Skip to main content

Diabetes and Nephropathy

  • Chapter
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 133 Accesses

Abstract

Diabetic nephropathy is the leading cause of end-stage renal disease (ESRD) in the United States, accounting for more than one-third of ESRD cases (1). Diabetes mellitus is also an independent and strong risk factor for ESRD ascribed to causes other than diabetes (2) such as hypertension, pyelonephritis, and the other forms of glomerulopathies seen in diabetic patients can lead to chronic renal disease. Here we focus mainly on diabetic nephropathy as a major microvascular complication of both type 1 and type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Incidence and prevalence of ESRD. USRDS. United States Renal Data System. Am J Kidney Dis 1997; 30(2 Suppl 1):S40–S53.

    Google Scholar 

  2. Brancati FL, Whelton PK, Randall BL, Neaton JD, Stamler J, Klag MJ. Risk of end-stage renal disease in diabetes mellitus: a prospective cohort study of men screened for MRFIT. Multiple Risk Factor Intervention Trial. JAMA 1997;278:2069–2074.

    PubMed  CAS  Google Scholar 

  3. Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T. Diabetic nephropathy in type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 1983;25:496–501.

    PubMed  CAS  Google Scholar 

  4. Rossing P, Rossing K, Jacobsen P, Parving HH. Unchanged incidence of diabetic nephropathy in IDDM patients. Diabetes 1995;44:739–743.

    PubMed  CAS  Google Scholar 

  5. Hasslacher C, Ritz E, Wahl P, Michael C. Similar risks of nephropathy in patients with type I or type II diabetes mellitus. Nephrol Dial Transplant 1989;4:859–863.

    PubMed  CAS  Google Scholar 

  6. Ballard DJ, Humphrey LL, Melton LJ III, et al. Epidemiology of persistent proteinuria in type II diabetes mellitus. Population-based study in Rochester, Minnesota. Diabetes 1988;37:405–412.

    PubMed  CAS  Google Scholar 

  7. Stephenson JM, Kenny S, Stevens LK, Fuller JH, Lee E. Proteinuria and mortality in diabetes: the WHO Multinational Study of Vascular Disease in Diabetes. Diabetes Med 1995;12:149–155.

    CAS  Google Scholar 

  8. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–986.

    Google Scholar 

  9. UKProspectiveDiabetesStudy(UKPDS)Group.Intensiveblood-glucosecontrolwithsulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–851.

    Google Scholar 

  10. The Diabetes Control and Complications Trial Research Group. Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. Diabetes 1997;46:1829–1839.

    Google Scholar 

  11. Rigat B, Hubert C, Alhence-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990;86:1343–1346.

    PubMed  CAS  Google Scholar 

  12. Shunkert H, Hense HW, Holmer SR, et al. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med 1994;330:1634–1638.

    Google Scholar 

  13. Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992;359:641–644.

    PubMed  CAS  Google Scholar 

  14. Markus HS, Barely J, Lunt R, et al. Angiotensin-converting enzyme gene deletion polymorphism; a new risk factor for lacunar stroke but not carotid atheroma. Stroke 1995;26:1329–1333.

    PubMed  CAS  Google Scholar 

  15. Doria A, Warram JH, Krolewski AS. Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin 1-converting enzyme gene. Diabetes 1994;43:690–695.

    PubMed  CAS  Google Scholar 

  16. Yoshida H, Kuriyama S, Astumi Y, et al. Angiotensin I converting enzyme gene polymorphism in noninsulin dependent diabetes mellitus. Kidney Int 1996;50:657–664.

    PubMed  CAS  Google Scholar 

  17. Kimura H, Geyyo F, Suzuki Y, Suzuki S, Miyazaki R, Arakawa M. Polymorphism of angiotensin converting enzyme and plasminogen activator inhibitor-1 genes in diabetes and macroangiopathy. Kidney Int 1998;54:1659–1669.

    PubMed  CAS  Google Scholar 

  18. Kunz R, Brok JP, Fritsche L, Ringel J, Sharma AM. Association between the angiotensin-converting enzyme-insertion/deletion polymorphism and diabetic nepphropathy: methodologic appraisal and systemic review. J Am Soc Nephrol 1998;9:1653–1663.

    PubMed  CAS  Google Scholar 

  19. Hassstedt SJ, Wu LL, Ash KO, Kuida H, Williams RR. Hypertension and sodiumlithium countertransport in Utah pedigrees: evidence for major-locus inheritance. Am J Hum Genet 1988;43:14–22.

    Google Scholar 

  20. Krolewski AS, Canessa M, Warram J, et al. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med 1988;318:140–145.

    PubMed  CAS  Google Scholar 

  21. Rutherford PA, Thomas TH, Carr SJ, Taylor R, Wilkinson R. Changes in erythrocyte sodium-lithium countertransport kinetics in diabetic nephropathy. Clin Sci 1992;82:301–307.

    PubMed  CAS  Google Scholar 

  22. Mogenson CE, Christiensen CK, Vittinghus E. The stages in diabetic renal disease with emphasis on the stage of incipient nephropathy. Diabetes 1983;32:46.

    Google Scholar 

  23. Mogensen CE, Hansen KW, Osterby R, Damsgaard EM. Blood pressure elevation versus abnormal albuminuria in the genesis and prediction of renal disease in diabetes. Diabetes Care 1992;15:1192–1204.

    PubMed  CAS  Google Scholar 

  24. Mogensen CE. Systemic blood pressure and glomerular leakage with particular reference to diabetes and hypertension. J Intern Med 1994;235:297–316.

    PubMed  CAS  Google Scholar 

  25. Mogensen CE. How to protect the kidney in diabetic patients: with special reference to IDDM. Diabetes 1997;46(Suppl 2): S 104-S 111.

    Google Scholar 

  26. Fioretto P, Mauer M, Brocco E, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia 1996;39:1569–1576.

    PubMed  CAS  Google Scholar 

  27. Nelson RG, Bennet PH, Beck GJ, et al, for the Diabetic Renal Disease Study Group. Development and progression of renal disease in Pima Indians with non-insulin-dependent diabetes mellitus. N Engl J Med 1996;335:1636.

    PubMed  CAS  Google Scholar 

  28. Mogensen CE, Andersen MJF. Increased kidney size and glomerular filtration rate in untreated juvenile diabetic patients: normalization by insulin-treatment. Diabetologia 1975;11:221–224.

    PubMed  CAS  Google Scholar 

  29. Ditzel J, Junker K. Abnormal glomerular filtration rate, renal plasma flow and renal protein excretion in recent and short-term diabetes. BMJ 1972;2:13–19.

    PubMed  CAS  Google Scholar 

  30. Nowak R, Raum E, Blum W, Ritz E. Renal hemodynamics in recent-onset type II diabetes. Am J Kidney Dis 1992;4:342–347.

    Google Scholar 

  31. Myers BD, Nelson RG, Williams GW, et al. Glomerular function in Pima Indians with non-insulin-dependent diabetes mellitus of recent onset. J Clin Invest 1991;88:524–530.

    PubMed  CAS  Google Scholar 

  32. Kroustrup JP, Gundersen HJG, Osterby R. Glomerular size and structure in diabetes mellitus. Diabetologia 1977;13:207–210.

    PubMed  CAS  Google Scholar 

  33. Schambelan M, Blake S, Sraer J, Bens M, Nivez MP, Wahbe F. Increased prostaglandin production by glomeruli isolated from rats with streptozotocin-induced diabetes mellitus. J Clin Invest 1985;75: 404–412.

    PubMed  CAS  Google Scholar 

  34. Ortola FV, Ballerman BJ, Anderson S, Mendez RE, Brenner BM. Elevated plasma atrial natriuretic peptide levels in diabetic rats. J Clin Invest 1987;80:670–674.

    PubMed  CAS  Google Scholar 

  35. Zhang PL, Mackenzie HS, Troy JL, et al. Effects of an atrial natriuretic peptide receptor antagonist on glomerular hyperfiltration in diabetic rats. J Am Soc Nephrol 1994;4:1564–1570.

    PubMed  CAS  Google Scholar 

  36. Komers R, Allen TJ, Cooper ME. Role of endothelium-derived nitric oxide in the pathogenesis of the renal hemodynamic changes of experimental diabetes. Diabetes 1994;43:1190–1197.

    PubMed  CAS  Google Scholar 

  37. Tolinns JP, Schultz PJ, Raji L, et al. Abnormal renal hemodynamic response to reduced renal perfusion pressure in diabetic rats: role of NO. Am J Physiol 1993;265:F886–F895.

    Google Scholar 

  38. Yasuda T, Kondo S, Homma T, et al. Mechanisms for accumulation of extracellular matrix in rat mesangial cells in response to stretch/relaxation. J Am Soc Nephrol 1994;5:824.

    Google Scholar 

  39. Rocco MV, Chen Y, Goldfarb S, et al. Elevated glucose stimulates TGF-β (gene expression and bioactivity in proximal tubes). Kidney Int 1992;41:107.

    PubMed  CAS  Google Scholar 

  40. Anon. Prevention of diabetes mellitus: a report of a WHO study group. WHO Tech Rep. Geneva: WHO 1994:55–59.

    Google Scholar 

  41. Parving H-H, Jensen XX, Mogensen CE, Evrin PE. Increased urinary albumin excretion rate in benign essential hypertension. Lancet 1974;I:1190–1192.

    Google Scholar 

  42. Almadal T, Norgaard K, Feldt-Rasmussen B, Deckert T. The predictive value of microalbuminuria in IDDM: a five year follow-up study. Diabetes Care 1994;17:120–125.

    Google Scholar 

  43. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 1984;310:356–360.

    PubMed  CAS  Google Scholar 

  44. Jarrett RJ, Viberti GC, Argyropoulos A, Hill RD, Mahmud U, Murrells TJ. Microalbuminuria predicts mortality in non-insulin-dependent diabetes. Diabetes Med 1984;1:17–19.

    CAS  Google Scholar 

  45. Messent J, Elliot T, Hill R, Jarrett R, Keen H, Viberti G. Prognostic significance of microalbuminuria in insulin-dependent diabetes mellitus: a twenty-three year follow-up study. Kidney Int 1992;41:836–839.

    PubMed  CAS  Google Scholar 

  46. Deckert T, Feldt-Rasmussen B, Borch-Johnson K, et al. Albuminuria reflects widespread vascular damage: the Steno hypothesis. Diabetologia 1989;32:219.

    PubMed  CAS  Google Scholar 

  47. Feldt-Rasmussen B. Increased transcapillary escape rate of albumin in type 1 (insulin-dependent) diabetic patients with microalbuminuria. Diabetologia 1986;29:282–286.

    PubMed  CAS  Google Scholar 

  48. Nannipieri M, Rizzo L, Rapuano A, Pilo A, Penno G, Navalesi R. Increased transcapillary escape rate of albumin in microalbuminuric type II subject. Diabetes Care 1995;18:1–9.

    PubMed  CAS  Google Scholar 

  49. Schmidt AM, Crandall J, Hori O, Cao R, Lakatta E. Elevated plasma levels of vascular cell adhesion molecule-1 (VCAM-1) in diabetic patients with microalbuminuria: a marker of vascular dysfunction and progressive vascular disease. Br J Haematol 1996;92:747–750.

    PubMed  CAS  Google Scholar 

  50. Brownlee M, Cerami A, Valssara H. Advanced glycosylation endproducts in tissue and biochemical basis of diabetic complications. N Engl J Med 1988;318:1315–1320.

    PubMed  CAS  Google Scholar 

  51. Brownlee M, Cerami A, Valssara H. Advanced products of nonenzymatic glycosylation and the pathogenesis of diabetic vascular disease. Diabetes Metab Rev 1988;4:437–451.

    PubMed  CAS  Google Scholar 

  52. Schmidt AM, Hori O, Chen JX, et al . Advanced glycation endproducts interacting with their endothelial receptor induce expression of VCAM-1 in human endothelial cells and in mice: a potential mechanism for accelerated vasculopathy of diabetes. J Clin Invest 1995;96:1395–1403.

    PubMed  CAS  Google Scholar 

  53. Wautier JL, Zoukourian C, Chappey O, et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest 1996;97:238–243.

    PubMed  CAS  Google Scholar 

  54. Greene DA, Lattimer SA, Sima AA. Sorbitol phosphoinositides, and sodium-potasium-ATPase in the pathogenesis of diabetic complications. N Engl J Med 1987;316:599–606.

    PubMed  CAS  Google Scholar 

  55. Bank N, Mower P, Aynedjiann HS, et al. Sorbinil prevents glomerular hyperfiltration in diabetic rats. Am J Physiol 1989;256:F1000–F1006.

    Google Scholar 

  56. Cravan PA, DeRubertis FR. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats: possible mediation by glucose. J Clin Invest 1989;83:1667–1675.

    Google Scholar 

  57. A.Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunction in diabetic rats by an oral PKC beta inhibitor. Science 1996;272:728–731.

    PubMed  CAS  Google Scholar 

  58. Oskarsson HJ, Hofmeyer TG. Platelets from patients with diabetes mellitus have impaired ability to mediate vasodilation. J Am Coll Cardiol 1996;27:1464–7140.

    PubMed  CAS  Google Scholar 

  59. Oskarsson HJ, Hofmeyer TG. Diabetic human platelets release a substance that inhibits platelet-mediated vasodilation. Am J Physiol 1997;273:H371–H379.

    Google Scholar 

  60. Shaw S, Pegrum GD, Wolff S, Ashton WL. Platelet adhesiveness in diabetes mellitus. J Clin Pathol 1967;20:845–847.

    PubMed  CAS  Google Scholar 

  61. Mayne EE, Bridges JM, Weaver JA. Platelet adhesiveness, plasma fibrinogen and factor VIII levels in diabetes mellitus. Diabetologia 1970;6:436–4440.

    PubMed  CAS  Google Scholar 

  62. Badawi H, El-Sawy M, Mikhail M, Nomeir AM, Tewfik S. Platelets, coagulation and fibrinolysis in diabetic and non-diabetic patients with quiescent coronary heart disease. Angiology 1970;21:511–519.

    PubMed  CAS  Google Scholar 

  63. Odegaard HE, Skalhegg BA, Hellem AJ. Increased activity of ‘anti-Willebrand factor’ in diabetic plasma. Thromb Diath Haemorrh 1964;11:27–37.

    PubMed  CAS  Google Scholar 

  64. Jones RL, Peterson CM. Hematologic alterations in diabetes mellitus. Am J Med 1981;70:339–352.

    PubMed  CAS  Google Scholar 

  65. Kwaan HC, Colwell JA, Cruz S, et al. Increased platelet aggregation in diabetes mellitus. J Lab Clin Med 1972;80:236–246.

    PubMed  CAS  Google Scholar 

  66. Colwell JA, Sagel J, Crook L, Chambers A, Laimins M. Correlation of platelet aggregation, plasma factor activity, and megathrombocytes in diabetic subjects with and without vascular disease. Metabolism 1977;26:279–285.

    PubMed  CAS  Google Scholar 

  67. Shukla SD, Paul A, Klachko DM. Hypersensitivity of diabetic human platelets to platelet activating factor. Thromb Res 1992;66:239–246.

    PubMed  CAS  Google Scholar 

  68. Halushka PV, Rogers RC, Loadholt, CB, Colwell JA. Increased platelet thromboxane synthesis in diabetes mellitus. J Lab Clin Med 1981;97:87–96.

    PubMed  CAS  Google Scholar 

  69. Aoki I, et al. Platelet-dependent thrombin generation in patients with diabetes mellitus: effect of glycemic control on coagulability in diabetes. J Am Coll Cardiol 1996;27:560–566.

    PubMed  CAS  Google Scholar 

  70. Muhlhauser I, Schernthaner G, Silberbauer K, Sinzinger H, Kaliman J. Platelet proteins (beta-TG and PF4) in atherosclerosis and related diseases. Artery 1980;8:73–79.

    PubMed  CAS  Google Scholar 

  71. Rosove MH, Frank HJL, Harwig SS. Plasma beta-thromboglobulin, platelet factor 4, fibrinopeptide A, and other hemostatic functions during improved short-term glycemic control in diabetes mellitus. Diabetes Care 1984;7:174–179.

    PubMed  CAS  Google Scholar 

  72. Lufkin EG, Fass DN, O’Fallon WM, Bowie EJW. Increased von Willebrand factor in diabetes mellitus. Metabolism 1979;28:63–66.

    PubMed  CAS  Google Scholar 

  73. Stehouwer CD, Strose ES, Hackeng WH, Mulder PG, Ottolander D. von Willebrand factor and development of diabetic nephropathy in IDDM. Diabetes 1991;40:971–976.

    PubMed  CAS  Google Scholar 

  74. Lowe GDO, Ghafour IM, Belch JJF, Forbes CD, Foulds WS, MacCuish AC. Increased blood viscosity in diabetic proliferative retinopathy. Diabetes Res 1986;3:67–70.

    PubMed  CAS  Google Scholar 

  75. Poon PYW, Dornan TL, Orde-Peckar C, Mullins R, Bron AJ, Turner RC. Blood viscosity, glycemic control and retinopathy in insulin-dependent diabetes. Clin Sci 1982;63:211–216.

    PubMed  CAS  Google Scholar 

  76. Small M, Lowe GD, MacCuish AC, Forbes CD. Thrombin and plasmin activity in diabetes mellitus and their association with glycemic control. Q J Med 1987;65:1025–1031.

    PubMed  CAS  Google Scholar 

  77. Betteridge DJ, Zahavi J, Jones NAG, et al. Platelet function in diabetes in relationship to complications, glycosylated haemoglobin and serum lipoproteins. Eur J Clin Invest 1981;111:272–277.

    Google Scholar 

  78. Paulsen EP, McChung NM, Sabio H. Some characteristics of spontaneous platelet aggregation in young insulin dependent diabetic subjects. Horm Metab Res Suppl 1981;11:15–21.

    PubMed  CAS  Google Scholar 

  79. Davi G, Gresele P, Violi F, et al. Diabetes mellitus, hypercholesterolemia, and hypertension but not vascular disease per se are associated with persistent platelet activation in vitro. Evidence from the study of peripheral arterial disease. Circulation 1997;96:69–75.

    PubMed  CAS  Google Scholar 

  80. Ritz E, Stefanski A. Diabetic nephropathy in type II diabetes. Am J Kidney Dis 1996;27:167–194.

    PubMed  CAS  Google Scholar 

  81. Fagerudd JA, Tarnow L, Jacobsen P, et al. Predisposition to essential hypertension and development of diabetic nephropathy in IDDM patients. Diabetes 1998;47:439–444.

    PubMed  CAS  Google Scholar 

  82. Berg UB, Torbjornsdotter TB, Jaremko G, Thalme B. Kidney morphological changes in relation to longterm renal function and metabolic control in adolescents with IDDM. Diabetologia 1998;41:1047–1056.

    PubMed  CAS  Google Scholar 

  83. Bennet PH, Haffiner S, Kasiske BL, et al. Screening and management of microalbuminuria in patients with diabetes mellitus: recommendation to the scientific advisory board of the National Kidney Foundation from an ad hoc committee of the Council on Diabetes Mellitus of the National Kidney Foundation. Am J Kidney Dis 1995;25:107–112.

    Google Scholar 

  84. Christiansen JS. Cigarette smoking and prevalence of microangiopathy in juvenile-onset insulindependent diabetes mellitus. Diabetes Care 1978;1:146–149.

    PubMed  CAS  Google Scholar 

  85. Chase HP, Garg SK, Marshall G, et al. Cigarette smoking increases the risk of albuminuria among subjects with type I diabetes. JAMA 1991;265:614–617.

    PubMed  CAS  Google Scholar 

  86. Biesenbach G, Grafinger P, Janko O, Zazgornnik J. Influence of cigarette-smoking on the progression of clinical diabetic nephropathy in type 2 diabetic patients. Clin Nephrol 1997;48:146–150.

    PubMed  CAS  Google Scholar 

  87. Mogensen CE. Progression of nephropathy in long-term diabetic patients with proteinuria and effect of initial anti-hypertensive treatment. Scand J Clin Lab Invest 1976;36:383–388.

    PubMed  CAS  Google Scholar 

  88. Parving HH, Andersen M, Smidt UH, Hommel E, Mathiesen ER, Svendsen PA. Effect of antihypertensive treatment on kidney function in diabetic nephropathy. BMJ 1987;294:1443–1447.

    PubMed  CAS  Google Scholar 

  89. The Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. NIH Publication No. 98–4080. NIH, Washington, DC, 1997.

    Google Scholar 

  90. DeMarie BK, Bakris GL. Effects of different calcium antagonists on proteinuria associated with diabetes mellitus. Ann Intern Med 1990;113:987–988.

    PubMed  CAS  Google Scholar 

  91. Bakris GL. Effects of diltiazem or lisinopril on massive proteinuria associated with diabetes mellitus. Ann Intern Med 1990;112:707–708.

    PubMed  CAS  Google Scholar 

  92. Smith AC, Toto R, Bakris GL. Differential effects of calcium channel blockers on size selectivity of proteinuria in diabetic glomerulopathy. Kidney Int 1998;54:889–896.

    PubMed  CAS  Google Scholar 

  93. Abbott K, Smith A, Bakris GL. Effects of dihydropyridine calcium antagonists on albuminuria in patients with diabetes. J Clin Pharmacol 1996;36:274–279.

    PubMed  CAS  Google Scholar 

  94. Crepaldi G, Carta Q, Deferrari G, et al. Effects of lisinopril and nifedipine on the progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure. The Italian Microalbuminuria Study Group in IDDM. Diabetes Care 1998;21:104–110.

    PubMed  CAS  Google Scholar 

  95. Sumida Y, Yano Y, Murata K, et al. Effect of the calcium channel blocker nilvadipine on urinary albumin excretion in hypertensive microalbuminuric patients with non-insulin-dependent diabetes mellitus. J Int Med Res 1997;25:117–126.

    PubMed  CAS  Google Scholar 

  96. UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ 1998;317:713–720.

    Google Scholar 

  97. Kasiske BL, Kalil RS, Ma JZ, Liao M, Keane WF. Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med 1993;118:129–138.

    PubMed  CAS  Google Scholar 

  98. Parving HH, Hommel E, Damkjaer Nielsen M, Giese J. Effect of captopril on blood pressure and kidney function in normotensive insulin dependent diabetics with nephropathy. BMJ 1989;299:533–536.

    PubMed  CAS  Google Scholar 

  99. Ravid M, Lang R, Rachmani R, LishnerM. Long-term renoprotective effect of angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. A 7-year follow-up study. Arch Intern Med 1996;156:286–289.

    PubMed  CAS  Google Scholar 

  100. Viberti G, Mogensen CE, Groop LC, Pauls JF. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. European Microalbuminuria Captopril Study Group. JAMA 1994;271:275–279.

    PubMed  CAS  Google Scholar 

  101. LewisEJ,HunsickerLG,BainRP,RohdeRD.Theeffectofangiotensin-converting-enzymeinhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993;329:1456–1462.

    Google Scholar 

  102. Remuzzi A, Perico N, Amucchastegui CS, et al. Short- and long-term effect of angiotensin II receptor blockade in rats with experimental diabetes. J Am Soc Nephrol 1993;4:40–49.

    PubMed  CAS  Google Scholar 

  103. Barkis GL, Weir MR, DeQuattro V, McMahon FG. Effects of an ACE inhibitor/calcium antagonist combination on proteinuria in diabetic nephropathy. Kidney Int 1998;54:1283–1289.

    Google Scholar 

  104. Allen TJ, Waldron MJ, Casley D, Jerums G, Cooper ME. Salt restriction reduces hyperfiltration, renal enlargement, and albuminuria in experimental diabete. Diabetes 1997;46:119–124.

    CAS  Google Scholar 

  105. Heeg JE, de Jong PE, van der Hem GK, de Zeeuw D. Efficacy and variability of the antiproteinuric effect of ACE inhibition by lisinopril. Kidney Int 1989;36:272–279.

    PubMed  CAS  Google Scholar 

  106. Klahr S, Levey AS, Beck GJ, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med 1994;330:877–884.

    PubMed  CAS  Google Scholar 

  107. Zatz R, Meyer TW, Rennke HG, Brenner BM. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci USA 1985;82:5963–5967.

    PubMed  CAS  Google Scholar 

  108. Pedrini MT, Levvey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal disease: a meta-analysis. Ann Intern Med 1996;124: 627–632.

    PubMed  CAS  Google Scholar 

  109. Frantz MJ, Horton ES, Bantle JP, et al. Nutrition principles for the management of diabetes and related complications. Diabetes Care 1994;17:490–518.

    Google Scholar 

  110. Krolewski AS, Warram JH, Christlieb AR. Hypercholesterolemia a determinant of renal function loss and deaths in IDDM patients with nephropathy. Kidney Int Suppl 1994,45:S125–S131.

    Google Scholar 

  111. Ravid M, Brosh D, Ravid-Safran D, Levy Z, Rachmani R. Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Intern Med 1998;158:998–1004.

    PubMed  CAS  Google Scholar 

  112. Smulders YM, van Eeden AE, Stehouwer CD, Weijers RN, Slaats EH, Silberbusch J. Can reduction in hypertriglyceridaemia slow progression of microalbuminuria in patients with non-insulin-dependent diabetes mellitus? Eur J Clin Invest 1997;27:997–1002.

    PubMed  CAS  Google Scholar 

  113. Lam KS, Cheng IK, Janus ED, Pang RW. Cholesterol-lowering therapy may retard the progression of diabetic nephropathy. Diabetologia 1995;38:604–609.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roshan, B., Solomon, R.J. (2001). Diabetes and Nephropathy. In: Johnstone, M.T., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-091-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-091-9_22

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4962-5

  • Online ISBN: 978-1-59259-091-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics