Advertisement

Heart Failure in Diabetic Patients

  • Lawrence H. Young
  • Raymond R. RussellIII
  • Deborah  Chyun
  • Tarik Ramahi
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Heart failure is a well-recognized clinical problem in patients with diabetes. Several mechanisms contribute to the development of heart failure (Fig. 1). The extent to which heart failure results from coexistent coronary artery disease (CAD) and systemic hypertension, versus primary cardiac dysfunction related to diabetes, remains hotly debated. There is little evidence that diabetes alone causes an overt dilated cardiomyopathy. There is also some degree of skepticism that patients with diabetes alone develop heart failure. Nonetheless, patients with diabetes appear to be predisposed to developing heart failure with the superimposition of other cardiac insults, most commonly hypertension and CAD. This predisposition may be due to abnormalities in left ventricular diastolic function and systolic reserve. The presence of renal insufficiency and obesity may further predispose diabetic patients to heart failure. In this chapter we examine the epidemiologic evidence implicating diabetes as a risk factor for heart failure, the abnormalities in left ventricular function observed in patients with diabetes, and the cellular and molecular abnormalities that may be of importance in the development of heart failure.

Keywords

Heart Failure Diastolic Dysfunction Autonomic Neuropathy Diabetic Cardiomyopathy Diabetic Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garcia MJ, McNamara PM, Gordon T, Kannell WB. Morbidity and mortality in diabetics in the Framingham population. Diabetes 1973;23:105–111.Google Scholar
  2. 2.
    Kannel WB, Hjorland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham Study. Am J Cardiol 1974;34:29–34.PubMedGoogle Scholar
  3. 3.
    Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993;16: 434–444.PubMedGoogle Scholar
  4. 4.
    Ho KK, Pinsky JL, Kannel WB, Levy D. The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 1993;22:6A–13A.Google Scholar
  5. 5.
    Chen YT, Vaccarino V, Williams CS, Butler J, Berkman LF, Krumholz HM. Risk factors for heart failure in the elderly: a prospective community-based study. Am J Med 1999;106:605–612.PubMedGoogle Scholar
  6. 6.
    Chae CU, Pfeffer MA, Glynn RJ, Mitchell GF, Taylor JO, Hennekens CH. Increased pulse pressure and risk of heart failure in the elderly. JAMA 1999;281:634–639.PubMedGoogle Scholar
  7. 7.
    Pitt B, Segal R, Martinez FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 1997;349:747–752.PubMedGoogle Scholar
  8. 8.
    American Diabetes Association. Report of the expert committees on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997;20:1183–1197.Google Scholar
  9. 9.
    Hypertension in Diabetes Study Group. HDS 1: Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors or cardiovascular disease. J Hypertens 1993;11: 309–317.Google Scholar
  10. 10.
    Ho KK, Anderson KM, Kannel WB, Grossman W, Levy D. Survival after the onset of congestive heart failure in Framingham Heart Study subjects. Circulation 1993;88:107–115.PubMedGoogle Scholar
  11. 11.
    Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA 1996;275:1557–1562.PubMedGoogle Scholar
  12. 12.
    GrossmanE,MesserliFH.Diabeticandhypertensiveheartdisease.AnnInternMed1996;125:304–310.Google Scholar
  13. 13.
    Factor SM, Minase T, Sonnenblick EH. Clinical and morphological features of human hypertensivediabetic cardiomyopathy. Am Heart J 1980;99:446–458.PubMedGoogle Scholar
  14. 14.
    van Hoeven KH, Factor SM. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation 1990;82:848–855.PubMedGoogle Scholar
  15. 15.
    Factor SM, Borczuk A, Charron MJ, Fein FS, van Hoeven KH, Sonnenblick EH. Myocardial alterations in diabetes and hypertension. Diabetes Res Clin Pract 1996;31:S133–S142.Google Scholar
  16. 16.
    Fein FS, Zola BE, Malhotra A, et al. Hypertensive-diabetic cardiomyopathy in rats. Am J Physiol 1990; 258:793–805.Google Scholar
  17. 17.
    Siri FM, Malhotra A, Factor SM, Sonnenblick EH, Fein FS. Prolonged ejection duration helps to maintain pump performance of the renal-hypertensive-diabetic rat heart: correlations between isolated papillary muscle function and ventricular performance in situ. Cardiovasc Res 1997;34:230–240.PubMedGoogle Scholar
  18. 18.
    Galderisi M, Anderson KM, Wilson PW, Levy D. Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol 1991;68:85–89.PubMedGoogle Scholar
  19. 19.
    Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation 2000;101:2271–2276.PubMedGoogle Scholar
  20. 20.
    Ohya Y, Abe I, Fujii K, et al. Hyperinsulinemia and left ventricular geometry in a work-site population in Japan. Hypertension 1996;27:729–734.PubMedGoogle Scholar
  21. 21.
    McNulty P, Louard R, Deckelbaum L, Zaret B, Young L. Hyperinsulinemia inhibits myocardial protein degradation in patients with cardiovascular disease and insulin resistance. Circulation 1995;92: 2151–2156.PubMedGoogle Scholar
  22. 22.
    Young L, McNulty P, Morgan C, Deckelbaum L, Zaret B, Barrett E. Myocardial protein turnover in patients with coronary artery disease. Effect of branched chain amino acid infusion. J Clin Invest 1991; 87:554–560.PubMedGoogle Scholar
  23. 23.
    Dash H, Johnson RA, Dinsmore RE, Harthorne JW. Cardiomyopathic syndrome due to coronary artery disease. Br Heart J 1977;39:733–739.PubMedGoogle Scholar
  24. 24.
    Hamby RI, Zoneraich S, Sherman L. Diabetic cardiomyopathy. JAMA 1974;229:1749–1754.PubMedGoogle Scholar
  25. 25.
    Litwin SE, Grossman W. Diastolic dysfunction as a cause of heart failure. J Am Coll Cardiol 1993;22: 49A–55A.Google Scholar
  26. 26.
    Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetes glomerulosclerosis. Am J Cardiol 1972;30:595–602.PubMedGoogle Scholar
  27. 27.
    Regan TJ, Lyons MM, Ahemd SS, et al. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 1977;60:885–899.Google Scholar
  28. 28.
    Blumenthal HT, Alex M, Goldenberg S. A study of lesions of the intramural coronary artery branches in diabetes mellitus. Arch Pathol 1960;70:27–42.Google Scholar
  29. 29.
    Ledet T. Histological and histochemical changes in the coronary arteries of old diabetic patients. Diabetologia 1968;4:268–272.PubMedGoogle Scholar
  30. 30.
    Zoneraich S, Silverman G, Zoneraich O. Primary myocardial disease, diabetes mellitus, and small vessel disease. Am Heart J 1980;100:754–755.PubMedGoogle Scholar
  31. 31.
    Factor SM, Okun EM, Minase T. Capillary microaneurysms in the human diabetic heart. N Engl J Med 1980;302:384–388.PubMedGoogle Scholar
  32. 32.
    Johnstone M, Creager S, Scales K, Cusco J, Lee B, Creager M. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 1993;88:2510–2516.PubMedGoogle Scholar
  33. 33.
    Yokoyama I, Momomura S, Ohtake T, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1997;30:1472–1477.PubMedGoogle Scholar
  34. 34.
    Yokoyama I, Ohtake T, Momomura S, et al. Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 1998;47:119–124.PubMedGoogle Scholar
  35. 35.
    Strauer BE, Motz W, Vogt M, Schwartzkopff B. Impaired coronary flow reserve in NIDDM: a possible role for diabetic cardiopathy in humans. Diabetes 1997;46: S 119-S 124.Google Scholar
  36. 36.
    Ahmed SS, Jaferi GA, Narang RM, Regan TJ. Preclinical abnormality of left ventricular function in diabetes melitus. Am Heart J 1975;89:153–158.PubMedGoogle Scholar
  37. 37.
    Sykes CA, Wright AD, Malins JM, Pentecost BL. Changes in systolic time intervals during treatment of diabetes mellitus. Br Heart J 1977;39:255–259.PubMedGoogle Scholar
  38. 38.
    Danielsen R, Nordrehaug JE, Lien E, Vik-Mo H. Subclinical left ventricular abnormalities in young subjects with long-term type 1 diabetes mellitus detected by digitized M-mode echocardiography. Am J Cardiol 1987;60:143–146.PubMedGoogle Scholar
  39. 39.
    Sanderson JE, Brown DJ, Rivellese A, Kohner E. Diabetic cardiomyopathy? An echocardiographic study of young diabetics. BMJ 1978;1:404–407.PubMedGoogle Scholar
  40. 40.
    Zoneraich S, Zoneraich O, Rhee JJ. Left ventricular performance in diabetic patients without clinical heart disease. Chest 1977;72:748–751.PubMedGoogle Scholar
  41. 41.
    Shapiro LM, Leatherdale BA, Coyne ME, Fletcher RF, MacKinnon J. Prospective study of heart disease in untreated maturity onset diabetics. Br Heart J 1980;44:342–348.PubMedGoogle Scholar
  42. 42.
    Uusitupa M, Siitonen O, Pyorala K, Lansimies E. Left ventricular function in newly diagnosed noninsulin-dependent (type 2) diabetics evaluated by systolic time intervals and echocardiography. Acta Med Scand 1985;217:379–388.PubMedGoogle Scholar
  43. 43.
    Friedman NE, Levitsky LL, Edidin DV, Vitullo DA, Lacina SJ, Chiemmongkoltip P. Echocardiographic evidence of impaired performance in children with type 1 diabetes mellitus. Am J Med 1982; 73:846–850.PubMedGoogle Scholar
  44. 44.
    Lababidi ZA, Goldstein DE. High prevalence of echocardiographic abnormalities in diabetic youths. Diabetes Care 1983;6:18–22.PubMedGoogle Scholar
  45. 45.
    Thuesen L, Christiansen JS, Falstie-Jensen N, et al. Increased myocardial contractility in short-term type 1 diabetic patients: an echocardiographic study. Diabetologia 1985;28:822–826.PubMedGoogle Scholar
  46. 46.
    Thuesen L, Christiansen JS, Mogensen CE, Henningsen P. Cardiac hyperfunction in insulin-dependent diabetic patients developing microvascular complications. Diabetes 1988;37:851–856.PubMedGoogle Scholar
  47. 47.
    Mildenberger RR, Bar-Shlomo B, Druck MN, et al. Clinically unrecognized ventricular dysfunction in young diabetic patients. J Am Coll Cardiol 1984;4:234–238.PubMedGoogle Scholar
  48. 48.
    Vered A, Battler A, Segal P, et al. Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). Am J Cardiol 1984;54:633–637.PubMedGoogle Scholar
  49. 49.
    Zola B, Kahn JK, Juni JE, Vinik AI. Abnormal cardiac function in diabetic patients with autonomic neuropathy in the absence of ischemic heart disease. J Clin Endocrinol Metab 1986;63:208–214.PubMedGoogle Scholar
  50. 50.
    Mustonen JN, Uusitupa MIJ, Tahvanainen K, et al. Impaired left ventricular systolic function during exercise in middle-aged insulin-dependent and noninsulin-dependent diabetic subjects without clinically evident cardiovascular disease. Am J Cardiol 1988;62:1273–1279.PubMedGoogle Scholar
  51. 51.
    Aryan S, Singal B, Knapp R, Vagnucci A. Subclinical left ventricular abnormalities in young diabetics. Chest 1988;93:1031–1034.Google Scholar
  52. 52.
    Borow KM, Jaspan JB, Williams KA, Neumann A, Wolinski-Walley P, Lang RM. Myocardial mechanics in young adult patients with diabetes mellitus: effects of altered load, inotropic state and dynamic exercise. J Am Coll Cardiol 1990;15:1508–1517.PubMedGoogle Scholar
  53. 53.
    Rynkiewicz A, Semetkowska-Jurkiewicz E, Wyrzykowski B. Systolic and diastolic time intervals in young diabetics. Br Heart J 1980;44:280–283.PubMedGoogle Scholar
  54. 54.
    Shapiro LM, Howat AP, Calter MM. Left ventricular function in diabetes mellitus. I: Methodology, and prevalence and spectrum of abnormalities. Br Heart J 1981;45:122–128.PubMedGoogle Scholar
  55. 55.
    Shapiro LM, Leatherdale BA, Mackinnon J, Fletcher RF. Left ventricular function in diabetes mellitus. II: Relation between clinical features and left ventricular function. Br Heart J 1981;45:129–132.PubMedGoogle Scholar
  56. 56.
    Hausdorf G, Rieger U, Koepp P. Cardiomyopathy in childhood diabetes mellitus: incidence, time of onset, and relation to metabolic control. Int J Cardiol 1988;19:225–236.PubMedGoogle Scholar
  57. 57.
    Danielsen R. Factors contributing to left ventricular diastolic dysfunction in long-term type 1 diabetic subjects. Acta Med Scand 1988;224:249–256.PubMedGoogle Scholar
  58. 58.
    Zarich SW, Arbuckle BE, Cohen LR, Roberts M, Nesto RW. Diastolic abnormalities in young asymptomatic diabetic patients assessed by pulsed doppler echocardiography. J Am Coll Cardiol 1988;12: 114–120.PubMedGoogle Scholar
  59. 59.
    Takenaka K, Sakamoto T, Amano K, et al. Left ventricular filling determined by doppler echocardiography in diabetes mellitus. Am J Cardiol 1988;61:1140–1143.PubMedGoogle Scholar
  60. 60.
    BouchardA,SanzN,BotvinickEH,etal.Noninvasiveassessmentofcardiomyopathyinnormotensive diabetic patients between 20 and 50 years old. Am J Med 1989;87:160–166.Google Scholar
  61. 61.
    Paillole C, Dahan M, Paycha F, Cohen Solal A, Passa P, Gourgon R. Prevalence and significance of left ventricular filling abnormalities determined by doppler echocardiography in type I (insulin-dependent) diabetic patients. Am J Cardiol 1989;64:1010–1016.PubMedGoogle Scholar
  62. 62.
    Kahn JK, Zola B, Juni JE, Vinik AI. Decreased exercise heart rate and blood pressure response in diabetic subjects with cardiac autonomic neuropathy. Diabetes Care 1986;9:389–394.PubMedGoogle Scholar
  63. 63.
    Ruddy TD, Shumak SL, Liu PP, et al. The relationship of cardiac diastolic dysfunction to concurrent hormonal and metabolic status in type 1 diabetes mellitus. J Clin Endocrinol Metab 1988;66:113–118.PubMedGoogle Scholar
  64. 64.
    Raev DC. Which left ventricular function is impaired earlier in th evolution of diabetic cardiomyopathy? Diabetes Care 1994;17:633–639.PubMedGoogle Scholar
  65. 65.
    Hilsted J, Jeensen SB. A simple test for autonomic neuropathy in juvenile diabetics. Acta Med Scand 1979:385–387.Google Scholar
  66. 66.
    Fava S, Azzopardi J, Muscatt HA, Fenech FF. Factors that influence outcomes in diabetic subjects with myocardial infarction. Diabetes Care 1993;16:1615–1618.PubMedGoogle Scholar
  67. 67.
    Page MM, Watkins PJ. The heart in diabetes: autonomic neuropathy and cardiomyopathy. Clin Endocrinol Metab 1977:6:377–388.PubMedGoogle Scholar
  68. 68.
    Kahn JK, Zola B, Juni JE, Vinik A. Radionuclide assessment of left ventricular diastolic filling in diabetes mellitus with and without cardiac autonomic neuropathy. J Am Coll Cardio11986;7:1303–1309.Google Scholar
  69. 69.
    Mustonen J, Uusitupa M, Lansimies E, Vainio P, Laakso M, Pyorala K. Autonomic nervous function and its relationship to cardiac performance in middle-aged diabetic patients without clinically evident cardiovascular disease. J Intern Med 1992;232:65–72.PubMedGoogle Scholar
  70. 70.
    Scognamiglio R, Avogaro A, Casara D, et al. Myocardial dysfunction and adrenergic cardiac innervation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol 1998;31:404–412.PubMedGoogle Scholar
  71. 71.
    Ewing DJ, Campbell IW, Clarke BF. The natural history of diabetic autonomic neuropathy. Q J Med 1980;49:95–108.PubMedGoogle Scholar
  72. 72.
    O’Brien OA, McFadden JP, Corrall RJM. The influence of autonomic neuropathy on mortality in insulin-dependent diabetes. Q J Med 1991;290:495–502.Google Scholar
  73. 73.
    Rathman W, Ziegler D, Jahnke M, Haastert B, Gries FA. Mortality in diabetic patients with cardiovascular autonomic neuropathy. Diabetes Med 1993;10:820–824.Google Scholar
  74. 74.
    Stevens MJ, Raffel DM, Allman KC. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation 1998;98:961–968.PubMedGoogle Scholar
  75. 75.
    Johnson BF, Law G, Nesto R, et al. Aldose reductase inhibitor Zopolrestat improves systolic function in diabetes. Diabetes 1999;48(Suppl 1):A133.Google Scholar
  76. 76.
    Johnson B, Nesto R, Pfeifer M, et al. Systolic and diastolic dysfunction in diabetic patients with neuropathy. Diabetes 1997;46:314A.Google Scholar
  77. 77.
    Shindler DM, Kostis JB, Yusuf S, et al. Diabetes mellitus, a predictor of morbidity and mortality in the Studies of Left Ventricular Dysfunction (SOLVD) trials and registry. Am J Cardiol 1996;77:1017–1020.PubMedGoogle Scholar
  78. 78.
    Jaffe AS, Spadaro JJ, Schechtman K, Roberts R, Geltman EM, Sobel BE. Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. Am Heart J 1984;108:31–37.PubMedGoogle Scholar
  79. 79.
    Stone PH, Muller JE, Hartwell T, et al. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. The M[LIS Study Group. J Am Coll Cardiol 1989;14:49–57.PubMedGoogle Scholar
  80. 80.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993;329:1456–1462.PubMedGoogle Scholar
  81. 81.
    Maschio G, Alberti D, Janin G, et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med 1996;334:939–945.PubMedGoogle Scholar
  82. 82.
    The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000;342: 145–153.Google Scholar
  83. 83.
    Jonas M, Reicher-Reiss H, Boyko V, et al. Usefulness of beta-blocker therapy in patients with noninsulin-dependent diabetes mellitus and coronary artery disease. Bezafibrate Infarction Prevention (BIP) Study Group. Am J Cardiol 1996;77:1273–1277.PubMedGoogle Scholar
  84. 84.
    Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. US Carvedilol Heart Failure Study Group. N Engl J Med 1996;334:1349–1355.PubMedGoogle Scholar
  85. 85.
    Bristow MR, Gilbert EM, Abraham WT, et al. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation 1996;94:2807–2816.PubMedGoogle Scholar
  86. 86.
    Hjalmarson A, Goldstein S, Fagerberg B, et al. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group. JAMA 2000;283:1295–1302.PubMedGoogle Scholar
  87. 87.
    Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341:709–717.PubMedGoogle Scholar
  88. 88.
    Pitt B, Perez A. Spironolactone in patients with heart failure. N Engl J Med 2000;342:132.Google Scholar
  89. 89.
    United Kingdom Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. Br Med J 1998;317:703–713.Google Scholar
  90. 90.
    Mills RM, Naftel DC, Kirklin JK, et al. Heart transplant rejection with hemodynamic compromise: a multi-institutional study of the role of endomyocardial cellular infiltrate. Cardiac Transplant Research Database. J Heart Lung Transplant 1997;16:813–821.PubMedGoogle Scholar
  91. 91.
    Weis M, von Scheidt W. Cardiac allograft vasculopathy: a review. Circulation 1997;96:2069–2077.PubMedGoogle Scholar
  92. 92.
    Fein FS, Kornstein LB, Strobeck JE, Capasso JM, Sonnenblick EH. Altered myocardial mechanics in diabetic rats. Circ Res 1980;47:922–933.PubMedGoogle Scholar
  93. 93.
    Katz EB, Stenbit AE, Hatton K, DePinho R, Charron MJ. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 1995;377:151–155.PubMedGoogle Scholar
  94. 94.
    StenbitAE,TsaoTS,LiJ,etal.GLUT4heterozygousknockoutmicedevelopmuscleinsulinresistance and diabetes. Nature Med 1997;3:1096–1101.Google Scholar
  95. 95.
    Lucchesi B, Medina M, Kniffen F. The positive inotropic action of insulin in the canine heart. Eur J Pharmacol 1972;18:107–115.PubMedGoogle Scholar
  96. 96.
    Farah A, Alousi A. The actions of insulin on cardiac contractility. Life Sci 1981;29:975–1000.PubMedGoogle Scholar
  97. 97.
    Scherrer U, Sartori C. Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation 1997;96:4104–4113.PubMedGoogle Scholar
  98. 98.
    Schaffer SW, Mozaffari MS, Artman M, Wilson GL. Basis for myocardial mechanical defects associated with non-insulin-dependent diabetes. Am J Physiol 1989;19:E25–E30.Google Scholar
  99. 99.
    Schaffer SW. Cardiomyopathy associated with noninsulin-dependent diabetes. Mol Cell Biochem 1991; 107:1–20.PubMedGoogle Scholar
  100. 100.
    Rodrigues B, McNeill JH. The diabetic heart: metabolic causes for the development of a cardiomyopathy. Cardiovasc Res 1992;26:913–922.PubMedGoogle Scholar
  101. 101.
    Pierce GN, Kutryk MJB, Dhalla NS. Alterations in calcium binding and composition of the cardiac sarcolemmal membrane in chronic diabetes. Proc Natl Acad Sci USA 1983;80:5412–5416.PubMedGoogle Scholar
  102. 102.
    Heyliger CE, Prakash A, McNeill JH. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus. Am J Physiol 1987;252:540–544.Google Scholar
  103. 103.
    Schaffer SW, Ballard-Croft C, Boerth S, Allo SN. Mechanisms underlying depressed Na+/Ca2+ exchanger activity in the diabetic heart. Cardiovasc Res 1997;34:129–136.PubMedGoogle Scholar
  104. 104.
    Lopaschuk GD, Tahiliani A, Vadlamudi RVSV, Katz S, McNeill JH. Cardiac sarcoplasmic reticulum function in insulin or carnitine-treated diabetic rats. Am J Physiol 1983;245:969–976.Google Scholar
  105. 105.
    Penpargkul S, Fein FS, Sonnenblick EH, Scheuer J. Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol 1981;13:303–309.PubMedGoogle Scholar
  106. 106.
    Lagadic-Gossmann D, Buckler KJ, Le Prigent K, Feuvray D. Altered Ca2+ handling in ventricular myocytes isolated from diabetic rats. Am J Physiol 1996;270:H1529–H1537.Google Scholar
  107. 107.
    Wakasaki H, Koya D, Schoen FJ, et al. Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA 1997;94:9320–9325.PubMedGoogle Scholar
  108. 108.
    Dillmann WH. Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 1980;29: 579–582.PubMedGoogle Scholar
  109. 109.
    Malhotra A, Penpargkul S, Fein FS, Sonnenblick EH, Scheuer J. The effect of streptozotocin-induced diabetes in rats on cardiac contractile proteins. Circ Res 1981;49:1243–1250.PubMedGoogle Scholar
  110. 110.
    Liu X, Takeda N, Dhalla NS. Troponin I phosphorylation in heart homogenate from diabetic rat. Biochim Biophys Acta 1996;1316:78–84.PubMedGoogle Scholar
  111. 111.
    Liu X, Takeda N, Dhalla NS. Myosin light-chain phosphorylation in diabetic cardiomyopathy in rats. Metabolism 1997;46:71–75.PubMedGoogle Scholar
  112. 112.
    Norton GR, Candy G, Woodiwiss AJ. Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 1996;93:1905–1912.PubMedGoogle Scholar
  113. 113.
    Fein FS, Strobeck JE, Malhotra A, Scheuer J, Sonnenblick EH. Reversibility of diabetic cardiomyopathy with insulin in rats. Circ Res 1981;49:1251–1261.PubMedGoogle Scholar
  114. 114.
    Fein FS, Miller-Green B, Zola B, Sonnenblick EH. Reversibility of diabetic cardiomyopathy with insulin in rabbits. Am J Physiol 1986;250:H108–H113.Google Scholar
  115. 115.
    Davidoff AJ, Ren J. Low insulin and high glucose induce abnormal relaxation in cultured adult rat ventricular myocytes. Am J Physiol 1997;272:H159–H167.Google Scholar
  116. 116.
    Ren J, Gintant GA, Miller RE, Davidoff AJ. High extracellular glucose impairs cardiac E-C coupling in a glycosylation-dependent manner. Am J Physiol 1997;273:H2876–H2883.Google Scholar
  117. 117.
    Young LH, Russell RR, Yin R, et al. Regulation of myocardial glucose uptake and transport during ischemia and energetic stress. Am J Cardiol 1999;83(Suppl 12A):25H–30H.Google Scholar
  118. 118.
    Young LH, Renfu Y, Russell RR, et al. Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation 1997;95:415–422.PubMedGoogle Scholar
  119. 119.
    Sun D, Nguyen N, DeGrado TR, Schwaiger M, Brosius FC. Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes. Circulation 1994;89:793–798.PubMedGoogle Scholar
  120. 120.
    Russell RR, Yin R, Caplan MJ, et al. Additive effects of hyperinsulinemia and ischemia on myocardial GLUT1 and GLUT4 translocation in vivo. Circulation 1998;98:2180–2186.PubMedGoogle Scholar
  121. 121.
    Kainulainen H, Breiner M, Schurmann A, Marttinen A, Virjo A, Joost HG. In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart and various types of skeletal muscle from streptozotocin-diabetic rats. Biochim Biophys Acta 1994;1225:275–282.PubMedGoogle Scholar
  122. 122.
    Burcelin R, Printz RL, Kande J, Assan R, Granner DK, Girard J. Regulation of glucose transporter and hexokinase II expression in tissues of diabetic rats. Am J Physiol 1993;265:E392–E401.Google Scholar
  123. 123.
    Garvey WT, Hardin D, Juhaszova M, Dominguez JH. Effects of diabetes on myocardial glucose transport system in rats: implications for diabetic cardiomyopathy. Am J Physiol 1993;264:837–844.Google Scholar
  124. 124.
    Hall J, Sexton W, Stanley W. Exercise training attenuates the reduction in myocardial GLUT-4 in diabetic rats. J Appl Physiol 1995;78:76–81.PubMedGoogle Scholar
  125. 125.
    Hall J, Stanley W, Lopaschuk G, et al. Impaired pyruvate oxidation but normal glucose uptake in diabetic pig heart during dobutamine-induced work. Am J Physiol 1996;271:H2320–H2329.Google Scholar
  126. 126.
    SliekerLJ, Sundell KL, Heath WF, et al. Glucose transporter levels in tissues of spontaneously diabetic zucker fa/fa rat (zdf/drt) and viable yellow mouse (Avy/a). Diabetes 1992;41:187–193.PubMedGoogle Scholar
  127. 127.
    Barrett EJ, Schwartz RG, Young LH, Jacob R, Zaret BL. Effect of chronic diabetes on myocardial fuel metabolism and insulin sensitivity. Diabetes 1988;37:943–948.PubMedGoogle Scholar
  128. 128.
    Voipio-Pulkki LM, Nuutila P, Knuuti MJ, et al. Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography. J Nucl Med 1993;34:2064–2067.PubMedGoogle Scholar
  129. 129.
    Ohtake T, Yokoyama I, Watanabe T, et al. Myocardial glucose metabolism in noninsulin-dependent diabetes mellitus patients evaluated by FDG-PET. J Nucl Med 1995;36:456–463.PubMedGoogle Scholar
  130. 130.
    Utriainen T, Takala T, Luotolahti M, et al. Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia 1998;41:555–559.PubMedGoogle Scholar
  131. 131.
    Maki M, Nuutila P, Laine H, et al. Myocardial glucose uptake in patients with NIDDM and stable coronary artery disease. Diabetes 1997;46:1491–1496.PubMedGoogle Scholar
  132. 132.
    Avogaro A, Nosadini R, Doria A, et al. Myocardial metabolism in insulin-deficient diabetic humans without coronary artery disease. Am J Physiol 1990;258:E606–E618.Google Scholar
  133. 133.
    Nuutila P, Knuuti J, Ruotsalainen U, et al . Insulin resistance is localized to skeletal but not heart muscle in type 1 diabetes. Am J Physiol 1993;264:E756–E762.Google Scholar
  134. 134.
    Randle P, Garland P, Hales C, Newsholme E. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;1:785–789.PubMedGoogle Scholar
  135. 135.
    Laughlin MR, Petit WA, Shulman RG, Barrett EJ. Measurement of myocardial glycogen synthesis in diabetic and fasted rats. Am J Physiol 1990;258:E184–E190.Google Scholar
  136. 136.
    Laughlin MR, Morgan C, Barrett EJ. Hypoxic stimulation of heart glycogen synthase and synthesis. Effects of insulin and diabetes mellitus. Diabetes 1991;40:385–390.PubMedGoogle Scholar
  137. 137.
    Laughlin M, Taylor J, Chesnick A, Balaban R. Nonglucose substrates increase glycogen synthesis in vivo in dog heart. Am J Physiol 1994;267:H217–H223.Google Scholar
  138. 138.
    Russell R, Cline G, Guthrie P, Goodwin G, Shulman G, Taegtmeyer H. Regulation of exogenous and endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart: a three tracer study of glycolysis, glycogen metabolism and glucose oxidation. J Clin Invest 1997;100:2892–2899.PubMedGoogle Scholar
  139. 139.
    Williamson JR, Chang K, Frangos M, et al. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 1993;42:801–813.PubMedGoogle Scholar
  140. 140.
    Trueblood N, Ramasamy R. Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am J Physiol 1998;275:H75–H83.Google Scholar
  141. 141.
    Ramasamy R, Oates PJ, Schaefer S. Aldose reductase inhibition protects diabetic and nondiabetic rat hearts from ischemic injury. Diabetes 1997;46:292–300.PubMedGoogle Scholar
  142. 142.
    Ramasamy R, Trueblood N, Schaefer S. Metabolic effects of aldose reductase inhibition during lowflow ischemia and reperfusion. Am J Physiol 1998;275:H195–H203.Google Scholar
  143. 143.
    Kobayashi K, Neely J. Effects of increased cardiac work on pyruvate dehydrogenase activity in hearts from diabetic animals. J Mol Cell Cardiol 1983;15:347–357.PubMedGoogle Scholar
  144. 144.
    Chatham JC, Forder JR. A 13C-NMR study of glucose oxidation in the intact functioning rat heart following diabetes-induced cardiomyopathy. J Mol Cell Cardiol 1993;25:1203–1213.PubMedGoogle Scholar
  145. 145.
    Randle P, Priestman D, Mistry S, Halsall A. Mechanisms modifying glucose oxidation in diabetes mellitus. Diabetologia 1994;37:S155–S161.Google Scholar
  146. 146.
    Ballard FB, Danforth WH, Naegle S, Bing RJ. Myocardial metabolism of fatty acids. J Clin Invest 1960;39:717–723.PubMedGoogle Scholar
  147. 147.
    Garland P, Randle P. Regulation of glucose uptake by muscle. 10. Effects of alloxan-diabetes, starvation, hypophysectomy and andrenalectomy, and of fatty acids, ketone bodies and pyruvate on the glycerol ouput and concentrations of free fatty acids, long-chain fatty acyl-coenzyme A, glycerol phosphate and citrate-cycle intermediates in rat heart and diaphragm muscles. Biochem J 1964;93:678–687.PubMedGoogle Scholar
  148. 148.
    Lopaschuk G, Tsang H. Metabolism of palmitate in isolated working hearts from spontaneously diabetic ‘BB’ Wistar rats. Circ Res 1987;61:853–858.PubMedGoogle Scholar
  149. 149.
    Turpeinen AK, Kuikka JT, Vanninen E, Uusitupa MI. Abnormal myocardial kinetics of 123I-heptade-canoic acid in subjects with impaired glucose tolerance. Diabetologia 1997;40:541–549.PubMedGoogle Scholar
  150. 150.
    Denton RM, Randle PJ. Concentration of glycerides and phospholipids in rat heart and gastrocnemius muscles. Biochem J 1967;104:416–422.PubMedGoogle Scholar
  151. 151.
    Rodrigues B, Cam MC, McNeill JH. Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem 1998;180:53–57.PubMedGoogle Scholar
  152. 152.
    Nicholl T, Lopaschuk G, McNeill J. Effects of free fatty acids and dichloroacetate on isolated working diabetic rat heart. Am J Physiol 1991;261:H1053–H1059.Google Scholar
  153. 153.
    Rodrigues B, Xiang H, McNeill JH. Effect of L-carnitine treatment on lipid metabolism and cardiac performance in chronically diabetic rats. Diabetes 1988;37:1358–1364.PubMedGoogle Scholar
  154. 154.
    Chatham JC, Forder JR. Relationship between cardiac function and substrate oxidation in hearts of diabetic rats. Am J Physiol 1997;273:H52–H58.Google Scholar
  155. 155.
    WilliamsonJ,KrebsH.Acetoacetateasfuelofrespirationintheperfusedratheart.BiochemJ1961;80: 540–547.Google Scholar
  156. 156.
    Taegtmeyer H. On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load. Basic Res Cardiol 1983;78:435–450.Google Scholar
  157. 157.
    Russell R, Taegtmeyer H. Coenzyme A sequestration in rat hearts oxidizing ketone bodies. J Clin Invest 1992;89:968–973.PubMedGoogle Scholar
  158. 158.
    Zimmermann A, Meijler F, Hülsmann W. The inhibitory effect of acetoacetate on myocardial contraction. Lancet 1962;2:757–758.Google Scholar
  159. 159.
    Matsumoto Y, Kaneko M, Kobayashi A, Fujise Y, Yamazaki N. Creatine kinase kinetics in diabetic cardiomyopathy. Am J Physiol 1995;268:E1070–E1076.Google Scholar
  160. 160.
    Spindler M, Saupe K, Tian R, Ahmed S, Matlib M, Ingwall J. Altered creatine kinase enzyme kinetics in diabetic cardiomyopathy. A 31P NMR magentization transfer study of the intact beating rat heart. J Mol Cell Cardiol 1999;31:2175–2189.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Lawrence H. Young
  • Raymond R. RussellIII
  • Deborah  Chyun
  • Tarik Ramahi

There are no affiliations available

Personalised recommendations