Diabetes and Atherosclerosis

  • Maria F. Lopes-Virella
Part of the Contemporary Cardiology book series (CONCARD)


Macrovascular disease is the leading cause of mortality and morbidity in diabetes. Virtually all large vessels are involved, and clinical manifestations result from the narrowing and thrombosis of coronary, cerebral, and peripheral vessels. The study of factors that may uniquely contribute to the accelerated development of atherosclerosis in diabetes has been an ongoing process for several years. The concepts behind both the pathogenic mechanisms of atherosclerosis and the trigger mechanisms that lead to acute clinical events have, however, drastically changed in the last two decades. Arteriosclerosis is not now considered a degenerative process that inevitably progresses with age, but as a chronic inflammatory process that can be converted into an acute cardiovascular event by plaque rupture or erosion. The mechanisms that lead not only to plaque formation, but also to plaque erosion or rupture are now being actively studied (Fig. 1).


Glycemic Control Foam Cell Formation Plasma Fibrinogen Level Human Vascular Endothelial Cell Acute Clinical Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits, II: selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 1989;9:908–918.PubMedCrossRefGoogle Scholar
  2. 2.
    Frank FS, Fogelman AM. Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultra-rapid freezing and freeze-etching. J Lipid Res 1989;30:967–978.PubMedGoogle Scholar
  3. 3.
    Nievelstein PFEM, Fogelman AM, Frank FS, Mottino G. Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of LDL: a deep-etch and immunolocalization study of rapidly frozen tissue. Arterioscler Thromb 1991;11:1795–1805.PubMedCrossRefGoogle Scholar
  4. 4.
    Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW. Monocyte transmigration induced by modification of low density lipoprotein in co-cultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest 1991;88:2039–2046.PubMedCrossRefGoogle Scholar
  5. 5.
    Raj avashisth TB, Andalibi A, Territo MD, et al. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low density lipoproteins. Nature 1990;344: 254–257.CrossRefGoogle Scholar
  6. 6.
    Schwartz D, Andalibi A, Chaverri-Almada L, et al. The role of the gro family of chemokines in monocyte adhesion to MM-LDL-stimulated endothelium. J Clin Invest 1994;94:1968–1973.PubMedCrossRefGoogle Scholar
  7. 7.
    Hessler JR, Robertson AL Jr, Chisolm GM. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis 1979;32:213–218.PubMedCrossRefGoogle Scholar
  8. 8.
    Henriksen T, Evensen SA, Carlander B. Injury to human endothelial cells in culture induced by LDL. Scand J Clin Lab Invest 1979;39:361–364.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoff HF, O’Neil J, Chisolm GM III, et al. Modification of LDL with 4-hydroxynonenal induces uptake by macrophages. Arteriosclerosis 1989;9:538–549.PubMedCrossRefGoogle Scholar
  10. 10.
    Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of LDL leads to cholesterol ester accumulation in human monocytes/macrophages. Proc Natl Acad Sci USA 1980;77:2214–2218.PubMedCrossRefGoogle Scholar
  11. 11.
    Moncada S, Palmer R, Higgs E. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109–142.PubMedGoogle Scholar
  12. 12.
    Hogman M, Frostell C, Arnberg H, Hedenstierna G. Bleeding time prolongation and NO inhalation. Lancet 1993;341:1664–1665.PubMedCrossRefGoogle Scholar
  13. 13.
    Kawabata A. Evidence that endogenous nitric oxide modulates plasma fibrinogen levels in rat. Br J Pharmacol 1996;117:236–237.PubMedCrossRefGoogle Scholar
  14. 14.
    Huszka M, Kaplar M, Rejto L. The association of reduced endothelium derived relaxing factor-NO production with endothelial damage and increased in vivo platelet activation in patients with diabetes mellitus. Thrombos Res 1997;86:173–180.CrossRefGoogle Scholar
  15. 15.
    Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR, Michelson AD. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J Clin Invest 1996;97: 979–987.PubMedCrossRefGoogle Scholar
  16. 16.
    Johnstone, MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endotheliumdependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 1993;88:25102516.Google Scholar
  17. 17.
    McVeigh GE, Brennan GM, Johnston GD, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1992;35: 771–776.PubMedGoogle Scholar
  18. 18.
    Chin JH, Azhar S, Hoffman BB. Inactivation of endothelial-derived relaxing factor by oxidized lipoproteins. J Clin Invest 1992;89:10–18.PubMedCrossRefGoogle Scholar
  19. 19.
    Galle J, Bengen J, Schollmeyer P, Wanner C. Impairment of endothelium-dependent dilation in rabbit renal arteries by oxidized lipoprotein (a). Role of oxygen-derived radicals. Circulation 1995;92:15821589.Google Scholar
  20. 20.
    Jessup W, Dean RT. Autoinhibitor of murine macrophage mediated oscidation of LDL by nitric oxide synthesis. Atherosclerosis 1993;101:145–155.PubMedCrossRefGoogle Scholar
  21. 21.
    Ischiropoulos H, al Mehdi A. Peroxynitrate-mediated oxidative protein modifications. FEBS Lett 1995; 364:279–282.PubMedCrossRefGoogle Scholar
  22. 22.
    Fontbonne AM, Eschwege EM. Insulin and cardiovascular disease. Paris prospective study. Diabetes Care 1991;14:461–469.PubMedCrossRefGoogle Scholar
  23. 23.
    Despres JP, Lamarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischaemic heart disease. N Engl J Med 1996;334:952–957.PubMedCrossRefGoogle Scholar
  24. 24.
    The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993;329:997.Google Scholar
  25. 25.
    UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes. Lancet 1998;352:854–865.CrossRefGoogle Scholar
  26. 26.
    Baron AD. Insulin and the vasculature—old actors, new roles. J Invest Med 1996;44:406–412.Google Scholar
  27. 27.
    Moncada S. Biological importance of prostacyclin. Br J Pharmacol 1982;76:3–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Colwell JA, Lopes-Virella MF, Winocour PD, Halushka PV. New concepts about the pathogenesis of atherosclerosis in diabetes mellitus. In: Levin ME, O’Neal LW, eds. The Diabetic Foot, 4th ed. MosbyYear Book, St. Louis, MO, 1988, pp. 51–70.Google Scholar
  29. 29.
    Sekiguchi N, Umeda F, Masakado M, Ono Y, Hashimoto T, Nawata H. Immunohistochemical study of prostacyclin-stimulating factor (PSF) in the diabetic and atherosclerotic human coronary artery. Diabetes 1997;46:1627–1632.PubMedCrossRefGoogle Scholar
  30. 30.
    Umeda F, Masakado M, Takei A. Difference in serum-induced prostacyclin production by cultured aortic and capillary endothelial cells. Prostagl Leukot Essent Fatty Acids 1997;56:51–55.CrossRefGoogle Scholar
  31. 31.
    Colwell JA, Jokl R. Clotting disorders in diabetes. In: Porte D, Sherwin R, Rifkin H, eds. Diabetes Mellitus: Theory and Practice, 5th ed. Appleton and Lange, Norwalk, CT, 1997, pp. 1543–1557.Google Scholar
  32. 32.
    ColwellJA,WinocourPD,Lopes-VirellaMF.Plateletfunctionandplateletinteractionsinatherosclerosis and diabetes mellitus. In: Rifkin H, Porte D, eds. Diabetes Mellitus: Theory and Practice. Elsevier, New York, 1989, pp. 249–256.Google Scholar
  33. 33.
    Uedelhoven WM, Rutzel A, Meese CO, Weber PC. Smoking alters thromboxane metabolism in man. Biochem Biophys Acta 1991;1081:197–201.PubMedCrossRefGoogle Scholar
  34. 34.
    Davi G, Averna M, Catalano I, et al. Increased thromboxane biosynthesis in type Iia hypercholesterolemia. Circulation 1992;85:1792–1798.PubMedCrossRefGoogle Scholar
  35. 35.
    Di Minno G, Davi G, Margaglione M, et al. Abnormally high thromboxane biosynthesis in homozygoushomocystinuria: evidence for platelet involvement and probucol-sensitive mechanism. J Clin Invest 1993;92:1400–1406.PubMedCrossRefGoogle Scholar
  36. 36.
    Davi G, Gresele P, Violi F, et al. Diabetes mellitus, hypercholesterolemia and hypertension, but not vascular disease per se, are associated with persistent platelet activation in vivo. Evidence derived from the study of peripheral arterial disease. Circulation 1997;96:69–75.PubMedCrossRefGoogle Scholar
  37. 37.
    Takahashi K, Ghatei MA, Lam HC, O’ Halloran DJ, Bloom SR. Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia 1990;33:306–350.PubMedCrossRefGoogle Scholar
  38. 38.
    Shin SJ, Lee YJ, Tsai JH. The correlation of plasma and urine endothelin-1 with the severity of nephropathy in Chinese patients with type 2 diabetes. Scand J Clin Lab Invest 1996;56:571–576.PubMedCrossRefGoogle Scholar
  39. 39.
    Letizia C, Iannaccone A, Cerci S, et al. Circulating endothelin 1 in NIDDM with retinopathy. Horm Metab Res 1997;29:247–251.PubMedCrossRefGoogle Scholar
  40. 40.
    Guvener N, Aytemir K, Aksoyek S, Gedik O. Plasma endothelin-1 levels in non-insulin dependent diabetes mellitus patients with macrovascular disease. Coron Artery Disease 1997;8:253–258.CrossRefGoogle Scholar
  41. 41.
    Bertello P, Veglio F, Pinna G, et al. Plasma endothelin in NIDDM patients with and without complications. Diabetes Care 1994;17:574–577.PubMedCrossRefGoogle Scholar
  42. 42.
    Metsarinne K, Saijonmaa O, Yki-Jarvinen H, Fyhrquist F. Insulin increases the release of endothelin in endothelial cell cultures in vitro but not in vivo. Metabolism 1994;43:878–882.PubMedCrossRefGoogle Scholar
  43. 43.
    Hattori Y, Kasai K, Nakamura T, Emoto T, Shimoda S. Effects of glucose and insulin on immunoreactive endothelin-1 release from cultured porcine aortic endothelial cells. Metabolism 1991;40:165169.Google Scholar
  44. 44.
    Anfossi G, Cavalot F, Massucco P, et al. Insulin influences immunoreactive endothelin release by human vascular smooth muscle cells. Metabolism 1993;42:1081–1083.PubMedCrossRefGoogle Scholar
  45. 45.
    Ferri C, Bellini C, Desideri G, De Mattia G, Santucci A. Endogenous insulin modulates circulating endothelin-1 concentrations in humans. Diabetes Care 1996;19:504–506.PubMedCrossRefGoogle Scholar
  46. 46.
    Wolpert HA, Steen SN, Istfan NW, Simonsom DC. Insulin modulates circulating endothelin-1 levels in humans. Metabolism 1993;42:1027–1030.PubMedCrossRefGoogle Scholar
  47. 47.
    Piatti PM, Monti LD, Conti M, et al. Hypertriglyceridemia and hyperinsulinemia are potent inducers of endothelin-1 release in humans. Diabetes 1996;45:316–321.PubMedCrossRefGoogle Scholar
  48. 48.
    Katsumori K, Wasada T, Saeki A, Naruse M, Omori Y. Lack of acute insulin effect on plasma endothelin-1 levels in humans. Diabet Res Clin Pract 1996;32:187–189.CrossRefGoogle Scholar
  49. 49.
    Lip GY, Lann A. von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res 1997;34:255–265.PubMedCrossRefGoogle Scholar
  50. 50.
    Standl E, Balletshofer B, Dahl B, et al. Predictors of 10-year macrovascular and overall mortality in patients with NIDDM: the Munich General Practitioner Project. Diabetologia 1996;39:1540–1545.PubMedCrossRefGoogle Scholar
  51. 51.
    Stehouwer CD, Nauta JJ, Zeldenrust GC, Hackeng WH, Donker AJ. Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin dependent diabetes mellitus. Lancet 1992;340:319–323.PubMedCrossRefGoogle Scholar
  52. 52.
    Rasmussen O, Thomsen C, Ingerslev J, Hermansen K. Decrease in von Willebrand factor levels after a high-monounsaturated-fat diet in non-insulin dependent diabetic subjects. Metabolism 1994;43: 1406–1409.PubMedCrossRefGoogle Scholar
  53. 53.
    Thomsen C, Rasmussen OW, Ingerslev J, Hermansen K. Plasma levels of von Willebrand factor in non-insulin dependent diabetes mellitus are influenced by dietary monounsaturated fatty acids. Thromb Res 1995;77:347–356.PubMedCrossRefGoogle Scholar
  54. 54.
    Yang XD, Michie SA, Mebius RE, Tisch R, Weissman I, McDevitt HO. The role of cell adhesion molecules in the development of IDDM: implication for pathogenesis and therapy. Diabetes 1996;45: 705–710.PubMedCrossRefGoogle Scholar
  55. 55.
    Tschoepe D. Adhesion molecules influencing atherosclerosis. Diabetes Res Clin Pract 1996;30 (Suppl):19.PubMedCrossRefGoogle Scholar
  56. 56.
    Carter AM, Grant PJ. Vascular homeostasis, adhesion molecules, and macrovascular disease in noninsulin dependent diabetes mellitus. Diabetes Med 1997;14:423–432.CrossRefGoogle Scholar
  57. 57.
    De Meyer GR, Herman AG. Vascular endothelial dysfunction. Prog Cardiovasc Dis 1997;39:325–342.PubMedCrossRefGoogle Scholar
  58. 58.
    Cybulsky M, Gimbrone MA Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991;251:788–791.PubMedCrossRefGoogle Scholar
  59. 59.
    O’Brien KD, Allen MD, McDonald TO, et al. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. J Clin Invest 1993;92:945–951.PubMedCrossRefGoogle Scholar
  60. 60.
    Poston RN, Haskard DO, Croucher JR, Gall NP, Johnson-Tidey RR. Expression of intercellular adhesion molecule-1 in atherosclerotic plaques. Am J Pathol 1992;140:665–673.PubMedGoogle Scholar
  61. 61.
    Printeseva OY, Peclo MM, Gowen AM. Various cell types in human atherosclerotic lesions express ICAM-1: further immunocytochemical and immunochemical studies employing monoclonal antibody 10F3. Am J Pathol 1992;140:889–896.Google Scholar
  62. 62.
    van der Wal AC, Das PK, Tigges AJ, Becker AE. Adhesion molecules on the endothelium and mononuclear cells in human atherosclerotic lesions. Am J Pathol 1992;141:1427–1433.PubMedGoogle Scholar
  63. 63.
    Davies MJ, Gordon JL, Gearing AJ, et al. The expression of the adhesion molecules ICAM-1, VCAM1, PECAM, and E-selectin in human atherosclerosis. J Pathol 1993;171:223–229.PubMedCrossRefGoogle Scholar
  64. 64.
    Seth R, Raymond FD, Makgoba MW. Circulating ICAM-1 isoforms: diagnostic prospects for inflammatory and immune disorders. Lancet 1991;338:83–84.PubMedCrossRefGoogle Scholar
  65. 65.
    Pigott R, Dillon LP, Hemingway IH. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem Biophys Res Commun 1992;187:584–589.PubMedCrossRefGoogle Scholar
  66. 66.
    Gearing AJ, Hemingway I, Pigott R, Hughes J, Rees AJ, Cashman SJ. Soluble forms of vascular adhesion molecules, E-selectin, ICAM-1 and VCAM-1: pathological significance. Ann NY Acad Sci 1992;667:324–331.PubMedCrossRefGoogle Scholar
  67. 67.
    Lampeter ER, Kishimoto TK, Rothlein R, et al. Elevated levels of circulating adhesion molecules in IDDM patients and in subjects at risk for IDDM. Diabetes 1992;41:1668–1671.PubMedCrossRefGoogle Scholar
  68. 68.
    Steiner M, Reinhardt KM, Krammer B, Ernst B, Blann AD. Increased levels of soluble adhesion molecules in type 2 (non-insulin dependent) diabetes mellitus are independent of glycaemic control. Thromb Haemost 1994;72:979–984.PubMedGoogle Scholar
  69. 69.
    Otsuki M, Hashimoto K, Morimoto Y, Kishimoto T, Kasayama S. Circulating vascular cell adhesion molecule-1 (VCAM-1) in atherosclerotic NIDDM patients. Diabetes 1997;46:2096–2101.PubMedCrossRefGoogle Scholar
  70. 70.
    Cominacini L, Fratta Pasini A, Garbin U, et al. E-selectin plasma concentration is influenced by glycaemic control in NIDDM patients: possible role of oxidative stress. Diabetologia 1997;40:584589.Google Scholar
  71. 71.
    Cominacini L, Fratta Pasini A, Garbin U, et al. Elevated levels of soluble E-selectin in patients with IDDM and NIDDM: relation to metabolic control. Diabetologia 1995;38:1122–1124.PubMedCrossRefGoogle Scholar
  72. 72.
    Ceriello A, Falleti E, Bortolotti N, et al. Increased circulating intercellular adhesion molecule-1 levels in type II diabetic patients: the possible role of metabolic control and oxidative stress. Clin Exp Metab 1996;45:498–501.CrossRefGoogle Scholar
  73. 73.
    Vlassara H, Fuh H, Donnelly T, Cybulsky M. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM01) expression and atheroma formation in normal rabbits. Mol Med 1995; 1:447–456.PubMedGoogle Scholar
  74. 74.
    Virella G, Munoz Jose F, Galbraith Gillian MP, Gisinger C, Chassereau C, Virella MF. Activation of human monocyte-derived macrophages by immune complexes containing low density lipoprotein. Clin Immunol Immunopathol 1995;75:179–189.PubMedCrossRefGoogle Scholar
  75. 75.
    Beekhuizen H, van Furth R. Monocyte adherence to human vascular endothelium. Leuk Biol1993;54: 363–378.Google Scholar
  76. 76.
    Pohlman TH, Staness KA, Beatty, PG, Oehs HD, Harlan JM. An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1, and tumor necrosis factor a increases neutrophil adherence by a CDw18-dependent mechanism. J Immunol 1986;136:4548–4553.PubMedGoogle Scholar
  77. 77.
    Griffith RL, Virella GT, Stevenson HC, Lopes-Virella MF. LDL metabolism by macrophages activated with LDL immune complexes: a possible mechanism of foam cell formation. J Exp Med 1988; 168:1041–1059.PubMedCrossRefGoogle Scholar
  78. 78.
    Lopes-Virella MF, Griffith RL, Shunk KA, Virella GT. Enhanced uptake and impaired intracellular metabolism of low density lipoprotein complexed with anti-low density lipoprotein antibodies. Arterioscler Thromb 1991;11:1356–1367.PubMedCrossRefGoogle Scholar
  79. 79.
    Laakso M, Pyorala K. Lipid and lipoprotein abnormalities in diabetic patients with peripheral vascular disease. Atherosclerosis 1988;74:55–63.PubMedCrossRefGoogle Scholar
  80. 80.
    Lopes-Virella MF, Stone PG, Colwell JA. Serum high density lipoprotein in diabetes. Diabetologia 1977;13:285–291.PubMedCrossRefGoogle Scholar
  81. 81.
    Lopes-Virella MF, Wohltmann HJ, Mayfield RK, Laodholt CB, Colwell JA. Effect of metabolic control on lipid, lipoprotein and apolipoprotein levels in 55 insulin-dependent diabetic patients: a longitudinal study. Diabetes 1983;32:20–25.PubMedGoogle Scholar
  82. 82.
    Sosenko JM, Breslow JL, Miettinen OS, Gabbay KH. Hyperglycemia and plasma lipid levels: a prospective study of young insulin-dependent diabetic patients. N Engl J Med 1980;302:650–654.PubMedCrossRefGoogle Scholar
  83. 83.
    Joven J, Vilella E, Costa B, Turner PR, Richart C, Masana L. Concentrations of lipids and apolipoproteins in patients with clinically well-controlled insulin-dependent and non-insulin-dependent diabetes. Clin Chem 1989;35:813–816.PubMedGoogle Scholar
  84. 84.
    ReavenGM, Javorski WC, ReavenEP. Diabetichypertriglyceridemia. AmJMed Sci 1975;269:382–389.CrossRefGoogle Scholar
  85. 85.
    Uusitupa MI, Niskanen LK, Siitonen O, Voutilainen E, Pyorala K. 5-year incidence of atherosclerotic vascular disease in relation to general risk factors, insulin level, and abnormalities in lipoprotein composition in non-insulin-dependent diabetic and nondiabetic subjects. Circulation 1990;82:27–36.PubMedCrossRefGoogle Scholar
  86. 86.
    Nikkila EA. High density lipoproteins in diabetes. Diabetes 1981;30(Suppl2):82–87.PubMedGoogle Scholar
  87. 87.
    Kasim SE, Tseng K, Jen KL, Khilnani S. Significance of hepatic triglyceride lipase activity in the regulation of serum high density lipoproteins in type II diabetes mellitus. J Clin Endocrinol Metab 1987;65:183–187.PubMedCrossRefGoogle Scholar
  88. 88.
    Semenkovich CF, Ostlund RE Jr, Schechtman KB. Plasma lipids in patients with type I diabetes mellitus: influence of race, gender and plasma glucose control: lipids do not correlate with glucose control in black women. Arch Intern Med 1989;149:51–56.PubMedCrossRefGoogle Scholar
  89. 89.
    Wang-Iverson P, Ginsberg HN, Peteanu LA, Le NA, Brown WV. Apo E-mediated uptake and degradation of normal very low density lipoproteins by human monocyte/macrophages: a saturable pathway distinct from the LDL receptor. Biochem Biophys Res Commun 1985;126:578–586.PubMedCrossRefGoogle Scholar
  90. 90.
    Havel RJ, Chao Y, Windler EE, Kotite L, Guo LS. Isoprotein specificity in the hepatic uptake of apolipoprotein E and the pathogenesis of familial dysbetalipoproteinemia. Proc Natl Acad Sci USA 1980;77:4349–4353.CrossRefGoogle Scholar
  91. 91.
    Witztum JL, Fisher M, Pietro T, Steinbrecher UP, Elam RL. Nonenzymatic glucosylation of highdensity lipoprotein accelerates its catabolism in guinea pigs. Diabetes 1982;31:1029–1032.PubMedCrossRefGoogle Scholar
  92. 92.
    Klein RL, Lyons TJ, Lopes-Virella MF. Metabolism of very low and low density lipoproteins isolated from normolipidaemic type II (non-insulin dependent) diabetic patients by human monocyte-derived macrophages. Diabetologia 1990;33:299–305.PubMedCrossRefGoogle Scholar
  93. 93.
    Klein RL, Lyons TJ, Lopes-Virella MF. Interaction of VLDL isolated from type I diabetic subjects with human monocyte-derived macrophages. Metabolism 1989;38:1108–1114.PubMedCrossRefGoogle Scholar
  94. 94.
    Lopes-Virella MF, Sherer GK, Lees AM, et al. Surface binding, internalization and degradation by cultured human fibroblasts of low density lipoproteins isolated from type I (insulin-dependent) diabetic patients: changes with metabolic control. Diabetologia 1982;22:430–436.PubMedCrossRefGoogle Scholar
  95. 95.
    Hiramatsu K, Bierman EL, Chait A. Metabolism of LDL from patients with diabetic hypertriglyceridemia by cultured human skin fibroblasts. Diabetes 1985;34:8–14.PubMedCrossRefGoogle Scholar
  96. 96.
    Bagdade JD, Subbaiah PV. Whole-plasma and high-density lipoprotein subfraction surface lipid composition in IDDM men. Diabetes 1989;38:1226–1230.PubMedCrossRefGoogle Scholar
  97. 97.
    Bagdade JD, Buchanan WE, Kuusi T, Taskinen MR. Persistent abnormalities in lipoprotein composition in non-insulin dependent diabetes after intensive insulin therapy. Arteriosclerosis 1990;10:232239.Google Scholar
  98. 98.
    James RW, Pometta D. The distribution profiles of very low and low density lipoproteins in poorly controlled male, type II (non-insulin dependent) diabetic patients. Diabetologia 1991;34:246–252.PubMedCrossRefGoogle Scholar
  99. 99.
    James RW, Pometta D. Differences in lipoprotein subfraction composition and distribution between type I diabetic men and control subjects. Diabetes 1990;39:1158–1164.PubMedCrossRefGoogle Scholar
  100. 100.
    Bates SR, Rothblatt GH. Regulation of cellular sterol flux and synthesis by human serum lipoproteins. Biochim Biophys Acta 1974;360:38–55.PubMedCrossRefGoogle Scholar
  101. 101.
    Stein Y, Glangeaud MC, Fainaru M, Stein O. The removal of cholesterol from aortic smooth muscle cells in culture and Landschutz ascites cell fractions of human high density apoproteins. Biochem Biophys Acta 1975;380:106–118.PubMedCrossRefGoogle Scholar
  102. 102.
    Fielding CJ, Reaven GM, Fielding PE. Human non-insulin dependent diabetes: identification of a defect in plasma cholesterol transport normalized in vivo by insulin and in vitro by immunoabsorption of apolipoprotein E. Proc Natl Acad Sci USA 1982;79:6365–6369.CrossRefGoogle Scholar
  103. 103.
    Fielding CJ, Reaven GM, Liu G, Fielding PE. Increased free cholesterol in plasma low and very low density lipoproteins in non-insulin dependent diabetes mellitus: its role in the inhibition of cholesteryl ester transfer. Proc Natl Acad Sci USA 1984;81:2512–2516.PubMedCrossRefGoogle Scholar
  104. 104.
    Biesbroeck RC, Albers JJ, Wahl PW, Weinberg CR. Abnormal composition of high-density lipoproteins in non-insulin dependent diabetics. Diabetes 1982;31:126–131.PubMedGoogle Scholar
  105. 105.
    Uusitupa M, Siitonen O, Voutilainen E, et al. Serum lipids and lipoproteins in newly diagnosed noninsulin dependent (type II) diabetic patients, with special reference to factors influencing HDL-cholesterol and triglyceride levels. Diabetes Care 1986;9:17–22.PubMedCrossRefGoogle Scholar
  106. 106.
    Ronnemaa T, Laakso M, Kallio V, Pyorala K, Marniemi J, Puukka P. Serum lipids, lipoproteins, and apolipoproteins and the excessive occurrence of coronary heart disease in non-insulin-dependent diabetic patients. Am J Epidemiol 1989;130:632–645.PubMedGoogle Scholar
  107. 107.
    Ledl F, Schleicher E. New aspects of the Maillard reaction in foods and in the human body. Angew Chem (Int Ed Engl) 1990;29:565–594.CrossRefGoogle Scholar
  108. 108.
    Ahmed MU, Thorpe SR, Baynes JW. Identification of carboxymethyllysine as a degradation product of fructose-lysine in glycosylated protein. J Biol Chem 1986;261:4889–4994.PubMedGoogle Scholar
  109. 109.
    Sell DR, Monnier VM. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem 1989;264:21,597–21,602.Google Scholar
  110. 110.
    Hayase F, Nagaraj RH, Miyata S, Njoroge FG, Monnier VM. Aging of proteins: immunological detection of a glucose-derived pyrrole formed during Maillard reaction in vivo. J Biol Chem 1989;263:3758–3764.Google Scholar
  111. 111.
    Ienaga K, Nakamura K, Hochi T, et al. Crosslines, fluorophores in the AGE-related crosslinked proteins. Contrib Nephrol 1995;112:42–51.PubMedGoogle Scholar
  112. 112.
    Fu M-X, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe ST, B aynes J W. Glycation, glycoxidation and cross-linking of collagen by glucose. Kinetics, mechanisms and inhibition of late stages. Diabetes 1994;43:676–683.PubMedCrossRefGoogle Scholar
  113. 113.
    Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR. The advanced glycation endproduct, N (carboxymethyl) lysine (CML), is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem 1996;271:9982–9986.Google Scholar
  114. 114.
    Requena JR, Fu MX, Ahmed MU, et al. Quantitation of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human LDL. Biochem J 1997;322:317–325.PubMedGoogle Scholar
  115. 115.
    Requena JR, Ahmed MU, Fountain CW, et al. N-(carboxymethyl) ethanolamine: a biomarker of phospholipid modification by the Maillard reaction in vivo. J Biol Chem 1997;272:17,473–17,479.Google Scholar
  116. 116.
    Pushkarsky T, Rourke L, Spiegel LA, Seldin MF, Bucala R. Molecular characterization of a mouse genomic element mobilized by advanced glycation endproduct modified-DNA (AGE-DNA). Mol Med 1997;3:740–749.PubMedGoogle Scholar
  117. 117.
    Schleicher E, Deufel T, Wieland OH. Non-enzymatic glycation of human serum lipoproteins. FEBS Lett 1987;129:1–4.CrossRefGoogle Scholar
  118. 118.
    Lyons TJ, Patrick JS, Baynes JW, Colwell JA, Lopes-Virella MF. Glycation of low density lipoprotein in patients with type 1 diabetes: correlations with other parameters of glycemic control. Diabetologia 1986;29:685–689.PubMedCrossRefGoogle Scholar
  119. 119.
    Pietri A, Dunn FL, Raskin P. The effect of improved diabetic control on plasma lipid and lipoprotein levels. A comparison of conventional therapy and subcutaneous insulin infusion. Diabetes 1980;29: 1001–1005.PubMedCrossRefGoogle Scholar
  120. 120.
    Abrams JJ, Ginsberg H, Grundy SM. Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus. Diabetes 1982;31:903–910.PubMedCrossRefGoogle Scholar
  121. 121.
    Dunn FL, Raskin P, Bilheimer DW. The effect of diabetic control on very low density lipoproteintriglyceride metabolism in patients with type II diabetes mellitus and marked hypertriglyceridemia. Metabolism 1984;33:117–123.PubMedCrossRefGoogle Scholar
  122. 122.
    Weisgraber KH, Innerarity TL, Mahley RW. Role of the lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J Biol Chem 1978;253:9053–9062.PubMedGoogle Scholar
  123. 123.
    Gonen B, Baenziger J, Schonfeld G, Jacobsen D, Farrar P. Non-enzymatic glycation of low-density lipoproteins in vitro. Diabetes 1981;30:875–878.PubMedCrossRefGoogle Scholar
  124. 124.
    Sasaki J, Cottam GL. Glycation of LDL decreases its ability to interact with high-affinity receptors of human fibroblasts in vitro and decreases its clearance from rabbit plasma in vivo. Biochim Biophys Acta 1982;713:199–207.PubMedCrossRefGoogle Scholar
  125. 125.
    Steinbrecher UP, Witztum JL. Glucosylation of low density lipoproteins to an extent comparable to that seen in diabetes slows their catabolism. Diabetes 1984;33:130–134.PubMedCrossRefGoogle Scholar
  126. 126.
    Lopes-Virella MF, Klein RL, Lyons TJ, Stevenson HC, Witztum JL. Glycation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes 1988; 37:550–557.PubMedCrossRefGoogle Scholar
  127. 127.
    Klein RL, Laimins M, Lopes-Virella MF. Isolation, characterization and metabolism of the glycated and non-glycated subfractions of low density lipoproteins isolated from type I diabetic patients and non-diabetic subjects. Diabetes 1995;44:1093–1098.PubMedCrossRefGoogle Scholar
  128. 128.
    Watanabe J, Wohltmann HJ, Klein RL, Colwell JA, Lopes-Virella MF. Enhancement of platelet aggregation by low density lipoproteins from IDDM patients. Diabetes 1988;37:1652–1657.PubMedCrossRefGoogle Scholar
  129. 129.
    Hunt JV, Smith CCT, Wolff SP. Autooxidative glycation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 1990;39:1420–1424.PubMedCrossRefGoogle Scholar
  130. 130.
    Kawamura M, Heinecke JW, Chait A. Pathophysiological concentrations of glucose promote oxidative modification of LDL by a superoxide-dependent pathway. J Clin Invest 1994;94:771–778.PubMedCrossRefGoogle Scholar
  131. 131.
    Gillery P, Monboisse JC, Maquart FX, Borel JP. Glycation of proteins as a source of superoxide. Diabetes et Metabolisme 1988;14:25–30.Google Scholar
  132. 132.
    Mullarkey CJ, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 1990;173:932–939.PubMedCrossRefGoogle Scholar
  133. 133.
    Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes 1985;34:938–941.PubMedCrossRefGoogle Scholar
  134. 134.
    Tsai EC, Hirsch IB, Brunzell JD, Chait A. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes 1994;43:1010–1014.PubMedCrossRefGoogle Scholar
  135. 135.
    Jenkins AJ, Klein RL, Chassereau CN, Hermayer KL, Lopes-Virella MF. LDL from patients with wellcontrolled IDDM is not more susceptible to in vitro oxidation. Diabetes 1996;45:762–767.PubMedCrossRefGoogle Scholar
  136. 136.
    Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 1988;241:215–218.PubMedCrossRefGoogle Scholar
  137. 137.
    Rosenfeld ME, Palinski W, Yla-Herttula S, Butler S, Witztum JL. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis 1990;10:336–349.PubMedCrossRefGoogle Scholar
  138. 138.
    Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 1987;84:7725–7729.PubMedCrossRefGoogle Scholar
  139. 139.
    Palinski W, Koschinsky T, Butler S, et al. Immunological evidence for the presence of AGE in atherosclerotic lesions of euglycemic rabbits. Arterioscler Thromb Vasc Biol 1995;15:571–582.PubMedCrossRefGoogle Scholar
  140. 140.
    Regnstrom J, Nilsson J, Tornvall P, Landou C, Hamsten A. Susceptibility to LDL oxidation and coronary atherosclerosis in man. Lancet 1991;339:1183–1186.CrossRefGoogle Scholar
  141. 141.
    Chiu HC, Jeng JR, Shieh SM. Increased oxidizability of plasma LDL from patients with coronary heart disease. Biochim Biophys Acta 1994;225:200–208.Google Scholar
  142. 142.
    Andrews B, Burnand K, Paganga G, et al. Oxidizability of LDL in patients with carotid or femoral artery atherosclerosis. Atherosclerosis 1995;112:77–84.PubMedCrossRefGoogle Scholar
  143. 143.
    Penn MS, Chisolm GM. Oxidized lipoproteins, altered cell function and atherosclerosis. Atherosclerosis 1994;108:S21–S29.CrossRefGoogle Scholar
  144. 144.
    Nagano Y, Arai H, Kita T. High density lipoprotein loses its effect to stimulate efflux of cholesterol from foam cells after oxidative modification. Proc Natl Acad Sci USA 1991;88:6457–6461.PubMedCrossRefGoogle Scholar
  145. 145.
    Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci USA 1992;89:10,316–10,320.Google Scholar
  146. 146.
    Salonen JT. Is there a continuing need for longitudinal epidemiologic research the Kuopio Ischaemic Heart Disease Risk Factor Study. Ann Clin Res 1988;20:46–50.PubMedGoogle Scholar
  147. 147.
    Maggi E, Chiesa R, Melissano G, et al. LDL oxidation in patients with severe carotid atherosclerosis. Arterioscler Thromb 1994;14:1892–1899.PubMedCrossRefGoogle Scholar
  148. 148.
    Salonen JT, Yla-Herttuala S, Yamamoto R, et al. Autoantibody against oxidized LDL and progression of carotid atherosclerosis. Lancet 1992;339:883–887.PubMedCrossRefGoogle Scholar
  149. 149.
    Mironova M, Virella G, Lopes-Virella MF. Isolation and characterization in human antibodies against oxidized LDL. FASEB J 1995;9:A1030.Google Scholar
  150. 150.
    Szondy E, Lengyel E, Mezey Z, Fust, Gero S. Occurrence of anti-low-density lipoprotein antibodies and circulating immune complexes in aged subjects. Mech Aging Dev 1985;29:117–123.PubMedCrossRefGoogle Scholar
  151. 151.
    Tertov VV, Orekhov AN, Kacharava AG, Sobenin IA, Perova NV, Smirnov VN. Low density lipoprotein-containing circulating immune complexes and coronary atherosclerosis. Exp Mol Pathol1990;52: 300–308.Google Scholar
  152. 152.
    Gisinger C, Virella GT, Lopes-Virella MF. Erythrocyte-bound low density lipoprotein (LDL) immune complexes lead to cholesteryl ester accumulation in human monocyte derived macrophages. Clin Immunol Immunopathol 1991; 59: 3 7–52.Google Scholar
  153. 153.
    Lopes-Virella MF, BinZafar N, Rackley S, Takei A, LaVia M, Virella G. The uptake of LDL-IC by human macrophages: predominant involvement of the FcγR I. Atherosclerosis 1997;135:161–170.PubMedCrossRefGoogle Scholar
  154. 154.
    Huang Y, Ghosh MJ, Lopes-Virella MF. Transcriptional and post-transcriptional regulation of LDL receptor gene expression in PMA-treated THP-1 cells by LDL-containing immune complexes. J Lipid Res 1997;38:110–120.PubMedGoogle Scholar
  155. 155.
    Vlassara H, Brownlee M, Manogue KR, Dinarello CA, Pasagian A. Cachectin/TNF and IL-l induced by glucose-modified proteins: role in normal tissue remodeling. Science 1988;240:1546–1548.PubMedCrossRefGoogle Scholar
  156. 156.
    Vlassara H, Brownlee M, Cerami A. Novel macrophage receptor for glucose-modified proteins is distinct from previously described scavenger receptors. J Exp Med 1986;164:1301–1309.PubMedCrossRefGoogle Scholar
  157. 157.
    Vlassara H, Valinsky J, Brownlee M, Cerami C, Nishimoto S, Cerami A. Advanced glycosylation end products on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages. A model for turnover of aging cells. J Exp Med 1987;166:539–549.PubMedCrossRefGoogle Scholar
  158. 158.
    Chou YK, Sherwood T, Virella G. Erythrocyte-bound immune complexes trigger the release of interleukin-1 from human monocytes. Cell Immunol 1985;91:308–314.PubMedCrossRefGoogle Scholar
  159. 159.
    Virella G, Muñoz JF, Galbraith GMP, Gissinger C, Chassereau C, Lopes-Virella MF. Activation of human monocyte-derived macrophages by immune complexes containing low density lipoprotein. Clin Immunol Immunopathol 1995 ;75:179–189.Google Scholar
  160. 160.
    Bevilacqua MP, Pober JS, Majeau GR, Cotran RS, Gimbrone MA Jr. Interleukin 1 induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med 1984;160:618–623.PubMedCrossRefGoogle Scholar
  161. 161.
    Breviario F, Bertocchi F, Dejana E, Bussolino F. IL- 1 induced adhesion of polymorphonuclear leukocytes to cultured human endothelial cells. Role of platelet-activating factor. J Immunol1988;141:33913397.Google Scholar
  162. 162.
    Martin S, Maruta K, Burkart V, Gillis S, Kolb H. IL- 1 and INF-γincrease vascular permeability. Immunology 1988;64:301–305.PubMedGoogle Scholar
  163. 163.
    Warner SJC, Auger KR, Libby P. Interleukin 1 induces interleukin 1. II. Recombinant human interleukin 1 induces interleukin 1 production by adult human vascular endothelial cells. J Immunol 1987; 139:1911–1917.PubMedGoogle Scholar
  164. 164.
    Raines EW, Dower SK, Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 1989;243:393–396.PubMedCrossRefGoogle Scholar
  165. 165.
    Hansson GK, Jonasson L, Seifert PS, Stemme S. Immune mechanisms in atherosclerosis. Arteriosclerosis 1989;9:567–578.PubMedCrossRefGoogle Scholar
  166. 166.
    Nawroth PP, Bank I, Hadley D, Cassimeris J, Chess L, Stern D. Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1. J Exp Med 1986;165:1363–1375.CrossRefGoogle Scholar
  167. 167.
    Kilpatrick JM, Hyman B, Virella G. Human endothelial cell damage induced by interactions between polymorphonuclear leukocytes and immune complex-coated erythrocytes. Clin Immunol Immunopathol 1987;44:335–347.PubMedCrossRefGoogle Scholar
  168. 168.
    Stevenson HC, Dekaban GA, Miller PJ, Benyajati C, Pearson ML. Analysis of human blood monocyte activation at the level of gene expression. J Exp Med 1985;161:503–513.PubMedCrossRefGoogle Scholar
  169. 169.
    Nathan CF, Murray HW, Cohn ZA. Current concepts: the macrophage as an effector cell. N Engl J Med 1980;303:622–626.PubMedCrossRefGoogle Scholar
  170. 170.
    Ross R, Masuda J, Raines EW, et al. Localization of PDGF-b protein in macrophages in all phases of atherogenesis. Science 1990;248:1009–1012.PubMedCrossRefGoogle Scholar
  171. 171.
    Assoian RK, Fleurdelys BE, Stevenson HC, et al. Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci USA 1987;84:6020–6024.PubMedCrossRefGoogle Scholar
  172. 172.
    Ferreri NR, Howland WC, Spiegelberg HL. Release of leukotrienes C4 and B4 and prostaglandin E2 fromhuman monocytes stimulated with aggregated IgG, IgA, and IgE. J Immunol1986;136:4188–4193.Google Scholar
  173. 173.
    Musson RA, Shafran H, Henson PM. Intracellular levels and stimulated release of lysosomal enzymes from human peripheral blood monocytes and monocyte-derived macrophages. J Reticuloendothelial Soc 1980;28:249–264.Google Scholar
  174. 174.
    Werb Z, Bonda MJ, Jones PA. Degradation of connective tissue matrices by macrophages: I. Proteolysis of elastin, glycoproteins, and collagens by proteinases isolated from macrophages. J Exp Med 1980; 152:1340–1357.PubMedCrossRefGoogle Scholar
  175. 175.
    Nakagawara A, Nathan CF, Cohn ZA. Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J Clin Invest 1981;68:1243–1252.PubMedCrossRefGoogle Scholar
  176. 176.
    Falk E. Why do plaques rupture? Circulation 1992;86(Suppl III):III-30–III-42.Google Scholar
  177. 177.
    Giroud D, Li JM, Urban P, Meier B, Rutishauser W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol 1992;69:729–732.PubMedCrossRefGoogle Scholar
  178. 178.
    Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-moderate coronary artery disease? Circulation 1988;78:1157–1166.PubMedCrossRefGoogle Scholar
  179. 179.
    Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995;91:2844–2850.PubMedCrossRefGoogle Scholar
  180. 180.
    Amento EP, Ehsani N, Palmer H, Libby L. Cytokine positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 1991;11:12231230.Google Scholar
  181. 181.
    Hansson GK, Holm J, Jonas son L. Detection of activated T lympohocytes in the human atherosclerotic plaques. Am J Pathol 1989;135:169–175.PubMedGoogle Scholar
  182. 182.
    van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89:36–44.PubMedCrossRefGoogle Scholar
  183. 183.
    Fuster V, Lewis A. Conner Memorial Lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 1994;90:2126–2146.PubMedCrossRefGoogle Scholar
  184. 184.
    Morton LF, Barnes MJ. Collagen polymorphism in the normal and diseased blood vessel wall. Investigation of collagens types I, III and V. Atherosclerosis 1982;42:41–51.PubMedCrossRefGoogle Scholar
  185. 185.
    Hanson AN, Bentley JP. Quantitation of type I to type III collagen ratios in small samples of human tendon, blood vessels, and atherosclerotic plaques. Anal Biochem 1983;130:32–40.PubMedCrossRefGoogle Scholar
  186. 186.
    Matrisian LM. The matrix-degrading metalloproteinases. Bioessays 1992;14:455–463.PubMedCrossRefGoogle Scholar
  187. 187.
    Sukhova G, Schoenbeck U, Rabkin E, et al. Colocalization of the interstitial collagenase MMP-1 & MMP-13 with sites of cleaved collagen indicates their role in plaque destabilization. Circulation 1998;98(Suppl):I–48.Google Scholar
  188. 188.
    Huang Y, Mironova M, Lopes-Virella MF. Oxidized LDL stimulates matrix metalloproteinase 1 expression in human vascular endothelial cells. Arterioscler Thromb Vasc Biol 1999;19:2640–2647.PubMedCrossRefGoogle Scholar
  189. 189.
    Colwell JA, Halushka PV. Platelet function in diabetes mellitus. Br J Haematol 1980;44:521–526.PubMedCrossRefGoogle Scholar
  190. 190.
    Colwell JA. Antiplatelet drugs and prevention of macrovascular disease in diabetes mellitus. Metabolism 1992;41(Suppl 1):7–10.PubMedCrossRefGoogle Scholar
  191. 191.
    Stringer HA, van Swieten P, Heijnen HF, Sixma JJ, Pannekoek H. Plasminogen activator inhibitor1 released from activated platelets plays a key role in thrombolysis resistance. Studies with thrombi generated in the Chandler loop. Arterioscler Thromb 1994;14:1452–1458.PubMedCrossRefGoogle Scholar
  192. 192.
    Jokl R, Laimins M, Klein RL, Lyons TJ, Lopes-Virella MF, Colwell JA. Platelet plasminogen activator inhibitor 1 in patients with type II diabetes. Diabetes Care 1994;17:818–823.PubMedCrossRefGoogle Scholar
  193. 193.
    Jokl R, Klein RL, Lopes-Virella MF, Colwell JA. Release of platelet plasminogen activator inhibitor 1 in whole blood is increased in patients with type II diabetes. Diabetes Care 1995;18:1150–1155.PubMedCrossRefGoogle Scholar
  194. 194.
    Loscalzo J. The relation between atherosclerosis and thrombosis. Circulation 1992;86(Suppl III):95–99.Google Scholar
  195. 195.
    Fuller JH. Haemostatic variables associated with diabetes and its complications. BMJ 1979;2:964966.Google Scholar
  196. 196.
    Kannel WB, Wolf PA, Castelli WP, D’ Agostino RB. Fibrinogen and risk of cardiovascular disease: the Framingham study. JAMA 1987;258:1183–1186.PubMedCrossRefGoogle Scholar
  197. 197.
    Wilhelmsen L, Svardsudd K, Korsan-Bengtsen K, Larsson B, Welin L, Tibblin G. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 1984;311:501–505.PubMedCrossRefGoogle Scholar
  198. 198.
    Jones RL, Peterson CM. Reduced fibrinogen survival in diabetes mellitus. J Clin Invest 1979;63:485493.Google Scholar
  199. 199.
    Jones RL, Jovanovic L, Forman S, Peterson CM. Time course of reversibility of accelerated fibrinogen disappearance in diabetes mellitus: association with intravascular volume shifts. Blood 1984;63:22–30.PubMedGoogle Scholar
  200. 200.
    Ostermann H, van de Loo J. Factors of the haemostatic system in diabetic patients: a survey of controlled studies. Haemostasis 1986;16:386–416.PubMedGoogle Scholar
  201. 201.
    De Feo P, Gaisano MG, Haymond MW. Differential effects of insulin deficiency on albumin and fibrinogen synthesis in humans. J Clin Invest 1991;88:833–840.PubMedCrossRefGoogle Scholar
  202. 202.
    Hornsby WG, Boggess KA, Lyons TJ, Barnwell WH, LazarchickJ, Colwell JA. Hemostatic alterations with exercise conditioning in NIDDM. Diabetes Care 1990;13:87–92.PubMedCrossRefGoogle Scholar
  203. 203.
    Jones RL. Fibrinopeptide-A in diabetes mellitus. Diabetes 1985;34:836–843.PubMedCrossRefGoogle Scholar
  204. 204.
    RosoveMH,FrankHJL,HarwingSSL.Plasmabeta-thromboglobulin,plateletfactor4,fibrinopeptide A, and other hemostatic functions during improved, short-term glycemic control in diabetes mellitus. Diabetes Care 1984;7:174–179.CrossRefGoogle Scholar
  205. 205.
    Ford I, Singh TP, Kitchen S, Makris M, Ward JD, Preston FE. Activation of coagulation in diabetes mellitus in relation to the presence of vascular complications. Diabetic Med 1991;8:322–329.PubMedCrossRefGoogle Scholar
  206. 206.
    Marmur JD, Merlini PA, Sharma S, et al. Thrombin generation in human coronary arteries after percutaneous transluminal balloon angioplasty. J Am Coll Cardiol 1994;24:1484–1491.PubMedCrossRefGoogle Scholar
  207. 207.
    LeursPB,vanOerleR,WolffenbuttelBH,HamulyakK.Increasedtissuefactorpathwayinhibitor(TFPI) and coagulation in patients with insulin-dependent diabetes mellitus. Thromb Haemost 1997;77:472476.Google Scholar
  208. 208.
    Ceriello A, Giugliano D, Quatraro A, et al. Induced hyperglycemia alters antithrombin III activity but not plasma concentration in healthy normal subjects. Diabetes 1987;36:320–323.PubMedCrossRefGoogle Scholar
  209. 209.
    Ceriello A, Giugliano D, Quatraro A, Marchi E, Barbanti M, Lefebvre P. Evidence for a hyperglycemia-dependent decrease of antithrombin complex formation in humans. Diabetologia 1990;33:163–167.PubMedCrossRefGoogle Scholar
  210. 210.
    Brownlee M, Vlassara H, Cerami A. Inhibition of heparin-catalyzed antithrombin III activity by nonenzymatic glycosylation: possible role in fibrin deposition in diabetes. Diabetes 1984;33:532–535.PubMedCrossRefGoogle Scholar
  211. 211.
    Ceriello A, Giugliano D, Quatraro A, et al. Daily rapid blood glucose variations may condition antithrombin biological activity but not its plasma concentration in insulin dependent diabetes: a possible role for labile non-enzymatic glycation. Diabetes Metab 1987;13:16–19.Google Scholar
  212. 212.
    Vukovich TC, Schernthaner G. Decreased protein C levels in patients with insulin-dependent type I diabetes mellitus. Diabetes 1986;35:617–619.PubMedCrossRefGoogle Scholar
  213. 213.
    Ridker PM, Vaughan DE, StampferMJ, Manson JE, Hennekens CH. Endogenous tissue-type activator and risk of myocardial infarction. Lancet 1993;341:1165–1168.PubMedCrossRefGoogle Scholar
  214. 214.
    Ridker PM, Hennekens CH, Stampfer MJ, Manson JE, Vaughan DE. Prospective study of endogenous tissue plasminogen activator and risk of stroke. Lancet 1994;343:940–943.PubMedCrossRefGoogle Scholar
  215. 215.
    JanssonJH,OlofssonBO,NilssonTKPredictivevalueoftissueplasminogenactivatormassconcentration on long-term mortality in patients with coronary artery disease. Circulation 1993;88:2030–2034.CrossRefGoogle Scholar
  216. 216.
    Garcia Frade LJ, de la Calle H, Torrado MC, Lara JI, Cuellar L, Garcia Avello A. Hypofibrinolysis associated with vasculopathy in non-insulin dependent diabetes mellitus. Thromb Res 1990;59:51–59.CrossRefGoogle Scholar
  217. 217.
    Huber K, Jorg M, Probst P, et al. A decrease in plasminogen activator inhibitor-1 activity after successful percutaneous transluminal coronary angioplasty is associated with a significantly reduced risk for coronary restenosis. Thromb Haemost 1992;67:209–213.PubMedGoogle Scholar
  218. 218.
    Gray RP, Patterson DLH, Yudkin JS. Plasminogen activator inhibitor activity in diabetic and nondiabetic survivors of myocardial infarction. Arteriosclerosis 1993;13:415–420.CrossRefGoogle Scholar
  219. 219.
    Suminski R, DaSilva S, Smith M, Erbey L. Plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator-plasminogen activator inhibitor-1 (tPA-PAI-1) in IDDM: profile by complications. Diabetes 1994;43(Suppl 1):197A.Google Scholar
  220. 220.
    Gruden G, Cavallo-Perin P, Bazzan M, Stella S, Vuolo A, Pagano G. PAI-1 and factor VII activity are higher in IDDM patients with microalbuminuria. Diabetes 1994;43:426–429.PubMedCrossRefGoogle Scholar
  221. 221.
    Alessi MC, Juhan-Vague I, Kooistra T, Declerck PJ, Collen D. Insulin stimulates the synthesis of plasminogen activator 1 by hepatocellular cell line Hep G2. Thromb Haemost 1988;60:491–494.PubMedGoogle Scholar
  222. 222.
    Grant PJ, Ruegg M, Medcalf RL. Basal expression and insulin-mediated induction of PAI-1 mRNA in Hep G2 cells. Fibrinolysis 1991;5:81–86.Google Scholar
  223. 223.
    Juhan-Vague I, Vague P, Poisson C, Aillaud MF, Mendez C, Collen D. Effect of 24 hours of normoglycemia on tissue-type plasminogen activator plasma levels in insulin-dependent diabetes. Thromb Haemost 1984;51:97–98.PubMedGoogle Scholar
  224. 224.
    Vague P. Insulin and the fibrinolytic system. IDF Bull 1991;36:15–17.Google Scholar
  225. 225.
    Booyse FM, Bruce R, Gianturco SH, Bradley WA. Normal but not hypertriglyceridemic very lowdensity lipoprotein induces rapid release of tissue plasminogen activator from cultured human umbilical vein endothelial cells. Semin Thromb Hemost 1988;14:175–179.PubMedCrossRefGoogle Scholar
  226. 226.
    Stiko-Rahm A, Wiman B, Hamsten A, Nilsson J. Secretion of plasminogen activator inhibitor 1 from cultured human umbilical vein endothelial cells is induced by very low density lipoprotein. Arteriosclerosis 1990;10:1067–1073.PubMedCrossRefGoogle Scholar
  227. 227.
    Brommer EJ, Gevers Leuven JA, Barrett-Bergshoeff MM. Response of fibrinolytic activity and factor VIII-related antigen to stimulation with desmopressin in hyperlipoproteinemia. J Lab Clin Med 1982; 100:105–114.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Maria F. Lopes-Virella

There are no affiliations available

Personalised recommendations