: 1497–1501.

    Article  PubMed  CAS  Google Scholar 

  151. Santocanale, C., and J. F. Diffley. 1998. A Mecl-and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395: 615–618.

    Article  PubMed  CAS  Google Scholar 

  152. Savitsky, K., A. Bar-Shira, S. Gilad, G. Rotman, Y. Ziv, L. Vanagaite, et al. 1995. A single ataxia telangiectasia gene with a product similar to PI 3-kinase. Science 268: 1749–1753.

    Article  PubMed  CAS  Google Scholar 

  153. Schar, P., G. Herrmann, G. Daly, and T. Lindahl. 1997. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev. 11: 1912–1924.

    Article  PubMed  CAS  Google Scholar 

  154. Scherly, D., T. Nouspikel, J. Corlet, C. Ucla, A. Bairoch, and S. G. Clarkson. 1993. Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature 363: 182–185.

    Article  CAS  Google Scholar 

  155. Schiestl, R. H., P. Reynolds, S. Prakash, and L. Prakash. 1989. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest iduced by DNA damage. Mol. Cell. Biol. 9: 1882–1896.

    PubMed  CAS  Google Scholar 

  156. Scully, R., J. Chen, A. Plug, Y. Xiao, D. Weaver, J. Feunteun, T. Ashley, and D. M. Livingston. 1997. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88: 265–275.

    Google Scholar 

  157. Sharan, S. K., M. Morimatsu, U. Albrecht, D.-S. Lim, E. Regel, C. Dinh, A. Sands, G. Eichele, P. Hasty, and A. Bradley. 1997. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386: 804–810.

    Article  CAS  Google Scholar 

  158. Shinohara, A., H. Ogawa, Y. Matsuda, N. Ushio, K. Ikeo, and T. Ogawa. 1993. Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat. Genet. 4: 239–243.

    Article  CAS  Google Scholar 

  159. Shinohara, A., H. Ogawa, and T. Ogawa. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69: 457–470.

    Article  PubMed  CAS  Google Scholar 

  160. Siede, W., A. A. Friedl, I. Dianova, F. Eckardt-Schupp, and E. C. Friedberg. 1996. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142: 91–102.

    PubMed  CAS  Google Scholar 

  161. Sijbers, A. M., W. L. de Laat, R. R. Ariza, M. Biggerstaff, Y.-F. Wei, J. G. Moggs, et al. 1996. Xerderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86: 811–822.

    Article  PubMed  CAS  Google Scholar 

  162. Slupphaug, G., I. Eftedal, B. Kavli, S. Bharati, N. M. Helle, T. Haug, D. et al. 1995. Properties of a recombinant human uracil-DNA glyosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochem. 34: 128–138.

    Article  CAS  Google Scholar 

  163. Slupska, M. M., C. Baikalov, W. M. Luther, J. H. Chiang, Y. E. Wei, and J. H. Miller. 1996. Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J. Bacteriol. 178: 3885–3892.

    PubMed  CAS  Google Scholar 

  164. Sobol, R. W., J. K. Horton, R. Kuhn, H. Gu, R. K. Singhal, R. Prasad, K. et al. 1996. Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature 379: 183–186.

    Article  PubMed  CAS  Google Scholar 

  165. Sugasawa, K., J. M. Ng, C. Masutani, S. Iwai, P. J. van der Spek, A. P. Eker, et al. 1998. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2: 223–232.

    Article  PubMed  CAS  Google Scholar 

  166. Sung, P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272: 28,194–28, 197.

    Google Scholar 

  167. Sung, P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dey. 11: 1111–1121.

    Article  CAS  Google Scholar 

  168. Sunnerhagen, P., B. L. Seaton, A. Nasim, and S. Subramani. 1990. Cloning and analysis of a gene involved in DNA repair and recombination, the radi gene of Schizosaccharomyces pombe. Mol. Cell. Biol. 10: 3750–3760.

    PubMed  CAS  Google Scholar 

  169. Svejstrup, J. Q., Z. Wang, W. J. Feaver, X. Wu, D. A. Bushnell, T. F. Donahue, et al. 1995. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 80: 21–28.

    Article  PubMed  CAS  Google Scholar 

  170. Tano, K., S. Shiota, J. Collier, R. S. Foote, and S. Mitra. 1990. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for 06-alkylguanine. Proc. Natl. Acad. Sci. USA 87: 686–690.

    Article  PubMed  CAS  Google Scholar 

  171. Tavassoli, M., M. Shayegi, A. Nasim, and F. Z. Watts. 1995. Cloning and characterisation of the Schizosaccharomyces pombe rad32 gene: a gene required for repair of double strand breaks and recombination. Nucl. Acids Res. 23: 383–388.

    Article  PubMed  CAS  Google Scholar 

  172. Taylor, E. M., B. C. Broughton, E. Botta, M. Stefanini, A. Sarasin, N. G. J. Jaspers, et al. 1997. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc. Natl. Acad. Sci. USA 94: 8658–8663.

    Article  PubMed  CAS  Google Scholar 

  173. Teo, S.-H., and S. P. Jackson. 1997. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J. 16: 4788–4795.

    Article  PubMed  CAS  Google Scholar 

  174. Thompson, L. H., K. W. Brookman, N. J. Jones, S. A. Allen, and A. V. Carrano. 1990. Molecular cloning of the human XRCCI gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol. Cell. Biol. 10: 6160–6171.

    PubMed  CAS  Google Scholar 

  175. Todo, T., H. Ryo, K. Yamamoto, H. Toh, T. Inui, H. Ayaki, et al. 1996. Similarity among the Drosophila (6–4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science 272: 109–112.

    Article  PubMed  CAS  Google Scholar 

  176. Todo, T., H. Takemori, H. Ryo, M. Ihara, T. Matsunaga, O. Nikaido, et al. 1993. A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6–4)photoproducts. Nature 361: 371–374.

    Article  PubMed  CAS  Google Scholar 

  177. Tsukamoto, Y., J. Kato, and H. Ikeda. 1996. Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae. Genetics 142: 383–391.

    CAS  Google Scholar 

  178. Tsukamoto, Y., J. I. Kato, and H. Ikeda. 1996. Hdfl, a yeast Ku-protein homologue, is involved in illegitimate recombination, but not in homologous recombination. Nucl. Acids Res. 24: 2067–2072.

    Article  PubMed  CAS  Google Scholar 

  179. Udell, C. M., S. K. Lee, and S. Davey. 1998. HRADJ and MRADI encode mammalian homologues of the fission yeast rad](+) cell cycle checkpoint control gene. Nucl. Acids Res. 26: 3971–3976.

    CAS  Google Scholar 

  180. van der Kemp, P. A., D. Thomas, R. Barbey, R. de Oliveira, and S. Boiteux. 1996. Cloning and expression in Escherichia coli of the OGGI gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-Nmethylformamidopyrimidine. Proc. Natl. Acad. Sci. USA 93: 5197–5202.

    Article  PubMed  Google Scholar 

  181. van der Spek, P. J., K. Kobayashi, D. Bootsma, M. Takao, A. P. Eker, and A. Yasui. 1996. Cloning, tissue expression, and mapping of a human photolyase homolog with similarity to plant blue-light receptors. Genomics 37: 177–182.

    Article  PubMed  Google Scholar 

  182. van Duin, M., J. de Wit, H. Odijk, A. Westerveld, A. Yasui, M. H. M. Koken, et al. 1986. Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RADIO. Cell 44: 913–923.

    Google Scholar 

  183. Varon, R., C. Vissinga, M. Platzer, K. M. Cerosaletti, K. H. Chrzanowska, K. Saar, et al. 1998. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93: 467–476.

    Article  PubMed  CAS  Google Scholar 

  184. Vollmer, E., and L. M. Karnitz. 1999. Human homologs of Schizosaccharomyces pombe Radl, Husl, and Rad9 form a DNA damage-responsive protein complex. J. Biol. Chem. 274: 567–570.

    Article  Google Scholar 

  185. Walworth, N., and R. Bernards. 1996. rad-dependent responses of the chkl-encoded protein kinase at the DNA damage checkpoint. Science 271: 353–356.

    Google Scholar 

  186. Wang, Z., S. Buratowski, J. Q. Svejstrup, W. J. Feaver, X. Wu, R. D. Kornberg, et al. 1995. The yeast TFB1 and SSL1 genes, which encode subunits of transcription factor IIH, are required for nucleotide excision repair and RNA polymerase II transcription. Mol. Cell. Biol. 15: 2288–2293.

    PubMed  CAS  Google Scholar 

  187. Weber, C. A., E. P. Salazar, S. A. Stewart, and L. H. Thompson. 1990. ERCC-2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9: 1437–1448.

    CAS  Google Scholar 

  188. Weinert, T. 1998. DNA damage checkpoints update: getting molecular. Curt: Op. Gen. Dev. 8: 185–193.

    Article  CAS  Google Scholar 

  189. Weinert, T. A., G. L. Kiser, and L. H. Hartwell. 1994. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8: 652–665.

    Article  PubMed  CAS  Google Scholar 

  190. Willson, J., S. Wilson, N. Warr, and F. Z. Watts. 1997. Isolation and characterization of the Schizosaccharomyces pombe rhp9 gene: a gene required for the DNA damage checkpoint but not the replication checkpoint. Nucl. Acids Res. 25: 2138–2146.

    Article  PubMed  CAS  Google Scholar 

  191. Wilson, T. E., U. Grawunder, and M. R. Lieber. 1997. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388: 495–498.

    Article  PubMed  CAS  Google Scholar 

  192. Wood, R. D. 1996. DNA repair in eukaryotes. Annual Review of Biochemistry 65: 135–167.

    Article  PubMed  CAS  Google Scholar 

  193. Wright, J. A., K. S. Keegan, D. R. Herendeen, N. J. Bentley, A. M. Carr, M. E Hoekstra, and P. Concannon. 1998. Protein kinase mutants of human ATR increase sensitivity to UV and ionizing radiation and abrogate cell cycle checkpoint control. Proc. Natl. Acad. Sci. USA 95: 7445–7450.

    Article  PubMed  CAS  Google Scholar 

  194. Xiao, W., B. Derfler, J. Chen, and L. Samson. 1991. Primary sequence and biological functions of a Saccharomyces cerevisiae 06-methylguanine/04-methylthymine DNA repair methyltransferase gene. EMBO J. 10: 2179–2186.

    PubMed  CAS  Google Scholar 

  195. Yamamoto, A., V. Guacci, and D. Koshland. 1996. Pdslp, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J. Cell Biol. 133: 99–110.

    Article  PubMed  CAS  Google Scholar 

  196. Yasui, A., A. R. Eker, S. Yasuhira, H. Yajima, T. Kobayashi, M. Takao, and A. Oikawa. 1994. A new class of DNA photolyases present in various organisms including aplacental mammals. EMBO J. 13: 6143–6151.

    PubMed  CAS  Google Scholar 

  197. Zambetti, G. R, J. Bargonetti, K. Walker, C. Prives, and A. J. Levine. 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev. 6: 1143–1152.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lehmann, A.R., Taylor, E.M. (2001). Conservation of Eukaryotic DNA Repair Mechanisms. In: Nickoloff, J.A., Hoekstra, M.F. (eds) DNA Damage and Repair. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-095-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-095-7_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9635-2

  • Online ISBN: 978-1-59259-095-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics