Advertisement

Effect of Diabetes on Endothelial Function

  • Keiko Naruse
  • George L. King
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Complications of diabetes occur in many tissues, including retina, renal glomeruli, nerves, vasculature, heart, skin, and others, involving both micro-and macrovascular tissues. After the discovery of insulin in 1921, the major cause of morbidity and mortality in diabetic patients became cardiovascular complications (1–3). The incidence of coronary artery disease (CAD) in patients with diabetes or insulin resistance syndrome is increased in diabetic patients age older than 30 years (4–5). The Framingham Study, which surveyed longitudinally over 5000 patients with 18 years of follow-up, indicated that major clinical manifestations of CAD were increased in diabetic patients, especially in women. The risk of CAD increases with duration, reflecting the effect of the aging process, whereas in diabetic patients, both aging and duration of diabetes increased the risk of cardiac mortality: more than 50% of mortality in diabetic patients is related to cardiovascular disease. The incidence of cardiac or cerebrovascular disease is two to four times higher in diabetic patients than in the general population.

Keywords

Vascular Endothelial Growth Factor Aldose Reductase Polyol Pathway Aldose Reductase Inhibitor Retinal Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krolewski AS, Warram JH, Rand LI, Kahn CR. Epidemiologic approach to etiology of type I diabetes mellitus and its complications. N Engl J Med 1987;317:1390–1398.PubMedCrossRefGoogle Scholar
  2. 2.
    Kannel WB, McGee DL. Diabetes and cardiovascular disease: the Framingham study. JAMA 1979; 241:2035–2038.PubMedCrossRefGoogle Scholar
  3. 3.
    Turner RC. The UK Prospective Diabetes Study. A review. Diabetes Care 1998;21(Suppl 3):C35–C38.Google Scholar
  4. 4.
    Krolewski AS, Kosinski EJ, Warram JH, et al. Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am J Cardiol 1987;59:750–755.PubMedCrossRefGoogle Scholar
  5. 5.
    Knuiman, MW, Welborn, TA, McCann VJ. Prevalence of diabetic complications in relation to risk factors. Diabetes 1986;35:1332–1339.PubMedCrossRefGoogle Scholar
  6. 6.
    Benditt EP. Implications of the monoclonal character of human atherosclerotic plaques. Am J Pathol 1977;86:693–702.PubMedGoogle Scholar
  7. 7.
    Steinberg D, Gotto AM Jr. Preventing coronary artery disease by lowering cholesterol levels: fifty years from bench to bedside. JAMA 1999;282:2043–2050.PubMedCrossRefGoogle Scholar
  8. 8.
    Sosenko JM, Breslow JL, Miettinen OS, Gabbay KH. Hyperglycemia and plasma lipid levels: a prospective study of young insulin-dependent diabetic patients. N Engl J Med 1980;302:650–654.PubMedCrossRefGoogle Scholar
  9. 9.
    Fuller JH, Shipley MJ, Rose G, Jarrett RJ, Keen H. Coronary-heart-disease risk and impaired glucose tolerance. The Whitehall study. Lancet 1980;1:1373–1376.PubMedCrossRefGoogle Scholar
  10. 10.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus. N Engl J Med 1993;329:977–986.CrossRefGoogle Scholar
  11. 11.
    Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103–117.PubMedCrossRefGoogle Scholar
  12. 12.
    Reaven GM. Role of insulin resistance in human disease. Diabetes 1988;37:1595–1607.PubMedCrossRefGoogle Scholar
  13. 13.
    Lamarche B, Mauriege P, Cantin B, Dagenais GR, Moorjani S, Lupien PJ. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996;334:952–957.PubMedCrossRefGoogle Scholar
  14. 14.
    Petrie JR, Ueda S, Webb DJ, Elliott HL, Connell JMC. Endothelial nitric oxide production and insulin sensitivity: a physiological link with implications for pathogenesis of cardiovascular disease. Circulation 1996;93:1331–1333.PubMedCrossRefGoogle Scholar
  15. 15.
    Natali A, Taddei S, Galvan AQ, et al. Insulin sensitivity, vascular reactivity, and clamp-induced vasodilation in essential hypertension. Circulation 1997;96:849–855.PubMedCrossRefGoogle Scholar
  16. 16.
    Stehouwer CDA, Schaper NC. The pathogenesis of vascular complications of diabetes mellitus: one voice or many? Eur J Clin Invest 1996;26:535–543.PubMedCrossRefGoogle Scholar
  17. 17.
    King GL, Banskota NK. Mechanism of diabetic microvascular complications. In: Kahn CR, Weir GC, eds. Joslin’s Diabetes Mellitus, 13th ed. Lea & Febiger, Philadelphia, 1994, pp. 631–647.Google Scholar
  18. 18.
    Colwell JA, Lopes-Virella M, Halushka PV. Pathogenesis of atherosclerosis in diabetes mellitus. Diabetes Care 1981;4:121–133.PubMedCrossRefGoogle Scholar
  19. 19.
    Banskota NK, Taub R, Zellner K, Olsen P, King GL. Characterization of the induction of proto-onco-gene c-myc and cellular growth in human vascular smooth muscle cells by insulin and IGF-I. Diabetes 1989;38:123–129.PubMedCrossRefGoogle Scholar
  20. 20.
    Banskota NK, Taub R, Zellner K, King GL. Insulin, insulin-like growth factor I and platelet-derived growth factor interact synergistically in the induaction of proto-oncogene c-myc and cellular proliferation in cultured bovine aortic smooth muscle cells. Mol Endocrinol 1989;3:1183–1190.PubMedCrossRefGoogle Scholar
  21. 21.
    King GL, Davidheiser S, Banskoto N, Oliver FJ, Inoguchi T. Insulin receptors and actions on vascular cells. In: Smith U, Bruun NE, Hedner T, Hökfelt B, eds. Hypertension as an Insulin-Resistant Disorder. Genetic Factors and Cellular Mechanisms. Elsevier Science Publishers, Amsterdam, 1991, pp. 183–197.Google Scholar
  22. 22.
    King GL, Johnson S. Receptor-mediated transport of insulin across the endothelial cells. Science 1985; 277:1583–1586.CrossRefGoogle Scholar
  23. 23.
    Hachiya HL, Halban PA, King GL. Intracellular pathways of insulin transport across vascular endothelial cells. Am J Physiol 1988;255:C459–C464.Google Scholar
  24. 24.
    Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest 1994;94:2511–2515.PubMedCrossRefGoogle Scholar
  25. 25.
    Baron AD. Insulin and the vasculature-old actors, new roles. J Invest Med 1996;44:406–412.Google Scholar
  26. 26.
    Steinberg HO, Chaker H, Learning R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction: implications for the syndrome of insulin resistance. J Clin Invest 1996;97:2601–2610.PubMedCrossRefGoogle Scholar
  27. 27.
    Kuboki K, Jiang ZY, Takahara N, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 2000; 101:676–681.PubMedCrossRefGoogle Scholar
  28. 28.
    King GL, Davidheiser S, Banskoto N, Oliver J, Inoguchi T. In: Smith U, ed. Insulin receptors and actions on vascular cells. Novo Nordisk Foundation Symposium No. 5. Excepta Medica, Amsterdam, 1991, pp. 183–187.Google Scholar
  29. 29.
    Bornfeldt KE, Raines EW, Nakano T, Graves LM, Krebs EG, Ross RJ. Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J Clin Invest 1994;93:1266–1274.PubMedCrossRefGoogle Scholar
  30. 30.
    Jiang ZY, Lin YW, Clemont A, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest 1999;104:447–457.PubMedCrossRefGoogle Scholar
  31. 31.
    Kaiser N, Sasson S, Feener EP, Moller DE, King GL. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 1992;42:80–89.CrossRefGoogle Scholar
  32. 32.
    Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med 1995;46:223–234.PubMedCrossRefGoogle Scholar
  33. 33.
    King GL, Shiba T, Oliver J, Inoguchi T, Bursell SE, Cellular and molecular abnormalities in the vascular endothelium of ciabetes mellitus. Annu Rev Med 1994;45:179–188.PubMedCrossRefGoogle Scholar
  34. 34.
    Greene D, Lattimer SA, Sima AAF. Sorbitol, phosphoinositides and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med 1987;316:599–606.PubMedCrossRefGoogle Scholar
  35. 35.
    Bayners JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40: 405–412.CrossRefGoogle Scholar
  36. 36.
    Brownlii M. Lilly Lecture 1993. Diabetes 1994;43:836–841.Google Scholar
  37. 37.
    Schernthaner G. Cardiovascular mortality and morbidity in type-2 diabetes mellitus. Diabetes Res Clin Pract 1996;33:S3–S14.CrossRefGoogle Scholar
  38. 38.
    Rosen P, Du X, Diethelm T. Role of oxygen derived radicals for vascular dysfunction in the diabetic heart: prevention by a-tocopherol? Mol Cell Biochem 1998;188:103–111.PubMedCrossRefGoogle Scholar
  39. 39.
    Hamby R, Zoneraich S, Sherman S. Diabetic cardiomyopathy. JAMA 1974;229:1749–1754.PubMedCrossRefGoogle Scholar
  40. 40.
    Minor RL, Myers PR, Guerra R, Bates JN, Harrison DG. Diet-induced atherosclerosis increases the release of vascular relaxing factor. J Clin Invest 1990;86:2109–2116.PubMedCrossRefGoogle Scholar
  41. 41.
    Keaney JF, Gaziano JM, Xu A, et al. Low dose a-tocopherol improves and high dose a-tocopherol worsens endothelial vasodilator function in cholesterol-fed rabbits. J Clin Invest 1994;93:844–851.PubMedCrossRefGoogle Scholar
  42. 42.
    Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993;91:2546–2551.PubMedCrossRefGoogle Scholar
  43. 43.
    Wolffenbuttel BH, Boulanger CM, Crijns FR, et al. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc Natl Acad Sci USA 1998;95:4630–4634.PubMedCrossRefGoogle Scholar
  44. 44.
    Yan SD, Schmidt AM, Anderson GM, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 1994;269:9889–9897.PubMedGoogle Scholar
  45. 45.
    Gabbay KH. The sorbitol pathway and the complications of diabetes. N Engl J Med 1973;288:831–836.PubMedCrossRefGoogle Scholar
  46. 46.
    Kennedy AI, Frank RN, Varma SD. Aldose reductase activity in retinal and cerebral microvessels and cultured vascular cells. Invest Ophthalmol Vis Sci 1983;24:1250–1258.PubMedGoogle Scholar
  47. 47.
    Ludvigson MA, Sorenson RI. Immunohistochemical localization of aldose reductase. II. Rat eye and kidney. Diabetes 1980;29:450–459.PubMedCrossRefGoogle Scholar
  48. 48.
    MacGregor LC, Matschinsky FM. Treatment with aldose reductase inhibitor or with myo-inositol arrests deterioration of the electroretinogram of diabetic rats. J Clin Invest 1985;76:887–889.PubMedCrossRefGoogle Scholar
  49. 49.
    Nakamura J, Koh N, Sakakibara F, Hamada Y, Hotta N. Polyol pathway hyperactivity is closely related to carnitine deficiency in the pathogenesis of diabetic neuropathy of streptozotocin-diabetic rats. J Pharmacol Exp Ther 1998;287:897–902.PubMedGoogle Scholar
  50. 50.
    Cameron NE, Cotter MA. Contraction and relaxation of aortas from galactosaemic rats and the effects of aldose reductase inhibition. Eur J Pharmacol 1994; 243:47–53.CrossRefGoogle Scholar
  51. 51.
    Kasuya Y, Ito M, Nakamura J, et al. An aldose reductase inhibitor prevents the intimal thicking in coronary arteries of galactose-fed beagle dogs. Diabetologia 1999;42:1404–1409.PubMedCrossRefGoogle Scholar
  52. 52.
