Effects of Insulin on the Vascular System

  • Helmut O. Steinberg
Part of the Contemporary Cardiology book series (CONCARD)


The function of the vascular system is to allow the delivery of blood (oxygen and nutrients) to the tissues according to their unique metabolic needs. To accomplish this task for the ever changing tissue requirements without compromising the blood supply of vital organs, the vascular system responds in a variety of ways. It responds at the local tissue level via the release of short-acting vasoactive hormones, which redirect blood flow from less active to more active tissue units. The vascular system reroutes blood flow from organs with (relatively) lesser needs to organ systems that require higher rates of blood flow, for example by activation of the sympathetic nervous system. Finally, if tissue requirements cannot be met by the above mechanisms, cardiac output will increase to meet all requirements and to avoid dangerous reductions in blood pressure.


Nitric Oxide Mean Arterial Blood Pressure Sympathetic Nervous System Activity Capillary Recruitment Skeletal Muscle Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liang C-S, Doherty JU, Faillace R, et al. Insulin infusion in conscious dogs. Effects on systemic and coronaryhemodynamics, regional blood flows, and plasma catecholamines. J Clin Invest 1982;69: 1321–1336.Google Scholar
  2. 2.
    DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979;237:E14–E23.Google Scholar
  3. 3.
    Ray CA, Rea RF, Clary MP, Mark AL. Muscle sympathetic nerve responses to dynamic one leg exercise: effect of body posture. Am J Physiol 1993;264:H1–H7.Google Scholar
  4. 4.
    Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese men. J Clin Invest 1990;85:1844–1852.PubMedCrossRefGoogle Scholar
  5. 5.
    Scherrer U, Vollenweider P, Randin D, Jequier E, Nicod P, Tappy L. Suppression of insulin-induced sympathetic activation and vasodilation by dexamethasone in humans. Circulation 1993;88:388–394.PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 1991;87:2246–2252.PubMedCrossRefGoogle Scholar
  7. 7.
    Scherrer U, Sartori C. Insulin as a vascular and sympathoexcitory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular mortality. Circulation 1997;96:4104–4113.PubMedCrossRefGoogle Scholar
  8. 8.
    Utriainen T, Malmstrom R, Makimattila S, Yki-Jarvinen H. Methodological aspects, dose-response characteristics and causes of interindividual variation in insulin stimulation of limb blood flow in normal subjects. Diabetologia 1995;38:555–564.PubMedCrossRefGoogle Scholar
  9. 9.
    Baron AD, Brechtel-Hook G, Johnson A, Cronin J, Leaming R. Effect of perfusion rate on the time course of insulin mediated skeletal muscle glucose uptake. Am J Physiol 1996;271:E1067–E1072.Google Scholar
  10. 10.
    Westerbacka J, Wilkinson I, Cockcroft J, Utriainen T, Vehkavaara S, Yki-Jarvinen H. Diminished wave reflection in the aorta. A novel physiological action of insulin on large blood vessels. Hypertension 1999;33:1118–1122.PubMedCrossRefGoogle Scholar
  11. 11.
    Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. J Clin Invest 1994;94:1172–1179.PubMedCrossRefGoogle Scholar
  12. 12.
    Laight DW, Kaw AV, Carrier MJ, Anggard EE. Pharmacological modulation of endothelial function by insulin in the rat aorta. J Pharm Pharmacol 1998;50:1117–1120.PubMedCrossRefGoogle Scholar
  13. 13.
    Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans J Clin Invest 1994;94:2511–2515.Google Scholar
  14. 14.
    Chen YL, Messina EJ. Dilation of isolated skeletal muscle arterioles by insulin is endothelium dependent and nitric oxide mediated. Am J Physiol 1996;270:H2120–H2124.Google Scholar
  15. 15.
    Zeng G, Quon MJ. Insulin stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells J Clin Invest 1996;98:894–898.CrossRefGoogle Scholar
  16. 16.
    Zeng G, Nystrom FH, Ravichandran LV, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulinsignaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 2000;101:1539–1545.PubMedCrossRefGoogle Scholar
  17. 17.
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999;399:601–605.PubMedCrossRefGoogle Scholar
  18. 18.
    Fulton D, Gratton JP, McCabe TJ, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999;399:597–601.PubMedCrossRefGoogle Scholar
  19. 19.
