Skip to main content

Part of the book series: Nutrition ◊ and ◊ Health ((NH))

Abstract

Few entirely satisfactory laboratory methods have been established for the clinical evaluation of the status of most trace elements or minerals in humans. Measurements of metalloenzyme activities have been proposed as useful assessment tests because plasma or serum trace metal concentrations are often affected by factors not related to the whole-body mineral element status. A simultaneous battery of tests involving body tissue or fluid elemental determinations, metalloenzyme assays, and functional-morphological indices provides the most reliable assessment of mineral element status. However, in a clinical diagnostic setting it is most practical to assess trace mineral status by analysis of a single blood specimen. The use of hair mineral content as an indicator of status is somewhat limited. Whereas low metal concentration in hair may be indicative of metal depletion, “normal” or high amounts do not necessarily preclude depletion or indicate toxic amounts (1), because of hair’ s susceptibility to environmental contamination and other problems. Further investigations are needed to establish the clinical value of whole blood, platelet, leukocyte, erythrocyte, saliva, skin, and fingernail analyses as indices of trace mineral nutriture.

Mention of a trademark or proprietary product does not constitute a guarantee of warranty of the product by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.

U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area is an equal opportunity/affirmative action employer and all agency services are available without discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klevay LM, Bistran BR, Flemming CR, Newman CG. Hair analysis in clinical and experimental medicine. Am J Clin Nutr 1987; 46: 233–236.

    PubMed  CAS  Google Scholar 

  2. Sunderman FW, Jr. Atomic absorption spectrometry of trace metals in clinical pathology. Hum Pathol 1973; 4: 549.

    Article  PubMed  Google Scholar 

  3. Sunderman FW, Jr. Electrothermal atomic absorption spectrometry of trace metals in biological fluids. Ann Clin Lab Sci 1975; 5: 421.

    PubMed  CAS  Google Scholar 

  4. Abercrombie FN, Silvester MD, Cruz RB. Simultaneous multielement analysis of biologically related samples with RF—ICP in Ultratrace Metal Analysis. In: Risby TH, ed. Biological Sciences and Environment. American Chemical Society, Washington, DC, 1979,pp. 10–26

    Google Scholar 

  5. Chaudhri MA, Hannaker P. Reliability of the ICP—AES for trace elements studies of biological materials. Biol Trace Elem Res 1987; 13: 417.

    Article  CAS  Google Scholar 

  6. Kragh-Hansen U, Vorum H. Quantitative analysis of the interaction between calcium ions and human serum albumin. Clin Chem 1993; 39: 202–208.

    PubMed  CAS  Google Scholar 

  7. National Committee for Clinical Laboratory Standards. Status of Certified Reference Materials Definitive Methods and Reference Methods for Analytes. National Reference for the Clinical Laboratory 7CR, Villanova, PA, 1985.

    Google Scholar 

  8. Bowers GN, Jr, Rains TC. Measurement of total calcium in biological fluids: Flame atomic absorption spectrometry. Methods Enzymol 1988; 158: 302–319.

    Article  PubMed  CAS  Google Scholar 

  9. Garber CC, Miller RC. Revision of the 1963 semidine HCL standard method for phosphorous. Clin Chem 1983; 29: 184–188.

    PubMed  CAS  Google Scholar 

  10. Shils ME. Magnesium. In: Ziegler EE, Filer LJ, Jr Eds. Present Knowledge in Nutrition, 7th ed. ILSI Press, Washington, DC, 1996,pp. 256–264.

    Google Scholar 

  11. Ryan MF. The role of magnesium in clinical biochemistry: an overview. Ann Clin Biochem 1991; 28: 19–26.

    PubMed  Google Scholar 

  12. Elfin RJ. Assessment of magnesium status. Clin Chem 1987; 33: 1965–1970.

    Google Scholar 

  13. Altura BT, Altura BM. A method for distinguishing ionized complexed and protein-bound Mg in normal and diseased subjects. Scand J Clin Lab Invest 1994; 54 (Suppl 217): 83–87.

    Article  CAS  Google Scholar 

  14. Elfin RJ. Magnesium: the fifth but forgotten electrolyte. Am J Clin Pathol 1994; 102: 616–622.

    Google Scholar 

  15. Elfin RJ. Status of the mononuclear blood cell magnesium assay. J Am Coll Nutr 1987; 6: 105–107.

    Google Scholar 

  16. Cohen L, Kitzes R. Magnesium and digitalis-toxic arrhythmias. J Am Med Assoc 1983; 249: 2808–2810.

    Article  CAS  Google Scholar 

  17. Darin P, Rao DC, Henrotte JG, Lalouel JM. Genetic regulation of plasma and red blood cell magnesium concentration in man. I. Univariant and bivariant path analyses. Am J Hum Genet 1982; 34: 874–887.

    Google Scholar 

  18. Stocker BJ. Chromium. In: Ziegler EE, Filer LJ, Jr, Eds. Present Knowledge in Nutrition, 7th ed. ILSI Press, Washington, DC, 1996,pp. 344–352.

    Google Scholar 

  19. Anderson RA. Recent advances in the role of chromium in human health and disease. In: Prasad AS, ed. Essential and toxic trace elements in human health and disease. Alan R. Liss, New York 1988,pp. 189–197.

    Google Scholar 

  20. Milne DB. Trace elements. In: Burtis CA, Ashwood ER, eds. Tietz Textbook of Clinical Chemistry, 2nd ed. WB Saunders, Philadelphia, PA, 1994,pp. 1317–1353.

    Google Scholar 

  21. Danks DM. Copper deficiency in humans. Ann Rev Nutr 1988; 8: 235–257.

    Article  CAS  Google Scholar 

  22. O’Dell BL. Copper. In: Brown ML, ed. Present Knowledge in Nutrition, 6th ed. ILSI, Washington, DC, l99O,pp. 261–267.

    Google Scholar 

  23. Strain JJ. Newer aspects of micronutrients in chronic disease: copper. Proc Nutr Soc 1994; 53: 583–598.

    Article  PubMed  CAS  Google Scholar 

  24. Linder MC. Copper. In: Ziegler EE, Filer LJ, eds. Present Knowledge in Nutrition, 7th ed. ILSI, Washington, DC, 1996,pp. 307–319.

    Google Scholar 

  25. Milne DB. Assessment of copper nutritional status. Clin Chem 1994; 40: 1479–1484.

    PubMed  CAS  Google Scholar 

  26. Milne DB Johnson PE, Klevay LM, Sandstead HH. Effect of copper intake on balance absorption and status indices of copper in men. Nutr Res 1990; 10: 975–986.

    Article  Google Scholar 

  27. Milne DB, Johnson PE. Assessment of copper status: effect of age and gender on reference ranges in healthy adults. Clin Chem 1993; 39: 883–887.

    PubMed  CAS  Google Scholar 

  28. Solomons NW. On the assessment of zinc and copper nutriture in man. Am J Clin Nutr 1979; 32: 856–871.

    PubMed  CAS  Google Scholar 

  29. Versieck J, Barbier F, Speecke A, Hoste J. Influence of myocardial infarction on serum manganese, copper, and zinc concentrations. Clin Chem 1975; 21: 578–581.

    PubMed  CAS  Google Scholar 

  30. Oster O. Trace element concentrations (Cu, Zn, Fe) in sera from patients with dilated cardiomyopathy. Clin Chim Acta 1993; 214: 209–218.

    Article  PubMed  CAS  Google Scholar 

  31. Milne DB. Copper intake and assessment of copper status. Am J Clin Nutr 1998; 67: 10415–10455.

    Google Scholar 

  32. Milne DB, Klevay LM, Hunt JR. Effects of ascorbic acid supplements and a diet marginal in copper on indices of copper nutriture in women. Nutr Res 1988; 8: 865–873.

    Article  CAS  Google Scholar 

  33. Lukaski HC, Klevay LM, Milne DB. Effects of copper on human autonomic cardiovascular function. Eur J Appl Physiol 1988; 58: 74–80.

    Article  CAS  Google Scholar 

  34. Lukaski HC, Hoverson BS, Gallagher S, Bolonchuk WW. Physical training and copper, iron, and zinc status of swimmers. Am J Clin Nutr 1990; 51: 1093–1099.

    PubMed  CAS  Google Scholar 

  35. Flohé L and Ötting F. Superoxide dismutase assays. Methods in Enzymology 1984; 105: 93–104.

    Article  PubMed  Google Scholar 

  36. Marklund S, Marklund G. Involvement of the superoxide anion in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974; 47: 469–474.

    Article  PubMed  CAS  Google Scholar 

  37. DiMauro S, Bonilla E, Zevani M, Nakagawa M, DeVivo DC. Mitochondrial myopathies. Ann Neurol 1985; 17: 521–538.

    Article  PubMed  CAS  Google Scholar 

  38. Garnica AD, Frias JL, Rennert OM.; Menkes’ kinky hair syndrome: is it a treatable disorder? Clin Genet 1977; 11: 154–161.

    Article  PubMed  CAS  Google Scholar 

  39. Milne DB, Nielsen FH. Effects of a diet low in copper on copper status indicators in postmenopausal women. Am J Clin Nutr 1996; 63: 358–364.

    PubMed  CAS  Google Scholar 

  40. Ralston NVC, Milne DB. Effect of dietary copper on platelet volume and cytochrome c oxidase in platelets. FASEB J 1989; 3: A357 (abstract).

    Google Scholar 

  41. Johnson WT, Dufault SN, Thomas AC. Platelet cytochrome c oxidase is an indicator of copper status in rats. Nutr Res 1993; 13: 1153–1162.

    Article  CAS  Google Scholar 

  42. Chrzanowska-Lightowlers ZMA, Turmbull DM, Lightowlers RN. A microtiter plate assay for cytochrome c oxidase in permablized whole cells. Anal Biochem 1993; 214: 45–49.

    Article  PubMed  CAS  Google Scholar 

  43. Dallman PR. Biochemical basis for the manifestations of iron deficiency. Ann Rev Nutr 1986; 6: 13–40.

    Article  CAS  Google Scholar 

  44. Fairweather-Tait S. Minerals: iron. Intl J Vit Nutr Res 1993; 63: 296–301.

    CAS  Google Scholar 

  45. Beard JL, Dawson H, Piiiero J. Iron metabolism: a comprehensive review. Nutr Rev 1996; 54: 295–317.

    Article  PubMed  CAS  Google Scholar 

  46. Lipschitz DA, Cook JD, Finch CA. A clinical evaluation of serum ferritin as an index of iron stores. N Engl J Med 1974; 290: 1213–1216.

    Article  PubMed  CAS  Google Scholar 

  47. Milne DB, Gallagher SK, Nielsen FH. Response of various indices of iron status to acute iron depletion produced in menstruating women by low iron intake and phlebotomy. Clin Chem I990; 36: 487–491.

    Google Scholar 

  48. Kondo Y, Niitsu Y, Kondo H, Kato J, Sasaki K, et al. Serum transferrin receptor as a new index of erythropoiesis. Blood 1987; 70: 1955–1958.

    PubMed  Google Scholar 

  49. Skikne BS, Flowers CH, Cook JD. Serum transferrin receptor: a quantitative measure of tissue iron deficiency. Blood 1990; 75: 1870–1876.

    PubMed  CAS  Google Scholar 

  50. Skikne BS. Circulating transferrin receptor assay–coming of age. Clin Chem 1998; 44: 7–8.

    PubMed  CAS  Google Scholar 

  51. Langer EE, Haining RG, Labbé RF, et al. Erythrocyte protoporphryrin. Blood 1972; 40: 112–127.

    PubMed  CAS  Google Scholar 

  52. Duran M, Beemer FA, Van der Heiden C, et Al. Combined deficiency of sulfite oxidase and xanthine oxidase: a defect of molybdenum metabolism or transport? Proc 16`h Ann Meeting of the Society of Inborn Errors of Metabolism. 1978, p 165.

    Google Scholar 

  53. Rajagopalan KV. Molybdenum: an essential trace element in human nutrition. Ann Rev Nutr 1988; 8: 401–427.

    Article  CAS  Google Scholar 

  54. Nielsen FH. Other trace elements. In: Ziegler EE, Filer LJ Jr, eds. Present Knowledge in Nutrition, 7th ed. ILSI Press, Washington, DC, 1996,pp. 353–377.

    Google Scholar 

  55. Keen CL, Zidenberg-Cherr S, Lönnerdal B. Nutritional and toxicological aspects of manganese intake: an overview. In: Mertz W, Abernathy CO, Olin SS, eds. Risk assessment of essential elements. ILSI Press, Washington, DC, 1994,pp. 221–235.

    Google Scholar 

  56. Keen CL, Zidenberg-Cherr S. Manganese. In: Ziegler EE, Filer LJ, eds. Present Knowledge of Nutrition, 71h ed. ILSI Press, Washington DC, 1996, pp. 334–343.

    Google Scholar 

  57. Davis CD, Greger JL. Longitudinal changes of manganese-dependent superoxide dismutase and other indexes of manganese and iron status in women. Am J Clin Nutr 1992; 55: 747–752.

    PubMed  CAS  Google Scholar 

  58. Matsuda A, Kimura M, Takeda T, Kataoka M, Sato M. Changes in manganese content of mononuclear blood cells in patients receiving total parenteral nutrition. Clin Chem 1994; 40: 829–832.

    PubMed  CAS  Google Scholar 

  59. Milne DB, Sims RL, Ralston NVC. Manganese content of the cellular components of blood. Clin Chem 1990; 36: 450–452.

    PubMed  CAS  Google Scholar 

  60. Néve J, Leclercq N. Factors affecting the determinations of manganese in serum by atomic absorption spectrometry. Clin Chem 1991; 37: 723–728.

    PubMed  Google Scholar 

  61. Levander OA, Burk RF. Selenium. In: Ziegler EE, Filer JF, Jr, eds. Present knowledge in Nutrition, 7th ed. ILSI Press, Washington, DC, 1996,pp. 320–328.

    Google Scholar 

  62. Stadtman TC. Selenium biochemistry. Ann Rev Biochem 1990; 59: 111–127.

    Article  PubMed  CAS  Google Scholar 

  63. Arthur JR, Beckett GJ. New metabolic roles for selenium. Proc Nutr Soc 1994; 53: 615–624.

    Article  PubMed  CAS  Google Scholar 

  64. Jacobson BE, Lockitch G. Direct determination of selenium in serum by graphite furnace atomic absorption spectrometry with deuterium background correction and a reduced palladium modifier: age specific reference ranges. Clin Chem 1988; 34: 709–714.

    PubMed  CAS  Google Scholar 

  65. Morisi G, Patriarca M, Menotti A. Improved determination of selenium in serum by Zeeman atomic absorption spectrometry. Clin Chem 1988; 34: 127–130.

    PubMed  CAS  Google Scholar 

  66. Tietz NW, ed. Clinical Guide to Laboratory Tests, 3rd ed. WB Saunders, Philadelphia, 1995.

    Google Scholar 

  67. Prasad AS. Clinical manifestations of zinc deficiency. Ann Rev Nutr 1985; 341–363.

    Google Scholar 

  68. Mills CF, ed. Zinc in Human Biology Springer-Verlag, Berlin, 1989.

    Google Scholar 

  69. Cousins RJ. Zinc. In: Ziegler EE, Filer FF, Jr, eds. Present Knowledge in Nutrition, 7th ed. ILSI Press, Washington, DC, 1996, pp. 293–306.

    Google Scholar 

  70. Smith JC, Jr, Butrimovitz GP, Purdy WC. Direct measurement of zinc in plasma by atomic absorption spectroscopy. Clin Chem 1979; 25: 1487–1492.

    PubMed  CAS  Google Scholar 

  71. Prasad AS. Laboratory diagnosis of zinc deficiency. J Am Coll Nutr 1985; 4: 591–598.

    PubMed  CAS  Google Scholar 

  72. Milne DB, Ralston NVC, Wallwork JC. Zinc content of blood cellular components: cell separation and analysis methods evaluated. Clin Chem 1985; 31: 65–69.

    PubMed  CAS  Google Scholar 

  73. Grider A, Bailey LB, Cousins RJ. Erythrocyte metallothionein as an index of zinc status in humans. Proc Natl Acad Sci 1990; 87: 1259–1262.

    Article  PubMed  CAS  Google Scholar 

  74. Thompson RPH. Assessment of zinc status. Proc Nutr Soc 1991; 50: 19–28.

    Article  PubMed  CAS  Google Scholar 

  75. Nielsen FH. Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: current knowledge and speculation. FASEB J 1991; 5: 2661.

    Google Scholar 

  76. Hunt CD, Shuler TR. Open vessel wet-ash low-temperature digestion of biological materials for inductively coupled argon plasma emission spectroscopy (ICAP) analysis of boron and other elements. J Micronutrient Anal 1989; 6: 161–166.

    CAS  Google Scholar 

  77. Iyengar GV, Kollmer WE, Bowen HJM. The elemental composition of human tissues and body fluids. Verlag Chemie, Weinheim, 1978.

    Google Scholar 

  78. Iyengar V, Wolttiez J. Trace elements in human clinical specimens: evaluation of literature data to identify reference values. Clin Chem 1988; 34: 474–481.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milne, D.B. (2000). Laboratory Assessment of Trace Element and Mineral Status. In: Bogden, J.D., Klevay, L.M. (eds) Clinical Nutrition of the Essential Trace Elements and Minerals. Nutrition ◊ and ◊ Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-040-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-040-7_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-090-8

  • Online ISBN: 978-1-59259-040-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics