Advertisement

Diabetes and Arterial Stiffness

  • Ian B. Wilkinson
  • Jukka Westerbacka
  • Hannele Yki-Jarvinen
  • John R. Cockcroft
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Many clinicians continue to view diabetes mellitus as essentially an endocrine disease associated with hyperglycemia. Although the risk of developing specific complications of diabetes such as retinopathy, nephropathy and neuropathy is clearly associated with the degree (and duration) of hyperglycemia, the relationship between diabetes and macrovascular disease remains poorly understood (1,2). However, among patients with type 2 diabetes mellitus, the most common cause of death is cardiovascular disease (3). Improved glycemic control reduces microvascular complications in both types 1 and 2 diabetes, but requires many years of intensive treatment (4,5). However, The UK Prospective Diabetes Study (UKPDS) demonstrated unequivocally that improved glycemic control alone is insufficient to reduce the incidence of diabetic macrovascular complications (stroke and myocardial infarction) in patients with type 2 diabetes (5). Conversely, more aggressive lowering of blood pressure reduces the incidence of stroke and overall mortality amongst patients with type 2 diabetes (6). Perhaps, unsurprisingly, blood pressure lowering is also more effective in reducing the incidence of diabetic retinopathy than aggressive glycemic control (6). Moreover, cholesterol reduction also reduces macrovascular disease and mortality in diabetic patients (7). Taken together, these findings reinforce the concept of diabetes as a vascular disease.

Keywords

Arterial Stiffness Pulse Wave Velocity Stiffness Index Forearm Blood Flow Augmentation Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chase HP, Jackson WE, Hoops SL, Cockerham RS, Archer PG, O’Brien D. Glucose control and the renal and retinal complications of insulin-dependent diabetes. JAMA 1989;261:115–161.Google Scholar
  2. 2.
    Nathan DM. Commentry: Some answers, more controversy from the UKPDS. Lancet 1998;352:832–833.PubMedGoogle Scholar
  3. 3.
    Barrett-Connor E, Orchard T. Diabetes and Heart Disease. NIH, Washington DC, 1984.Google Scholar
  4. 4.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–986.Google Scholar
  5. 5.
    The UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type II diabetes (UKPDS:33). Lancet 1998;352:837–853.Google Scholar
  6. 6.
    The UK Prospective Diabetes Study (UKPDS) Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type II diabetes: UKPDS 38. Br Med J 1998;317:703–712.Google Scholar
  7. 7.
    Elkeles R, Diamond J, Poulter C, Dhanjil S, Nicolaides A, Mahmood S, et al. Cardiovascular outcomes in type 2 diabetes. A double-blind placebo controlled study of bezafibrate: the St. Mary’ s, Ealing, Northwick Park, Diabetes Cardiovascular Disease Prevention (SENDCAP) study. Diabetes Care 1998;21: 641–648.PubMedGoogle Scholar
  8. 8.
    Arnett DK, Evans GW, Riley WA. Arterial stiffness: a new cardiovascular risk factor. Am J Epidemiol 1994;140:669–682.PubMedGoogle Scholar
  9. 9.
    O’Rourke MF, Kelly RP. Wave reflection in the systemic circulation and its implications in ventricular function. J Hypertens 1993;11:327–337.PubMedGoogle Scholar
  10. 10.
    SabaPS,RomanMJ,PiniR,SpitzerM,GanauA,DevereuxRB.Relationofarterialpressurewaveform to left ventricular and carotid anatomy in normotensive subjects. J Am Coll Cardiol1993;22:1873–1880.Google Scholar
  11. 11.
    Levy D, Garrison R, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 1990;332: 1561–1566.Google Scholar
  12. 12.
    Bikkina M, Levy D, Evans J, Larson M, Benjamin E, Wolf P, Castelli W. Left ventricular mass and risk of stroke in an elderly cohort. JAMA 1994;272:33–36.PubMedGoogle Scholar
  13. 13.
    Benetos A, Safar M, Rudnichi A, Smulyan H, Richard J-L, Ducimetiere P, Guize L. Pulse pressure: a predictor of long-term cardiovascular mortality in a French male population. Hypertension 1997;30: 1410–1415.PubMedGoogle Scholar
  14. 14.
    Franklin SS, Khan SA, Wong ND, Larson MG, Levy D. Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham Heart Study. Circulation 1999;100:354–360.PubMedGoogle Scholar
  15. 15.
    Hirai T, Sasayama S, Kawasaki T, Yagi S-I. Stiffness of systemic arteries in patients with myocardial infarction. Circulation 1989;80:78–86.PubMedGoogle Scholar
  16. 16.
    Lee M, Gardin J, Smith V-E, Tracy R, Savage P, Szklo M, Ward V. Diabetes mellitus and echocardiographic left ventricular function in free-living elderly men and women: The Cardiovascular Health Study. Am Heart J 1997;133:36–43.PubMedGoogle Scholar
  17. 17.
    Kimball T, Daniels S, Khoury P, Magnotti R, Turner A, Dolan L. Cardiovascular status in young patients with insulin-dependent diabetes mellitus. Circulation 1994;90:357–361.PubMedGoogle Scholar
  18. 18.
    Gambardella S, Frontoni S, Spallone V, Maiello M, Civetta E, Lanza G, Sandric S, Menzinger G. Increased left ventricular mass in normotensive diabetic patients with autonomic neuropathy. Am J Hypertens 1993;6:97–102.PubMedGoogle Scholar
  19. 19.
    Wilkinson IB, Cockcroft JR, Webb DJ. Pulse wave analysis and arterial stiffness. J Cardiovasc Pharmacol 1999;32:33–37.Google Scholar
  20. 20.
    Lehmann ED, Riley WA, Clarkson P, Gosling RG. Non-invasive assessment of cardiovascular disease in diabetes mellitus. Lancet 1997;350:14–19.Google Scholar
  21. 21.
    van Den Berkmortel F, Wollersheim H, van Largen H, Thein T. Dynamic vessel wall properties and their reproducibility in subjects with increased cardiovascular risk. J Hum Hypertens 1998;12:345–350.PubMedGoogle Scholar
  22. 22.
    Nichols WW, O’Rourke MF. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. 4th ed. Arnold, London, 1998.Google Scholar
  23. 23.
    Mahomed FA. The physiological and clinical use of the sphygmograph. Medical Times Gaz 1872;1: 62–64.Google Scholar
  24. 24.
    Lax H, Feinberg AW, Cohen BM. Studies of the arterial pulse wave. J Chron Dis 1956;3:618–631.PubMedGoogle Scholar
  25. 25.
    O’Rourke MF, Gallagher DE. Pulse wave analysis. J Hypertens 1996;14:147–157.Google Scholar
  26. 26.
    Kelly RP, Hayward CS, Ganis J, Daley JM, Avolio AP, O’Rourke MF. Non-invasive registration of the arterial pulse waveform using high fidelity applanation tonometry. J Vasc Med Biol1989;1:142–149.Google Scholar
  27. 27.
    Karamanoglu M, O’ Rourke MF, Avolio AP, Kelly RP. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J 1993;14:160–167.PubMedGoogle Scholar
  28. 28.
    O’Rourke MF, Pauca A, Kon N, Tong W, Yung W, Qasem A, Avolio A. Calibrated ascending aortic pressure waves can be derived from the radial pulse using a generalized transfer function (abstract). Am J Hypertens 1999;12:A081.Google Scholar
  29. 29.
    Soderstrom S, Nyberg G, Ponten J, Sellgren J, O’Rourke M. Substantial equivalence between ascending aortic pressure waveforms and waveforms derived from the radial pulse using a generalized transfer function? FASEB J 1998;A712:4131.Google Scholar
  30. 30.
    Fetics B, Nevo E, Chen C-H, Kass DA. Parametric model derivation of transfer function for noninvasive estimation of aortic pressure by radial tonometry. IEEE Trans Biomed Eng 1999;46:698–706.PubMedGoogle Scholar
  31. 31.
    Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockcroft JR, Webb DJ. The reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens 1998;16:2079–2084.PubMedGoogle Scholar
  32. 32.
    CockcroftJR,WilkinsonIB.Vesselwallpropertiesandcardiovascularrisk.JHumHypertens1998;12: 343–344.Google Scholar
  33. 33.
    Feinberg AW, Lax H. Vascular abnormalities in children with diabetes mellitus. JAMA 1967;201:105–108.Google Scholar
  34. 34.
    Feinberg AW, Lax H. Abnormalities in the arterial pulse wave in young diabetic subjects. Circulation 1959;20:1106–1110.PubMedGoogle Scholar
  35. 35.