    Bravi MC, Pietrangeli P, Laurenti O, et al. Polyol pathway activation and glutathione redox status in non-insulin-dependent diabetic patients. Metabolism 1997;46:1194–1198.PubMedCrossRefGoogle Scholar
  53. 53.
    Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 1999;13:23–30.PubMedGoogle Scholar
  54. 54.
    Kapor-Drezgic J, Zhou X, Babazono T, Dlugosz JA, Hohman T, Whiteside C. Effect of high glucose on mesangial cell protein kinase C-delta and -epsilon is polyol pathway-dependent. J Am Soc Nephrol 1999;10:1193–1203.PubMedGoogle Scholar
  55. 55.
    Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40: 405–412.PubMedCrossRefGoogle Scholar
  56. 56.
    Giunliano D, Cireillo A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care 1996;19:257–267.CrossRefGoogle Scholar
  57. 57.
    Oberley LW. Free radicals and diabetes. Free Radic Biol Med 1988;5:113–124.PubMedCrossRefGoogle Scholar
  58. 58.
    Ceriello A, Quatraro A, Caretta F, Varano R, Giugliano D. Evidence for a possible role of oxygen free radicals in the abnormal functional arterial vasomotion in insulin dependent diabetes. Diabetes Metab 1990;16:318–322.Google Scholar
  59. 59.
    Kilhovd BK, Berg TJ, Birkeland KI, Thorsby P, Hanssen KF. Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care 1999; 22:1543–1548.PubMedCrossRefGoogle Scholar
  60. 60.
    Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999;48:1–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Beisswenger PJ, Moore LL, Brinck-Johnsen T, Curphey TJ. Increased collagen-linked pentosidine levels and advanced glycosylation end products in early diabetic nephropathy. J Clin Invest 1993;92: 212–217.PubMedCrossRefGoogle Scholar
  62. 62.
    McCance DR, Dyer DG, Dunn JA, et al. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 1993;91:2470–2478.PubMedCrossRefGoogle Scholar
  63. 63.
    The Heart Outcomes Prevention Evaluation Study Investigators. Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 2000;342:154–160.Google Scholar
  64. 64.
    Bursell SE, Clermont AC, Aiello LP, et al. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes. Diabetes Care 1999;22:1245–1251.Google Scholar
  65. 65.
    Shiba T, Inoguchi T, Sportsman JR, Heath W, Bursell S, King GL. Correlation of diacylglycerol and protein kinase C activity in rat retina to retinal circulation. Am J Physiol 1993;265:E783–E793.Google Scholar
  66. 66.
    Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL. Preferential elevation of protein kinase C isoform ββ2 and diacyoglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci USA 1992;89:11,059–22,063.Google Scholar
  67. 67.
    Craven PA, DeRubertis FR. Protein kinase C is activated in glomeruli from streptozotocin diabetes rats. J Clin Invest 1989;83:1667–1675.PubMedCrossRefGoogle Scholar
  68. 68.
    Considine RV, Nyce MR, Allen LE, et al. Protein kinase C is increased in the liver of humans and rats with non-insulin-dependent diabetes mellitus: an alterration not due to hyperglycemia. J Clin Invest 1995;95:2938–2944.PubMedCrossRefGoogle Scholar
  69. 69.
    Ayo SH, Radnik R, Garoni JA, Troyer DA, Kreisberg JI. High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cell cultures. Am J Physiol 1991;261:F571–F577.Google Scholar
  70. 70.
    Studer RK, Craven PA, DeRubertis FR. Role for protein kinase C in the mediation of increased fibronectin accumulation by mesangial cells grown in high-glucose medium. Diabetes 1983;42:118–126.CrossRefGoogle Scholar
  71. 71.
    Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992;258:607–614.PubMedCrossRefGoogle Scholar
  72. 72.
    King GL, Ishii H, Koya D. Diabetic vascular dysfunctions: a model of excessive activation of protein kinase C. Kidney Int 1997;52:S77–S85.Google Scholar
  73. 73.
    Dereubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes: mechanisms and potential link to the pathogenesis of diabetic glomerulopathy. Diabetes 1994;43:1–8.CrossRefGoogle Scholar
  74. 74.
    Inoguchi T, Pu X, Kunisaki M, Higashi S, Feener EP, King GL. Insulin’s effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. Am J Physiol 1994;267:E369–E379.Google Scholar
  75. 75.
    Holub BJ, Kuksis A. Metabolism of molecular species of diacylglycerol phospholipids. Adv Lipid Res 1986;16:1–125.Google Scholar
  76. 76.
    Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hyperglycemia. Diabetes 1994;43:1122–1129.PubMedCrossRefGoogle Scholar
  77. 77.
    Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKCββ inhibitor. Science 1996;272:728–731.PubMedCrossRefGoogle Scholar
  78. 78.
    Yasunari K, Kohno M, Kano H, Yokokawa K, Horio T, Yoshikawa J. Possible involvement of phospholipase D and protein kinase C in vascular growth induced by elevated glucose concentration. Hypertension 1996;28:159–168.PubMedCrossRefGoogle Scholar
  79. 79.
    Taher MM, Garcia JG, Natarajan V. Hydroperoxide-induced diacylglycerol formation and protein kinase C activation in vascular endothelial cells. Arch Biochem Biophys 1993;303:260–266.PubMedCrossRefGoogle Scholar
  80. 80.
    Kunisaki M, Bursell S-E, Umeda F, Nawata H, King GL. Normaliztion of diacylglycerol-protein kinase C activation by vitamine E in aortic of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose levels. Diabetes 1994;43:1372–1377.CrossRefGoogle Scholar
  81. 81.
    Kunisaki M, Bursell S-E, Clermont AC, et al. Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. Am J Physiol 1995;269:E239–E246.Google Scholar
  82. 82.
    Kotani K, Ogawa W, Matsumoto M, et al. Requirement of atypical protein kinase C lambda for insulin stimulation of glucose uptake but not for akt activation in 3T3–L1 adipocytes. Mol Cell Biol 1998;18: 6971–6982.PubMedGoogle Scholar
  83. 83.
    Standaert ML, Bandyopadhyay G, Perez L, et al. Insulin activates protein kinase C-zeta and C-lambda by an autophosphorylation-dependent mechanism and stimulates their trasnlocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J Biol Chem 1999;274:25,308–25,316.Google Scholar
  84. 84.
    Koya D, Jirosek MR, Lin Y-W, Ishi H, Kuboki K, King GL. Characteristics of protein kinase Cββ isoform activation on the gene expression of transforming growth factor β, extracellular matrix components and prostanoids in the glomeruli of diabetic rats. J Clin Invest 1997;100:115–126.PubMedCrossRefGoogle Scholar
  85. 85.
    Ledet T, Neubauer B, Christensen NJ, Lundbaek K. Diabetic cardiopathy. Diabetologia 1979;16: 207–209.PubMedCrossRefGoogle Scholar
  86. 86.
    Neubauer B. A quantitative study of peripheral arterial calcification and glucose tolerance in elderly diabetics and non-diabetics. Diabetologia 1971;7:409–413.PubMedCrossRefGoogle Scholar
  87. 87.
    Hamet P, Sugimoto H, Umeda F, et al. Abnormalities of platelet-derived growth factors in insulindependent diabetes. Metabolism 1985;34(Suppl 1):25–31.PubMedCrossRefGoogle Scholar
  88. 88.
    Reaven GM, Chen YD, Jeppesen J, Maheux P, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest 1993;92:141–146.PubMedCrossRefGoogle Scholar
  89. 89.
    Howard BV. Insulin resistance and lipid metabolism. Am J Cardiol 1999;84:28J–32J.CrossRefGoogle Scholar
  90. 90.
    Prisco D, Rogasi PG, Paniccia R, et al. Altered membrane fatty acid composition and increased thromboxane A2 generation in platelets from patients with diabetes. Prostaglandins Leuko Essen Fatty Acids 1989;35:15–23.CrossRefGoogle Scholar
  91. 91.
    Matsuda Y, Hirata K, Inoue N, et al. High density lipoprotein reverses inhibitory effect of oxidized low density lipoprotein on endothelium-dependent arterial relaxation. Circ Res 1993;72:1103–1109.PubMedCrossRefGoogle Scholar
  92. 92.
    Hackman A, Abe Y, Insull W Jr, et al. Levels of soluble cell adhesion molecules in patients with dyslipidemia. Circulation 1996;93:1334–1338.PubMedCrossRefGoogle Scholar
  93. 93.
    Sampietro T, Tuoni M, Ferdeghini M, et al. Plasma cholesterol regulates soluble cell adhesion molecule expression in familial hypercholesterolemia. Circulation 1997;96:1381–1385.PubMedCrossRefGoogle Scholar
  94. 94.
    Lacoste L, Lam JY, Hung J, Letchacovski G, Solymoss CB, Waters D. Hyperlipidemia and coronary disease. Correction of the increased thrombogenic potential with cholesterol reduction. Circulation 1995;92:3172–3177.PubMedCrossRefGoogle Scholar
  95. 95.
    Nofer JR, Tepel M, Kehrel B, et al. Low-density lipoproteins inhibit the Na+/H+ antiport in human platelets. A novel mechanism enhancing platelet activity in hypercholesterolemia. Circulation 1997;95: 1370–1377.PubMedCrossRefGoogle Scholar
  96. 96.
    Vogel RA. Cholesterol lowering and endothelial function. Am J Med 1999;107:479–487.PubMedCrossRefGoogle Scholar
  97. 97.
    Creager MA, Gallagher SJ, Girerd XJ, Coleman SM, Dzau VJ, Cooke JP. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest 1992;90:1248–1253.PubMedCrossRefGoogle Scholar
  98. 98.
    Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modifiied low-density lipoproteins. Nature 1990;344:160–162.PubMedCrossRefGoogle Scholar
  99. 99.
    Chen LY, Mehta P, Mehta JL. Oxidized LDL decreases L-arginine uptake and nitric oxide synthase protein expression in human platelets: relevance of the effect of oxidized LDL on platelet function. Circulation 1996;93:1740–1746.PubMedCrossRefGoogle Scholar
  100. 100.
    Chin JH, Azhan S, Hoffman BB. Inactivation of endothelial derived relaxing factor by oxidized lipoprotein. J Clin Invest 1992;89:10–18.PubMedCrossRefGoogle Scholar
  101. 101.
    Quyyumi AA, Dakak N, Diodati JG, Gilligan DM, Panza JA, Cannon RO III. Effect of L-arginine on human coronary endothelium-dependent and physiologic vasodilation. J Am Coll Cardiol 1997;30: 1220–1227.Google Scholar
  102. 102.
    Feke GT, Buzney SM, Ogasawara H, et al. Retinal circulatory abnormalities in type 1 diabetes. Invest Ophthalmol Vis Sci 1994;35:2968–2975.PubMedGoogle Scholar
  103. 103.
    Bursell S-E, Clermont AC, Kinsley BT, Simonson DC, Aiello LM, Wolpert HA. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Opthalmol Vis Sci 1996;37:886–897.Google Scholar
  104. 104.
    Small KW, Stefánsson E, Hatchell D. Retinal blood flow in normal and diabetic dogs. Invest Ophthalmol Vis Sci 1987;28:672–675.PubMedGoogle Scholar
  105. 105.
    Clermont AC, Brittis M, Shiba T, McGovern T, King GL, Bursell S-E. Normalization of retinal blood flow in diabetic rats with primary intervention using insulin pumps. Invest Ophthalmol Vis Sci 1994;35: 981–990.PubMedGoogle Scholar
  106. 106.
    Miyamoto K, Ogura Y, Nishiwaki H, et al. Evaluation of retinal microcirculatory alterations in the Goto-Kakizaki rat. Invest Ophthalmol Vis Sci 1996;37:2504–2518.Google Scholar
  107. 107.
    Takagi C, Bursell S-E, Lin Y-W, et al. Regulation of retinal hemodynamics in diabetic rats by increased expression and action of endothelin-1. Invest Opthalmol Vis Sci 1996;37:2504–2518.Google Scholar
  108. 108.
    Tolentino MJ, Miller JW, Gragoudas ES, et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 1996;103: 1820–1828.PubMedGoogle Scholar
  109. 109.
    Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 1995;92:10,457–10,461.Google Scholar
  110. 110.
    Ditzel J, Schwartz M. Abnormally increased glomerular filtration rates in short-term insulin treated diabetic subjects. Diabetes 1967;16:264–267.PubMedGoogle Scholar
  111. 111.
    Chiristiansen JS, Gammelgaard J, Frandsen M, Parving HH. Increased kidney size, glomerular filtration rate and renal plasma flow in short-term insulin-dependent diabetes. Diabetologia 1981;20:451–456.Google Scholar
  112. 112.
    Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int 1981;19:410–415.PubMedCrossRefGoogle Scholar
  113. 113.
    Viberti GC. Early functional and morphological changes in diabetes nehropathy. Clin Nephro11979;12: 47–53.Google Scholar
  114. 114.
    Schambelan M, Blake S. Increased prostaglandin production by glomeruli isolated from rats with streptozotocin-induced diabetes mellitus. J Clin Invest 1985;75:404 412.Google Scholar
  115. 115.
    Craven PA, Caines MA, DeRubertis FR. Sequential alterations in glomerular prostaglandin and thromboxane synthesis in diabetic rats: relationship to the hyperfiltration of early diabetes. Metabolism 1987; 36:95–103.PubMedCrossRefGoogle Scholar
  116. 116.
    Kamata K, Miyata N, Kasuya Y. Involvement of endothelial cells in relaxation and contraction responses of the aorta to isoproterenol in native and streptozotocin-induced diabetic rats. J Pharmacol Exp Ther 1989;249:890–894.PubMedGoogle Scholar
  117. 117.
    Mayhan WG. Impairment of endothelium-dependent dilatation of cerebral arterioles during diabetes mellitus. Am J Physiol 1989;256:H621–H625.Google Scholar
  118. 118.
    Tesfamariam B, Jakubowski JA, Cohen RA. Contraction of diabetic rabbit aorta caused by endothelium-derived PGH2-TxA2. Am J Physiol 1989;257:H1327–H1333.Google Scholar
  119. 119.
    McVeigh GE, Brennan GM, Johnston GD, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1992;35: 771–776.PubMedGoogle Scholar
  120. 120.
    McVeigh GE, Brennan GM, Johnston GD, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 diabetes mellitus. Diabetologia 1992;35:771–776.PubMedGoogle Scholar
  121. 121.
    Ohara Y, Sayegh HS, Yamin JJ, Harrison DG. Regulation of endothelial constitutive nitric oxide synthase by protein kinase C. Hypertension 1995;25:415–420.PubMedCrossRefGoogle Scholar
  122. 122.
    Williamson JR, Chang K, Tilton RG, et al. Increased vascular permeability in spontaneously diabetic BB/W rats and in rats with mild versus severe streptozotocin-induced diabetes. Diabetes 1987;36: 813–821.PubMedCrossRefGoogle Scholar
  123. 123.
    Lynch JJ, Ferro TJ, Blumenstock FA, Brockenauer AM, Malik AM. Increased endothelial albumin permeability mediated by protein kinase C activation. J Clin Invest 1990;85:1991–1998.PubMedCrossRefGoogle Scholar
  124. 124.
    Oliver JA. Adenylate cyclase and protein kinase C mediate opposite actions on endothelial junctions. J Cell Physiol 1990;145:536–542.PubMedCrossRefGoogle Scholar
  125. 125.
    Wolf BA, Williamson JR, Easom RA, Chang K, Sherman WR, Turk J. Diacylglycerol accumulation and microvascular abnormalities induced by elevated glucose levels. J Clin Invest 1991;87:31–38.PubMedCrossRefGoogle Scholar
  126. 126.
    Nagpala PG, Malik AB, Vuong PT, Lum H. Protein kinase Cββ1 overexpression augments phorbol ester-induced increase in endothelial permeability. J Cell Physiol 1996;166:249–255.PubMedCrossRefGoogle Scholar
  127. 127.
    Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluids of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994;331:1480–1487.PubMedCrossRefGoogle Scholar
  128. 128.
    Xia P, Aiello LP, Ishii H, et al. Characterization of vascular endothelial growth factor’s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest 1996;98:2018–2026.PubMedCrossRefGoogle Scholar
  129. 129.
    Vasilets LA, Schwarz W. Structure-function relationships of cation binding in the Na+-K+-ATPase Biochem Biophys Acta 1993;1154:201–222.CrossRefGoogle Scholar
  130. 130.
    Winegrad AI. Does a common mechanism induce the diverse complications of diabetes? Diabetes 1987;36:396–406.Google Scholar
  131. 131.
    MacGregor LC, Matschinsky FM. Altered retinal metabolism in diabetes. Measurement of sodiumpotassium ATPase and total sodium and potassium in individual retinal layers. J Biol Chem 1986;261: 4052–4058.PubMedGoogle Scholar
  132. 132.
    Xia P, Kramer RM, King GL. Identification of the mechanism for the inhibition of Na+, K+-adenosine triphosphatase by hyperglycemia involving activation of protein kinase C and cytosolic phospholipase A2. J Clin Invest 1995;96:733–740.PubMedCrossRefGoogle Scholar
  133. 133.
    Williamson JR, Kilo C. Extracellular matrix changes in diabetes mellitus. In: Scarpelli DG, Migahi G, eds. Comparative Pathobiology of Major Age-Related Diseases. Alan R Liss, New York, 1984, pp. 269–288.Google Scholar
  134. 134.
    Scheiman JL, Fish AJ, Matas AJ, Michael AF. The immunohistopathology of glomerular antigens. The glomerular basement membrane, actomyosin, and fibroblast surface antigens in normal, diseased and transplanted human kidneys. Am J Pathol 1978;90:71–88.Google Scholar
  135. 135.
    Bruneval P, Foidart JM, Nochy D, Camilleri JP, Bariety J. Glomerular matrix proteins in nodular glomerulosclerosis in association with light chain deposition disease and diabetes mellitus. Hum Pathol 1985;16:477–484.PubMedCrossRefGoogle Scholar
  136. 136.
    Yamanoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor ββ is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci USA 1993;90: 1814–1818.CrossRefGoogle Scholar
  137. 137.
    Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-β by anti TGF-β antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 1996;45:522–530.PubMedCrossRefGoogle Scholar
  138. 138.
    Ziyadeh FN, Sharma K, Ericksen M, Wolf G. Stimulation of collagen expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-β. J Clin Invest 1994;93:536–542.PubMedCrossRefGoogle Scholar
  139. 139.
    Bierman EL. Atherogenesis in diabetes. Arterioscler Thromb 1992;12:647–656.PubMedCrossRefGoogle Scholar
  140. 140.
    Sobel BE. Insulin resistance and thrombosis: cardiologist’s view. Am J Cardiol 1999;64:37J–41J.CrossRefGoogle Scholar
  141. 141.
    Schneider DJ, Nordt TK, Sobel BE. Attenuated fiibrinolysis and accelerated atherogenesis in type 2 diabetic patients. Diabetes 1993;42:1–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Feener EP, King GL. Vascular dysfunction in diabetes mellitus. Lancet 1997;350:S9–S13.CrossRefGoogle Scholar
  143. 143.
    Feener EP, Northrup JM, Aiello LP, King GL. Angiotensin induces plasminogen activator inhibitor1 and −2 expression in vascular endothelial and smooth muscle cells. J Clin Invest 1995;95:1353–1362.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Keiko Naruse
  • George L. King

There are no affiliations available

Personalised recommendations