Advertisement

Animal Models of Diabetes and Atherosclerosis

  • Peter D. Reaven
  • Wulf Palinski
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Epidemiologic studies have documented that individuals with diabetes mellitus as well as those with impaired glucose tolerance (IGT) have an increased prevalence of atherosclerosis and increased rates of coronary artery disease (CAD) (1, 2). However, the mechanisms by which these conditions enhance atherogenesis are poorly understood. Hyperglycemia, the defining metabolic change in diabetes, may contribute to the development of atherosclerosis. The specific contribution of hyperglycemia has been difficult to demonstrate in either population studies or animal models (1,3–6). Moreover, hyperglycemia per se is unlikely to play a role in the development of atherosclerosis in individuals with IGT, who usually demonstrate only modest postprandial hyperglycemia. This is confirmed by recent data from the United Kingdom Prospective Diabetes Study demonstrating that improved glucose control reduces microvascular complications but has modest or no effects on macrovascular disease and its clinical sequelae (3). Many investigators have therefore suggested that other factors besides glucose levels contribute to the development of macrovascular disease in diabetes. Insulin resistance, an essential component of type 2 diabetes, is frequently associated with a number of metabolic abnormalities such as hypercholesterolemia, hypertriglyceridemia, low high-density lipoprotein (HDL), and hypertension that are considered traditional risk factors for atherosclerosis. However, these risk factors explain only some, but not all, of the increased risk for CAD in individuals with IGT or diabetes (7,8).

Keywords

Insulin Resistance Atherosclerotic Lesion Plasma Cholesterol Level Induce Insulin Resistance Cholesterol Ester Transfer Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pyorala K, Laakso M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 1987;3:463–524.PubMedCrossRefGoogle Scholar
  2. 2.
    Uusitupa MI, Niskanen LK, Siitonen O, Voutilainen E, Pyorala K. Ten-year cardiovascular mortality in relation to risk factors and abnormalities in lipoprotein composition in type 2 (non-insulin-dependent) diabetic and non-diabetic subjects. Diabetologia 1993;36:1175–1184.PubMedCrossRefGoogle Scholar
  3. 3.
    Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–853.CrossRefGoogle Scholar
  4. 4.
    Reaven P, Merat S, Casanada F, Sutphin M, Palinski W. Effect of streptozotocin-induced hyperglycemia on lipid profiles, formation of advanced glycation endproducts in lesions, and extent of atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 1997;17:2250–2256.PubMedCrossRefGoogle Scholar
  5. 5.
    Semenkovich CF, Heinecke JW. The mystery of diabetes and atherosclerosis. Diabetes 1997;46:327–334.PubMedCrossRefGoogle Scholar
  6. 6.
    Kunjathoor VV, Wilson DL, LeBoeuf RC. Increased atherosclerosis in streptozotocin-induced diabetic mice. J Clin Invest 1996;97:1–8.CrossRefGoogle Scholar
  7. 7.
    Uusitupa MI, Niskanen LK, Siitonen O, Voutilainen E, Pyorala K. 5-year incidence of atherosclerotic vascular disease in relation to general risk factors, insulin level, and abnormalities in lipoprotein composition in non-insulin-dependent diabetic and nondiabetic subjects. Circulation 1990;82:27–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Bierman EL. George Lyman Duff Memorial Lecture. Atherogenesis in diabetes. Arterioscler Thromb 1992;12:647–656.PubMedCrossRefGoogle Scholar
  9. 9.
    Hayden J, Reaven PD. Cardiovascular disease in type 2 diabetes: a potential role for novel cardiovascular risk factors. Curr Opin Lipidol 2000;11:519–528.PubMedCrossRefGoogle Scholar
  10. 10.
    Tobey TA, Mondon CE, Zavaroni I, Reaven GM. Mechanism of insulin resistance in fructose-fed rats. Metabolism 1982;31:608–612.PubMedCrossRefGoogle Scholar
  11. 11.
    Hwang IS, Ho H, Hoffman BB, Reaven GM. Fructose-induced insulin resistance and hypertension in rats. Hypertension 1987;10:512–516.PubMedCrossRefGoogle Scholar
  12. 12.
    Leibel RL, Chung WK, Streamson C, Chua J. The molecular genetics of rodent single gene obesities. J Biol Chem 1997;272:31,937–31,940.Google Scholar
  13. 13.
    LeibelRL.Singlegeneobesitiesinrodents:possiblerelevancetohumanobesity.JNutr1997;127:1908S.Google Scholar
  14. 14.
    Tamemoto H, Kadowaki T, Tobe K, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 1994;372:182–186.PubMedCrossRefGoogle Scholar
  15. 15.
    Araki E, Lipes MA, Patti ME, et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 1994;372:186–190.PubMedCrossRefGoogle Scholar
  16. 16.
    Armstrong ML, Trillo A, Pritchard RW. Naturally occuning and experimentally induced atherosclerosis in nonhuman primates. In: Kalter SS, ed. The Use of Nonhuman Primates in Cardiovascular Disease. 1979, pp. 58–101.Google Scholar
  17. 17.
    Clarkson TB, Koritnik DR, Weingand KW, Miller LC. Nonhuman primate models of atherosclerosis: potential for the study of diabetes mellitus and hyperinsulinemia. Metabolism 1985;34:51–59.PubMedCrossRefGoogle Scholar
  18. 18.
    Wagner WD, St Clair RW, Clarkson TB. Angiochemical and tissue cholesterol changes in Macaca fascicularis fed an atherogenic diet for three years. Exp Mol Pathol 1978;28:140–153.PubMedCrossRefGoogle Scholar
  19. 19.
    Lehner NDM. Effect of alloxan induced diabetes mellitus on aortic atherosclerosis in squirrel monkeys. Fed Proc 1975;34:876–886Google Scholar
  20. 20.
    Bagdade JD, Wagner JD, Rudel LL, Clarkson TB. Accelerated cholesteryl ester transfer and altered lipoprotein composition in diabetic cynomologus monkeys. J Lipid Res 1995;36:759–766.PubMedGoogle Scholar
  21. 21.
    Wagner JD, Bagdade JD, Litwak KN, et al. Increased glycation of plasma lipoproteins in diabetic cynomologus monkeys. Lab Anim Sci 1996;46:31–35.PubMedGoogle Scholar
  22. 22.
    Tsutsumi K, Iwamoto T, Hagi A, Kohri H. Streptozotocin-induced diabetic cynomologus monkey is a model of hypertriglyceridemia with low high density lipoprotein cholesterol. Biol Pharm Bull 1998;21: 693–697.PubMedCrossRefGoogle Scholar
  23. 23.
    Litwak KN, Cefalu WT, Wagner JD. Chronic hyperglycemia increases arterial low-density lipoprotein metabolism and atherosclerosis in cynomolgus monkeys. Metabolism 1998;47:947–954.PubMedCrossRefGoogle Scholar
  24. 24.
    Finking G, Hanke H. Nikolaj Nikolajewitsch Anitschkow (1885–1964) established the cholesterol-fed rabbit as a model for atherosclerosis research. Atherosclerosis 1997;135:1–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Nordestgaard BG, Stender S, Kjeldsen K. Reduced atherogenesis in cholesterol-fed diabetic rabbits. Giant lipoproteins do not enter the arterial wall. Arteriosclerosis 1988;8:421–428.PubMedCrossRefGoogle Scholar
  26. 26.
    Nordestgaard BG, Wootton R, Lewis B. Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo. Molecular size as a determinant of fractional loss from the intima-inner media. Arterioscler Thromb Vasc Biol 1995;15:534–542.PubMedCrossRefGoogle Scholar
  27. 27.
    Nordestgaard BG, Zilversmit DB. Comparison of arterial intimal clearances of LDL from diabetic and nondiabetic cholesterol-fed rabbits. Differences in intimal clearance explained by size differences. Arteriosclerosis 1989;9:176–183.PubMedCrossRefGoogle Scholar
  28. 28.
    Schmidt AM, Hori O, Chen JX, et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 1995;96:1395–1403.PubMedCrossRefGoogle Scholar
  29. 29.
    Vlassara H, Fuh H, Donnelly T, Cybulsky M. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med 1995;1:447–456.PubMedGoogle Scholar
  30. 30.
    Simionescu M, Popov D, Sima A, et al. Pathobiochemistry of combined diabetes and atherosclerosis studied on a novel animal model. The hyperlipemic-hyperglycemic hamster. Am JPathol1996;148:997–1014.Google Scholar
  31. 31.
    Sima A, Popov D, Starodub O, et al. Pathobiology of the heart in experimental diabetes: immunolocalization of lipoproteins, immunoglobulin G, and advanced glycation endproducts proteins in diabetic and/or hyperlipidemic hamster. Lab Invest 1997;77:3–18.PubMedGoogle Scholar
  32. 32.
    Mathe D. Dyslipidemia and diabetes: animal models. Diabetes Metab 1995;21:10(-111.Google Scholar
  33. 33.
    Richardson M, Schmidt AM, Graham SE, Achen B, DeReske M, Russell JC. Vasculopathy and insulin resistance in the JCR:LA-cp rat. Atherosclerosis 1998;138:135–146.PubMedCrossRefGoogle Scholar
  34. 34.
    Russell JC, Amy RM. Early atherosclerotic lesions in a susceptible rat model. The LA/N-corpulent rat. Atherosclerosis 1986;60:119–129.PubMedCrossRefGoogle Scholar
  35. 35.
    Schneider DJ, Absher PM, Neimane D, Russell JC, Sobel BE. Fibrinolysis and atherogenesis in the JCR: LA-cp rat in relation to insulin and triglyceride concentrations in blood. Diabetologia 1998;41:141–147.PubMedCrossRefGoogle Scholar
  36. 36.
    Ziv E, Kalman R, Hershkop K, Barash V, Shafrir E, Bar-on H. Insulin resistance in the NIDDM model Psammomys obesus in the normoglycaemic, normoinsulinaemic state. Diabetologia 1996;39:1269–1275.PubMedCrossRefGoogle Scholar
  37. 37.
    Hilzenrat N, Sikuler E, Yaari A, Maislos M. Hemodynamic characterization of the diabetic Psammomys obesus an animal model of type II diabetes mellitus. Isr J Med Sci 1996;32:1074–1078.PubMedGoogle Scholar
  38. 38.
    Kanety H, Moshe S, Shafrir E, Lunenfeld B, Karasik A. Hyperinsulinemia induces a reversible impairment in insulin receptor function leading to diabetes in the sand rat model of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 1994;91:1853–1857.PubMedCrossRefGoogle Scholar
  39. 39.
    Paigen B, Mitchell D, Reue K, Morrow A, Lusis AJ, LeBoeuf RC. Ath-1, a gene determining atherosclerosis susceptibility and high density lipoprotein levels in mice. Proc Natl Acad Sci USA 1987;84: 3763–3767.PubMedCrossRefGoogle Scholar
  40. 40.
    Paigen B, Ishida BY, Verstuyft J, Winters RB, Albee D. Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Arteriosclerosis 1990;10:316–323.PubMedCrossRefGoogle Scholar
  41. 41.
    Kako Y, Huang L, Yang J, Katopodis T, Ramakrishnan R, Goldberg I. Streptozotocin-induced diabetes in human apolipoprotein B transgenic mice: effects on lipoproteins and atherosclerosis. J Lipid Res 1999:40:2185–2194.PubMedGoogle Scholar
  42. 42.
    Palinski W, Napoli C, Reaven PD. Mouse models of atherosclerosis. In: Simon DI, Rogers C, eds. Vascular Disease and Injury: Preclinical Research. Humana, Totowa, NJ, 2000, pp. 149–174.CrossRefGoogle Scholar
  43. 43.
    Plump AS, Smith JD, Hayek T, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 1992;71:343–353.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992;258:468–471.Google Scholar
  45. 45.
    Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 1994;93:1885–1893.PubMedCrossRefGoogle Scholar
  46. 46.
    Palinski W, Tangirala RK, Miller E, Young SG, Witztum JL. Increased autoantibody titers against epitopes of oxidized LDL in LDL receptor-deficient mice with increased atherosclerosis. Arterioscler Thromb Vasc Biol 1995;15:1569–1576.PubMedCrossRefGoogle Scholar
  47. 47.
    Tangirala RK, Rubin EM, Palinski W. Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J Lipid Res 1995;36;2320L2328.Google Scholar
  48. 48.
    Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 1994;14:133–140.PubMedCrossRefGoogle Scholar
  49. 49.
    Palinski W, Ord VA, Plump AS, Breslow JL, Steinberg D, Witztum JL. ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb 1994;14:605–616.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhou X, Stemme S, Hansson GK. Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am J Pathol 1996;149:359–366.PubMedGoogle Scholar
  51. 51.
    Palinski W, Rosenfeld ME, Yla-Herttuala S, et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989;86:1372–1376.PubMedCrossRefGoogle Scholar
  52. 52.
    Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997; 272:20,963–20,966.Google Scholar
  53. 53.
    Palinski W, Koschinsky T, Butler SW, et al. Immunological evidence for the presence of advanced glycosylation end products in atherosclerotic lesions of euglycemic rabbits. Arterioscler Thromb Vasc Biol 1995;15;571–582.PubMedCrossRefGoogle Scholar
  54. 54.
    PurcellHuynh D, Farese RV, Johnson DF, et al. Transgenic mice expressing high levels of human apolipoprotein B develop severe atherosclerotic lesions in response to a high-fat diet. J Clin Invest 1995;95: 2246–2257.CrossRefGoogle Scholar
  55. 55.
    Callow MJ, Verstuyft J, Tangirala R, Palinski W, Rubin EM. Atherogenesis in transgenic mice with human apolipoprotein B and lipoprotein (a). J Clin Invest 1995;96:1639–1646.PubMedCrossRefGoogle Scholar
  56. 56.
    Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 1987;68:231−240.PubMedCrossRefGoogle Scholar
  57. 57.
    Gaw A, Hobbs HH. Molecular genetics of lipoprotein (a): new pieces to the puzzle. Curr Opin Lipidol 1994;5:149–155.PubMedCrossRefGoogle Scholar
  58. 58.
    Young SG. Using genetically modified mice to study apolipoprotein B. Arterioscler Thromb Vasc Biol 1996;3:62–74.Google Scholar
  59. 59.
    Chiesa G, Parolini C, Canavesi M, et al. Human apolipoproteins A-I and A-II in cell cholesterol efflux: studies with transgenic mice. Arterioscler Thromb Vasc Biol 1998;18:1417–1423.PubMedCrossRefGoogle Scholar
  60. 60.
    Liu J, Zhang YL, Spence MJ, Vestal RE, Wallace PM, Grass DS. Liver LDL receptor mRNA expression is decreased in human ApoB/CETP double transgenic mice and is regulated by diet as well as the cytokine oncostatin M. Arterioscler Thromb Vasc Biol 1997;17:2948–2954.PubMedCrossRefGoogle Scholar
  61. 61.
    Nishina PM, Naggert JK, Verstuyft J, Paigen B. Atherosclerosis in genetically obese mice: the mutants obese, diabetes, fat, tubby, and lethal yellow. Metabolism 1994;43:554–558.PubMedCrossRefGoogle Scholar
  62. 62.
    Abe H, Yamada N, Kamata K, et al. Hypertension, hypertriglyceridemia, and impaired endotheliumdependent vascular relaxation in mice lacking insulin receptor substrate-1. J Clin Invest 1998;101:1784–1788.PubMedCrossRefGoogle Scholar
  63. 63.
    Bruning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahn CR. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 1997;88:561–572.PubMedCrossRefGoogle Scholar
  64. 64.
    Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 2000:106:459–465.PubMedCrossRefGoogle Scholar
  65. 65.
    Merat S, Casanada F, Sutphin M , Palinski W, Reaven PD. Western-type diets induce insulin resistance and hyperinsulinemia in LDL receptor-deficient mice but do not increase aortic atherosclerosis, compared with normoinsulinemic mice in which similar plasma cholesterol levels are achieved by a fructoserich diet. Arterioscler Thromb Vasc Biol 1999;19:1223–1230.PubMedCrossRefGoogle Scholar
  66. 66.
    Surwit RS, Wang S, Petro AE, et al. Diet-induced changes in uncoupling proteins in obesity-prone and obesity-resistant strains of mice. Proc Natl Acad Sci USA 1998;95:4061–4065.PubMedCrossRefGoogle Scholar
  67. 67.
    Li A, Brown K, Silvestre M, Willson T, Palinski W, Glass C. Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000:106: 523–531.PubMedCrossRefGoogle Scholar
  68. 68.
    Collins AR, Meehan WP, Kintscher U, Jackson S, Wakino S, Palinski W, Hsueh WA, Law RE. Troglitazone inhibits atherosclerosis in low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2001;21:in press.Google Scholar
  69. 69.
    Kako Y, Masse M, Tall AR, Goldberg IJ. Creation of diabetic dyslipidemia in mice. Diabetes 2000; 49(Suppl 1):A13.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Peter D. Reaven
  • Wulf Palinski

There are no affiliations available

Personalised recommendations