    Wollam G, Schnur P, Vallbona C, Hoff H. The pulse wave velocity as an early indicator of atherosclerosis in diabetic subjects. Circulation 1962;25:533–539.Google Scholar
  36. 36.
    WahlqvistM, Lo C, Myers K, Simpson R, Simpson J. Putative determinants of arterial wall compliance in NIDDM. Diabetes Care 1988;11:787–790.Google Scholar
  37. 37.
    Lehmann E, Gosling R, Sonksen P. Arterial wall compliance in diabetes. Diabetic Med 1992;9:114–119.PubMedGoogle Scholar
  38. 38.
    Salomaa V, Riley W, Kark J, Nardo C, Folsom A. Non-insulin dependent diabetes mellitus and fasting glucose and insulin concentrations are associated with arterial stiffness indexes. The ARIC study. Circulation 1995;91:1432–1443.PubMedGoogle Scholar
  39. 39.
    Emoto M, Nishizawa Y, Kawagishi T, Maekawa K, Hiura Y, Kanda H, et al. Stiffness indexes ββ of the common carotid and femoral arteries are associated with insulin resistance in NIDDM. Diabetes Care 1998;21:1178–1182.PubMedGoogle Scholar
  40. 40.
    McVeigh GE, Brennan G, Hayes R, Cohn JN, Finkelstein S, Johnston D. Vascular abnormalities in non-insulin dependent diabetes mellitus identified by arterial waveform analysis. Am J Med 1993;95: 424–430.PubMedGoogle Scholar
  41. 41.
    Hopkins KD, Lehmann ED, Jones RL, Turay RC, Gosling RG. A family history of NIDDM is associated with decreased aortic distensibility in normal healthy young subjects. Diabetes Care 1996;19: 501–503.PubMedGoogle Scholar
  42. 42.
    Oxlund H, Rasmussen LM, Andreassen TT, Heickendorff L. Increased aortic stiffness in patients with type I (insulin-dependent) diabetes mellitus. Diabetologia 1989;32:748–752.PubMedGoogle Scholar
  43. 43.
    Jensen-Urstad K, Reichard P, Rosors J, Jensen-Urstad M. Early atherosclerosis is retarded by improved long-term glucose control in patients with IDDM. Diabetes 1996;45:1253–1258.PubMedGoogle Scholar
  44. 44.
    Lehmann ED, Hopkins KD, Gosling RG. Aortic compliance measurements using Doppler ultrasound: in vivo biochemical correlates. Ultrasound Med Biol 1993;19:683–710.PubMedGoogle Scholar
  45. 45.
    Pillsbury H, Hung W, Kyle M, Freis E. Arterial pulse waves and velocity and systolic time intervals in diabetic children. Am Heart J 1974;87:783–790.PubMedGoogle Scholar
  46. 46.
    Gunn GC, Dobson HL, Gray J, Geddes LA, Vallbona C. Studies of pulse wave velocity in potential diabetic subjects. Diabetes 1965;14:489–492.PubMedGoogle Scholar
  47. 47.
    Ryden Ahlgren A, Lanne T, WollmerP, Sonesson B, Hasen E, Sundkvist G. Increased arterial stiffness in women, but not in men, with IDDM. Diabetologia 1995;38:1082–1089.Google Scholar
  48. 48.
    Chowienczyk PJ, Kelly RP, MacCallum H, Millasseau SC, Anderson TLG, Gosling RG, et al. Photoplethysmographic assessment of pulse wave reflection. J Am Coll Cardiol 1999;34:2007–2014.PubMedGoogle Scholar
  49. 49.
    Wilkinson IB, MacCallum H, Rooijmans DF, Murray GD, Cockcroft JR, McKnight JA, Webb DJ. Increased augmentation index and systolic stress in type 1 diabetes mellitus. Q J Med 2000;93:441–448.Google Scholar
  50. 50.
    Brooks B, Molyneaux L, Yue DK. Augmentation of central arterial pressure in type 1 diabetes. Diabetes Care 1999;22:1722–1727.PubMedGoogle Scholar
  51. 51.
    Cockcroft JR, Wilkinson IB, Webb DJ. The Trevor Howell Lecture: age, arterial stiffness and the endothelium. Age Ageing 1997;26:53–60.PubMedGoogle Scholar
  52. 52.
    Murrell W. Nitroglycerine as a remedy for angina pectoris. Lancet 1879;80:80–81.Google Scholar
  53. 53.
    Yaginuma T, Avolio A, O’Rourke MF. Effects of glycerly trinitrate on peripheral arteries alters left ventricular hydraulic load in man. Circ Res 1986;20:153–160.Google Scholar
  54. 54.
    O’Rourke MF, Safar M, Dzau V. Arterial vasodilatation: mechanisms and therapy. Edward Arnold, London, 1993.Google Scholar
  55. 55.
    Heintz B, Door R, Gillessen T. Do arterial endothelin 1 levels affect local arterial stiffness? Am J Med 1993;126:987–989.Google Scholar
  56. 56.
    Klemsdal TO, Andersson TLG, Matz J, Ferns GAA, Gjesdal K, Anggard EE. Vitamin E restores endothelium dependent vasodilatation in cholesterol fed rabbits: in vivo measurements by photoplethysmography. Circ Res 1994;28:1397–1402.Google Scholar
  57. 57.
    Dawes M, Chowienczyk PJ, Ritter JM. Effects of inhibition of the L-arginine/nitric oxide pathway on vasodilation caused by beta-adrenergic agonists in human forearm. Circulation 1997;95:2293–2297.PubMedGoogle Scholar
  58. 58.
    Cohen RA, Tesfamarian B. Diabetes mellitus and the endothelium. New York: Oxford University Press, 1992.Google Scholar
  59. 59.
    Cohen RA. Dysfunction of vascular endothelium in diabetes mellitus. Circulation 1993;87:67–76.Google Scholar
  60. 60.
    Taylor PD, McCarthy AL, Thomas CR, Poston L. Endothelium-dependent relaxation and noradrenalin sensitivity in mesenteric arteries of streptozotocin-induced diabetic rats. BrJ Pharmacol1992;107:393–399.Google Scholar
  61. 61.
    Taylor PD, Oon BB, Thomas CR, Poston L. Prevention by insulin treatment of endothelial dysfunction but not enhanced noradrenalin-induced contractility in mesenteric resistance arteries from streptozotocin-induced diabetic rats. Br J Pharmacol 1994;111:35–41.PubMedGoogle Scholar
  62. 62.
    McNally PC, Watt PAC, Rimmer T, Burden AC, Hearnshaw JR, Thurston H. Impaired contraction and endothelium dependent relaxation in isolated resistance vessels from patients with insulin dependent diabetes. Clin Sci 1994;87:31–36.PubMedGoogle Scholar
  63. 63.
    De Tejada IS, Goldstein I, Azadzoi K, Krane RJ, Cohen R. Impaired neurogenic and endotheliummediated relaxation of penile smooth muscle from diabetic men with impotence. N Engl J Med 1989; 320:1025–1030.Google Scholar
  64. 64.
    Calver A, Collier J, Vallance P. Inhibition and stimulation of nitric oxide in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Invest 1992;90:2548–2554.PubMedGoogle Scholar
  65. 65.
    Elliott TG, Cockcroft JR, Groop P-H, Morocutti A, Viberti G-C, Ritter JM. Inhibition of nitric oxide synthesis in forearm vasculature of insulin dependent diabetics: blunted vasoconstriction in patients with microalbuinuria. Clin Sci 1993;85:687–693.PubMedGoogle Scholar
  66. 66.
    McVeigh GE, Brennan GM, Johnston GD, McGrath LT, Henry WR, Andrews JW, Hayes JR. Impaired endothelium-dependent and independent vasodilatation in patients with type 2 (non-insulin-depen dent) diabetes mellitus. Diabetologia 1992;35:771–776.PubMedGoogle Scholar
  67. 67.
    McVeigh GE, Brennan G, Johnston D. Dietary fish oil augments nitric oxide production or release in patients with type 2 (non-insulin dependent) diabetes mellitus. Diabetologia 1993;36:33–38.PubMedGoogle Scholar
  68. 68.
    Williams SB, Cusco JA, Roddy M-A, Simonson DC, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin dependent diabetes mellitus. J Am Coll Cardiol 1996;27:567–574.PubMedGoogle Scholar
  69. 69.
    Makimattila S, Virkamaki A, Groop P, Cockcroft JR, Utriainen T, Fagerudd J, Yki-Jarvinin H. Chronic hyperglycaemia impairs endothelial function and insulin sensitivity via different mechanisms in insulin-dependent diabetes mellitus. Circulation 1996;94:1276–1282.PubMedGoogle Scholar
  70. 70.
    Wilkinson IB, Hupperetz PC, Van Thoor CJ, MacCallum H, Cockcroft JR, Webb DJ. Acute hyperglycaemia reduces central arterial pressure in healthy subjects. Br J Clin Pharmacol 1998;46:289P.Google Scholar
  71. 71.
    Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron, AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 1994;94:1172–1179.PubMedGoogle Scholar
  72. 72.
    Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese men. J Clin Invest 1990;76:1844–1852.Google Scholar
  73. 73.
    Yki-Jarvinen H, Utrianen T. Insulin-induced vasodilatation: physiology or pharmacology? Diabetologia 1998;41:369–379.PubMedGoogle Scholar
  74. 74.
    Hester RL, Erslan A, Saito Y. Differences in EDNO contribution to arteriolar diameters at rest and during functional dilatation in striated muscle. Am J Physiol 1993;265:146–151.Google Scholar
  75. 75.
    Noon JP, Haynes WG, Webb DJ, Shore AC. Local inhibition of nitric oxide generation in man reduces blood flow in finger pulp but not in hand dorsum skin. J Physiol 1996;490:501–508.PubMedGoogle Scholar
  76. 76.
    Westerbacka J, Wilkinson I, Utriainen T, Vehkavaara S, Cockcroft J, Yki-Jarvinen H. Diminished wave reflection in the aorta: a novel physiological action of insulin. Hypertension 1999;33:1118–1122.PubMedGoogle Scholar
  77. 77.
    Westerbacka J, Vehkavaara S, Bergholm R, Wilkinson I, Cockcroft J, Yki-Jarvinen H. Marked resistance of the ability of insulin to decrease wave reflection in the aorta characterizes human obesity. Diabetes 1999;48:821–827.PubMedGoogle Scholar
  78. 78.
    Ceriello A, Giugliano D, Quatraro A, Lefebvre PJ. Anti-oxidants show an anti-hypertensive effect in diabetic and hypertensive subjects. Clin Sci 1991;81:739–742.PubMedGoogle Scholar
  79. 79.
    Galley HF, Thornton J, Howdle PD, Walker BE, Webster NR. Combination oral antioxidant supplementation reduces blood pressure. Clin Sci 1997;92:361–365.PubMedGoogle Scholar
  80. 80.
    Osilesi O, Trout DL, Ogunwole JO, Glover EE. Blood pressure and plasma lipids during ascorbic acid supplementation in borderline hypertensive and normotensive adults. Nutr Res 1991;11:405–412.Google Scholar
  81. 81.
    Timimi FK, Ting HH, Haley EA, Roddy M-A, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilatation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol 1998;31:552–557.PubMedGoogle Scholar
  82. 82.
    Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A. Vitamin C improves endothelium-dependent vasodilatation by restoring nitric oxide activity in essential hypertension. Circulation 1998;97:2222–2229.PubMedGoogle Scholar
  83. 83.
    Ting HH, Timimi FK, Haley EA, Riddy M-A, Ganz P, Creager MA. Vitamin C improves endothelialdependent vasodilatation in forearm resistance vessels of humans with hypercholesterolaemia. Circulation 1997;95:2617–2622.PubMedGoogle Scholar
  84. 84.
    Hornig B, Arakawa N, Kohler C, Drexler H. Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 1998;97:363–368.PubMedGoogle Scholar
  85. 85.
    Ascherio A, Rimm EB, Stampfer MJ, Giovannucci EL, Willett WC. Dietary intake of marine n-3 fatty acids, fish intake and the risk of coronary disease among men. N Engl J Med 1995;332:977–982.PubMedGoogle Scholar
  86. 86.
    Goode GK, Garcia S, Heagerty AM. Dietary supplementation with marine fish oil improves in vitro small artery endothelial function in hypercholesterolaemic patients. A double blind placebo controlled study. Circulation 1997;96:2802–2807.PubMedGoogle Scholar
  87. 87.
    McVeigh G, Brennan G, Conn J, Finklelstein S, Hayes RJ, Johnston D. Fish oil improves arterial compliance in non-insulin-dependent diabetes mellitus. Atherosclero Thromb 1994;14:1425–1429.Google Scholar
  88. 88.
    Bonnema S, Jespersen L, Marving J, Gregsen G. Supplementation with olive oil rather than fish oil increases small arterial compliance in diabetic patients. Diabetes Nutr Metab 1995;8:81–87.Google Scholar
  89. 89.
    van Bortel LM, Kool MJ, Boudier AS. Effects of antihypertensive agents on local arterial distensibility and compliance. Hypertension 1995;26:531–534.PubMedGoogle Scholar
  90. 90.
    Chen C-H, Ting C-T, Lin S-J, Hsu T-L, Yin FCP, Siu CO, et al. Different effects of fosinipril and atenolol on wave reflection in hypertensive patients. Hypertension 1995;25:1034–1041.PubMedGoogle Scholar
  91. 91.
    Breithaupt-Grogler K, Leschinger M, Belz GG, Butzer R, Erb K, de Mey C, Sinn W. Influence of antihypertensive therapy with Cilazapril and hydrochlorothiazide on the stiffness of the aorta. Cardiovasc Drugs Ther 1996;10:19–37.Google Scholar
  92. 92.
    Belz GG, Breithaupt K, Erb K, Kleinbloesem C, Wolf G. Influence of the angiotensin converting enzyme inhibitor cilazapril, the ββ-blocker propanolol and their combination on haemodynamics in hypertension. J Hypertens 1989;7:817–824.PubMedGoogle Scholar
  93. 93.
    Mancini GBJ, Henry GC, Macaya C, O’Neill BJ, Pucillo AJ, Carere RG, Wargovich TJ. Angiotensinconverting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1996;94:258–265.PubMedGoogle Scholar
  94. 94.
    Hayward CS, Kelly RP. Gender-related differences in the central arterial pressure waveform. J Am Coll Cardiol 1997;30:1863–71.PubMedGoogle Scholar
  95. 95.
    Laogun AA, Gosling RG. In vivo arterial compliance in man. Clin Phys Physiol Meas 1982;3:201212.Google Scholar
  96. 96.
    Hayward CS, Knight DC, Wren BG, Kelly RP. Effect of hormone replacement therapy on non-invasive cardiovascular haemodynamics. J Hypertens 1997;15:987–993.PubMedGoogle Scholar
  97. 97.
    Krishnankutty S, Jennings GL, Funder JW, Komesaroff PA. Estrogen enhances basal nitric oxide release in the forearm vasculature in perimenopausal women. Hypertension 1996;28:330–334.Google Scholar
  98. 98.
    Rajkumar C, Kingwell BA, Cameron JD, Waddell T, Mehra R, Christophidis N, et al. Hormonal therapy increases arterial compliance in postmenopausal women. J Am Coll Cardiol 1997;30:350–356.PubMedGoogle Scholar
  99. 99.
    Shepherd J, Cobbe SM, Ford I. For the West of Scotland Primary Prevention Group. Prevention of coronary heart disease in men with hypercholesterolaemia. N Engl J Med 1995;333:1301–1307.PubMedGoogle Scholar
  100. 100.
    Sacks FM, Pfeffer MA, Moye LA. For the Cholesterol and Recurrent Events Trial Investigators. The effects of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996;335:1001–1009.PubMedGoogle Scholar
  101. 101.
    Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1995; 344:1383–1389.Google Scholar
  102. 102.
    The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998;339:1349–1357.Google Scholar
  103. 103.
    Haffner S, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in non-diabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229–234.PubMedGoogle Scholar
  104. 104.
    Pyorala K, Pederson T, Kjekshus J, Faergeman O, Olsson A, Thorgeirsson G. Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease; a subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care 1997;20:614–620.PubMedGoogle Scholar
  105. 105.
    Haffner S, Alexander C, Boccuzz S, Cook T, Musliner T, Pedersen T, et al. Improved survival, reduced major coronary events and fewer revascularizations in simvastatin-treated 4S patients with impaired fasting glucose. Diabetes 1998;47:209.Google Scholar
  106. 106.
    Stroes ESG, Koomans HA, de Bruin TWA, Rabelink TJ. Vascular function in the forearm of hypercholesterolaemic patients on and off lipid-lowering medication. Lancet 1995;346:467–471.PubMedGoogle Scholar
  107. 107.
    Wilkinson IB, Cockcroft JR. Cholesterol, endothelial function and arterial stiffness. Curr Opin Lipidol 1998;9:237–442.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Ian B. Wilkinson
  • Jukka Westerbacka
  • Hannele Yki-Jarvinen
  • John R. Cockcroft

There are no affiliations available

Personalised recommendations