    Baron AD, Brechtel G. Insulin differentially regulates systemic and skeletal muscle vascular resistance. Am J Physiol 1993;265:E61–E67.Google Scholar
  20. 20.
    ter Maaten JC, Voorburg A, de Vries PM, ter Wee PM, Donker AJ, Gans RO. Relationship between insulin’ s haemodynamic effects and insulin-mediated glucose uptake. EurJ Clin Invest 1998;28:279–284.CrossRefGoogle Scholar
  21. 21.
    Gans ROB vd, Toorn L, Bilo HJG, Nauta JJP, Heine RJ, Donker AJM. Renal and cardiovascular effects of exogenous insulin in healthy volunteers. Clin Sci 1991;80:219–225.PubMedGoogle Scholar
  22. 22.
    Kozlov IA, Piliaeva IE, Zhigareva E, Sazontseva IE. [The use of ultra-high doses of insulin for the treatment of severe heart failure during cardiosurgical interventions]. Anesteziol Reanimatol 1992;3: 22–27.PubMedGoogle Scholar
  23. 23.
    Rowe JW, Young JB, Minaker KL, Stevens AL, Pallotta J, Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes 1981;30:219–225.PubMedGoogle Scholar
  24. 24.
    Vollenweider P, Randin D, Tappy L, Jequier E, Nicod P, Scherrer U. Impaired insulin-induced sympathetic neural activation and vasodilation in skeletal muscle in obese humans. J Clin Invest 1994;93: 2365–2371.PubMedCrossRefGoogle Scholar
  25. 25.
    Van De Borne P, Hausberg M, Hoffman RP, Mark AL, Anderson EA. Hyperinsulinemia produces cardiac vagal withdrawal and nonuniform sympathetic activation in normal subjects. Am J Physiol 1999; 276:R178–R183.Google Scholar
  26. 26.
    Sartori C, Trueb L, Scherrer U. Insulin’s direct vasodilator action in humans is masked by sympathetic vasoconstrictor tone. Diabetes 1996;45(Suppl 2):85A.Google Scholar
  27. 27.
    ReaRF,HamdanM.Baroreflexcontrolofmusclesympatheticnerveactivityinborderlinehypertension [see comments]. Circulation 1990;82:856–862.CrossRefGoogle Scholar
  28. 28.
    Munzel MS, Anderson EA, Johnson AK, Mark AL. Mechanisms of insulin action on sympathetic nerve activity. Clin Exp Hypertens 1995;17:39–50.CrossRefGoogle Scholar
  29. 29.
    Bellavere F, Cacciatori V, Moghetti P, et al. Acute effect of insulin on autonomic regulation of the cardiovascular system: a study by heart rate spectral analysis. Diabet Med 1996;13:709–714.PubMedCrossRefGoogle Scholar
  30. 30.
    Schmetterer L, Muller M, Fasching P, et al. Renal and ocular hemodynamic effects of insulin. Diabetes 1997;46:1868–1874.PubMedCrossRefGoogle Scholar
  31. 31.
    MuscelliE,NataliA,BianchiS,etal.Effectofinsulinonrenalsodiumanduricacidhandlinginessential hypertension. Am J Hypertens 1996;9:746–752.CrossRefGoogle Scholar
  32. 32.
    DeFronzo RA, Goldberg M, Agus ZS. The effects of glucose and insulin on renal electrolyte transport. J Clin Invest 1976;58:83–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Trevisan R, Fioretto P, Semplicini A, et al. Role of insulin and atrial natriuretic peptide in sodium retention in insulin-treated IDDM patients during isotonic volume expansion. Diabetes 1990;39:289–298.PubMedCrossRefGoogle Scholar
  34. 34.
    Anderson EA, Balon TW, Hoffman RP, Sinkey CA, Mark AL. Insulin increases sympathetic nervous system activity but not blood pressure in borderlinehypertensive humans. Hypertension 1992;19:621–627.Google Scholar
  35. 35.
    Laakso M, Edelman S V, Brechtel G, Baron AD. Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes 1992;41:1076–1083.PubMedCrossRefGoogle Scholar
  36. 36.
    Baron AD, Steinberg H, Brechtel G, Johnson A. Skeletal muscle blood flow independently modulates insulin-mediated glucose uptake. Am J Physiol 1994;266:E248–E253.Google Scholar
  37. 37.
    Baron AD, Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G. Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest 1995;96:786–792.PubMedCrossRefGoogle Scholar
  38. 37a.
    Renkin EM. Control of microcirculation and blood-tissue exchange. In: B eine RM, Sperelakis N, Geiger SE, eds. Handbook of Physiology: The Cardiovascular System, IV. Williams and Wilkins, Baltimore, MD, 1979, pp. 627–687.Google Scholar
  39. 38.
    Baron AD, Tarshoby M, Hook G, et al. Interaction between insulin sensitivity and muscle perfusion on glucose uptake in human skeletal muscle: evidence for capillary recruitment. Diabetes 2000;49:768–774.PubMedCrossRefGoogle Scholar
  40. 39.
    Bonadonna R, Saccomani MP, Del Prato S, Bonora E, DeFronzo RA, Cobelli C. Role of tissue specific blood flow and tissue recruitment in insulin-mediated glucose uptake of human skeletal muscle. Circulation 1998;98:234–241.PubMedCrossRefGoogle Scholar
  41. 40.
    Rattigan S, Clark MG, Barrett EJ. Hemodynamic actions of insulin in rat skeletal muscle. Evidence for capillary recruitment. Diabetes 1997;46:1381–1388.PubMedCrossRefGoogle Scholar
  42. 41.
    Gans RO, Bilo HJ, von Maarschalkerweerd WW, Heine RJ, Nauta JJ, Donker AJ. Exogenous insulin augments in healthy volunteers the cardiovascular reactivity to noradrenaline but not to angiotensin II. J Clin Invest 1991;88:512–518.PubMedCrossRefGoogle Scholar
  43. 42.
    Baron AD, Brechtel G, Johnson A, Fineberg N, Henry DP, Steinberg HO. Interactions between insulin and norepinephrine on blood pressure and insulin sensitivity. J Clin Invest 1994;93:2453–2462.PubMedCrossRefGoogle Scholar
  44. 42a.
    Sakai K, Imaizumi T, Masaki H, Takeshita A. Intra-arterial infusion of insulin attenuates vasoreactivity in human forearm. Hypertension 1993;22:67–73.PubMedCrossRefGoogle Scholar
  45. 43.
    Lembo G, Iaccarino G, Vecchione C, et al. Insulin modulation of an endothelial nitric oxide component present in the alpha-2 and beta adrenergic responses in human forearm. J Clin Invest 1997;100:2007–2014.PubMedCrossRefGoogle Scholar
  46. 44.
    Buchanan TA, Thawani H, Kades W, et al. Angiotensin II increases glucose utilization during acute hyperinsulinemia via a hemodynamic mechanism J Clin Invest 1993;92:720–726.Google Scholar
  47. 45.
    Vierhapper H. Effect of exogenous insulin on blood pressure regulation in healthy and diabetic subjects. Hypertension 1985;7:II49–II53.Google Scholar
  48. 46.
    Touyz RM, Tolloczko B, Schiffrin EL. Insulin attenuates agonist-evoked calcium transients in vascular smooth muscle cells. Hypertension 1994;23(1 Suppl):I25–I28.CrossRefGoogle Scholar
  49. 47.
    Folli F, Kahn CR, Hansen H, Bouchie JL, Feener EP. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk. J Clin Invest 1997;100:2158–2169.PubMedCrossRefGoogle Scholar
  50. 48.
    Townsend RR, DiPette DJ. Pressor doses of angiotensin II increase insulin mediated glucose uptake in normotensive men. Am J Physiol 1993;265:E362–E366.Google Scholar
  51. 49.
    Morris AD, Petrie JR, Ueda S, et al. Pressor and subpressor doses of angiotensin II increase insulin sensitivity in NIDDM. Dissociation of metabolic and blood pressure effects. Diabetes 1994;43:1445–1449.PubMedCrossRefGoogle Scholar
  52. 50.
    Reaven GM. Role of insulin resistance in human disease. Diabetes 1988;37:1595–1607.PubMedCrossRefGoogle Scholar
  53. 51.
    Reaven GM. Syndrome X: 6 years later. J Intern Med 1994;236(Suppl 736):13–22.Google Scholar
  54. 52.
    Pyorala K, Laakso M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 1987;3:463–524.PubMedCrossRefGoogle Scholar
  55. 53.
    Vollenweider L, Tappy L, Owlya R, Jequier E, Nicod P, Scherrer U. Insulin-induced sympathetic activation and vasodilation in skeletal muscle. Diabetes 1995;44:641–645.PubMedCrossRefGoogle Scholar
  56. 54.
    Westerbacka J, Vehkavaara S, Bergholm R, Wilkinson I, Cockcroft J, Yki-Jarvinen H. Marked resistance of the ability of insulin to decrease arterial stiffness characterizes human obesity. Diabetes 1999; 48:821–827.PubMedCrossRefGoogle Scholar
  57. 55.
    Laine H, Yki-Jarvinen H, Kirvela O, et al. Insulin resistance of glucose uptake in skeletal muscle cannot be ameliorated by enhancing endothelium-dependent blood flow in obesity. J Clin Invest 1998;101: 1156–1162.PubMedCrossRefGoogle Scholar
  58. 56.
    Baron AD, Brechtel-Hook G, Johnson A, Hardin D. Skeletal muscle blood flow a possible link between insulin resistance and blood pressure. Hypertension 1993;21:129–135.PubMedCrossRefGoogle Scholar
  59. 57.
    Laine H, Knuuti MJ, Ruotsalainen U, et al. Insulin resistance in essential hypertension is characterized by impaired insulin stimulation of blood flow in skeletal muscle. J Hypertens 1998;16:211–219.PubMedCrossRefGoogle Scholar
  60. 58.
    Forte P, Copland M, Smith LM, Milne E, Sutherland J, Benjamin N. Basal nitric oxide synthesis in essential hypertension. Lancet 1997;349:837–842.PubMedCrossRefGoogle Scholar
  61. 59.
    Steinberg HO, Cressman E, Wu Y, et al. Insulin mediated nitric oxide production is impaired in insulin resistance. Diabetes 1997;46(Suppl 1):24A.Google Scholar
  62. 60.
    Avogaro A, Piarulli F, Valerio A, et al. Forearm nitric oxide balance, vascular relaxation, and glucose metabolism in NIDDM patients. Diabetes 1997;46:1040–1046.PubMedCrossRefGoogle Scholar
  63. 61.
    Steinberg HO, Tarshoby M, Monestel R, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest 1997;100:1230–1239.PubMedCrossRefGoogle Scholar
  64. 62.
    de Kreutzenberg SV, Crepaldi C, Marchetto S, et al. Plasma free fatty acids and endothelium-dependent vasodilation: effect of chain-length and cyclooxygenase inhibition. J Clin Endocrinol Metab 2000;85: 793–798.PubMedCrossRefGoogle Scholar
  65. 63.
    Lundman P, Erickson M, Schenck-Gustavson K, Karpe K, Tornvall P. Transient trigyleridemia decreases vascularreactivityinyoung,healthymenwithoutfactorsforcoronaryheartdisease.Circulation 1997;96: 3266–3268.Google Scholar
  66. 64.
    Chowienczyk PJ, Watts GF, Wierzbicki AS, Cockcroft JR, Brett SE, Ritter JM. Preserved endothelial function in patients with severe hypertriglyceridemia and low functional lipoprotein lipase activity. J Am Coll Cardiol 1997;29:964–968.PubMedCrossRefGoogle Scholar
  67. 65.
    Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 2000;49:1231–1238.PubMedCrossRefGoogle Scholar
  68. 66.
    Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999;103:253–259.PubMedCrossRefGoogle Scholar
  69. 67.
    Davda RK, Stepniakowski KT, Lu G, Ullian ME, Goodfriend TL, Egan BM. Oleic acid inhibits endothelial nitric oxide synthase by a protein kinase C-independent mechanism. Hypertension 1995;26:764–770.PubMedCrossRefGoogle Scholar
  70. 67.
    a.Niu XL, Liu LY, Hu ML, Chen X. Some similarities in vascular effects of oleic acid and oxidized lowdensity lipoproteins on rabbit aorta. J Mol Cell Cardiol 1995;27:531–539.CrossRefGoogle Scholar
  71. 68.
    Scaglione R, Ganguzza A, Corrao S, et al. Central obesity and hypertension: pathophysiologic role of renal haemodynamics and function. Int J Obes Relat Metab Disord 1995;19:403–409.PubMedGoogle Scholar
  72. 69.
    Muscelli E, Emdin M, Natali A, et al. Autonomic and hemodynamic responses to insulin in lean and obese humans. J Clin Endocrinol Metab 1998;83:2084–2090.PubMedCrossRefGoogle Scholar
  73. 70.
    Tack CJ, Smits P, Willemsen JJ, Lenders JW, Thien T, Lutterman JA. Effects of insulin on vascular tone and sympathetic nervous system in NIDDM. Diabetes 1996;45:15–22.PubMedCrossRefGoogle Scholar
  74. 71.
    Grassi G, Seravalle G, Cattaneo BM, et al. Sympathetic activation in obese normotensive subjects. Hypertension 1995;25:560–563.PubMedCrossRefGoogle Scholar
  75. 72.
    Scherrer U, Randin D, Tappy L, Vollenweider P, Jequier E, Nicod P. Body fat and sympathetic nerve activity in healthy subjects. Circulation 1994;89:2634–2640.PubMedCrossRefGoogle Scholar
  76. 73.
    Laitinen T, Vauhkonen IK, Niskanen LK, et al. Power spectral analysis of heart rate variability during hyperinsulinemia in nondiabetic offspring of type 2 diabetic patients: evidence for possible early autonomic dysfunction in insulin-resistant subjects. Diabetes 1999;48;1295–1299.PubMedCrossRefGoogle Scholar
  77. 74.
    Gans RO, Bilo HJ, Donker AJ. The renal response to exogenous insulin in non-insulin-dependent diabetes mellitus in relation to blood pressure and cardiovascular hormonal status. Nephrol Dial Transplant 1996;11:794–802.PubMedCrossRefGoogle Scholar
  78. 75.
    Gans RO, Bilo HJ, Nauta JJ, Heine RJ, Donker AJ. Acute hyperinsulinemia induces sodium retention and a blood pressure decline in diabetes mellitus. Hypertension 1992;20:199–209.PubMedCrossRefGoogle Scholar
  79. 76.
    Tack CJJ, Smits P, Willemsen JJ, Lenders JWM, Thien T, Lutterman JA. Effects of insulin on vascular tone and sympathetic nervous system in NIDDM. Diabetes 1996;45:15–22.PubMedCrossRefGoogle Scholar
  80. 77.
    Gaboury CL, Simonson DC, Seely EW, Hollenberg NK, Williams GH. Relation of pressor responsiveness to angiotensin II and insulin resistance in hhypertension. J Clin Invest 1994;94:2295–2300.PubMedCrossRefGoogle Scholar
  81. 78.
    Ikeda T, Gomi T, Hirawa N, Sakurai J, Yoshikawa N. Improvement of insulin sensitivity contributes to blood pressure reduction after weight loss in hypertensive subjects with obesity. Hypertension 1996;27: 1180–1186.PubMedCrossRefGoogle Scholar
  82. 79.
    Grassi G, Seravalle G, Colombo M, et al. Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation 1998;97:2037–2042.PubMedCrossRefGoogle Scholar
  83. 80.
    Nolan JJ, Ludvik B, Beerdsen P, Joyce M, Olefsky J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994;331:1188–1193.PubMedCrossRefGoogle Scholar
  84. 81.
    Ghazzi MN, Perez JE, Antonucci TK, et al. Cardiac and glycemic benefits of troglitazone treatment in NIDDM. The Troglitazone Study Group. Diabetes 1997;46:433–439.PubMedCrossRefGoogle Scholar
  85. 82.
    Paradisi G, Steinberg H, Hook G, Hempfling A, Baron A. Troglitazone improves endothelial function in women with polycystic ovary syndrome. Diabetes 1999;48(Suppl 1):128–129.CrossRefGoogle Scholar
  86. 83.
    Tack CJJ, Ong MKE, Lutterman JA, Smits P. Insulin-induced vasodilation and endothelial function in obesity/insulin resistance. Effects of troglitazone. Diabetologia 1998;41:569–576.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Helmut O. Steinberg

There are no affiliations available

Personalised recommendations