Skip to main content

Part of the book series: Nutrition ◊ and ◊ Health ((NH))

Abstract

An ever expanding number of mineral elements have received attention as being of possible importance in the prevention of disease with nutritional roots, or for the enhancement of health and longevity. Because of some promising physiological or clinical finding, most often in an animal model or a special human situation, these elements are promoted by the supplement industry, some authors of health books and newsletters, and other merchants of “health-promoting” materials whose objective is financial gain by taking advantage of the desire “to live better and to live longer.” It is not difficult for the public to get authoritative reports by apparently well-qualified individuals expounding the nutritional or health benefits of some element; most often the benefit involves avoiding some of life’s most feared diseases such as cancer, heart disease, and loss of cognitive function. Health and nutrition professionals will have many of these mineral elements brought to their attention by their clients. Ignoring the questions or dismissing the claims without providing sound reasons is unlikely to counteract an “authoritative” report that often gives disparaging statements about authentic health professionals. Additionally, several of these mineral elements apparently have health benefits that are now only being discovered or defined; some of these benefits might be the result of unrecognized essential functions. Being aware of these benefits could be of use in providing information that could promote health and well-being. Thus, it is appropriate that these possibly essential trace elements be discussed in a clinical nutrition text such as this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Food and Nutrition Board. How Should the Recommended Dietary Allowances Be Revised? National Academy Press, Washington DC, 1994.

    Google Scholar 

  2. Schroeder HA, Balassa JJ, Tipton IH. Abnormal trace metals in man-nickel. J Chron Dis 1961; 15: 51–65.

    Article  Google Scholar 

  3. Cotzias GC. Importance of trace substances in environmental health as exemplified by manganese. Trace Sub Environ Health 1967; 1: 5–19.

    Google Scholar 

  4. Underwood EJ. Introduction. In: Underwood EJ, ed. Trace Elements in Human and Animal Nutrition 3rd ed. Academic Press, New York, NY, 1971, pp. 1–13.

    Google Scholar 

  5. Mertz W. Some aspects of nutritional trace element research. Fed Proc 1970; 29: 1482–1488.

    PubMed  CAS  Google Scholar 

  6. Nielsen FH. Essentiality and function of nickel. In: Hoekstra WG, Suttie JW, Ganther HE, Mertz W, eds. Trace Element Metabolism in Animals-2. University Park Press_ Baltimore_ MD 1974 nn 1R1—~95

    Google Scholar 

  7. Mertz W. The essential trace elements. Science 1981; 213: 1332–1338.

    Article  PubMed  CAS  Google Scholar 

  8. Nielsen FH. Ultratrace elements in nutrition. Annu Rev Nutr 1984; 4: 21–41.

    Article  PubMed  CAS  Google Scholar 

  9. Food and Nutrition Board. National Research Council. Recommended Dietary Allowances 9th ed; National Academy Press, Washington, DC, 1980.

    Google Scholar 

  10. Food and Nutrition Board. National Research Council. Recommended Dietary Allowances 10th ed. National Academy Press, Washington, DC, 1989.

    Google Scholar 

  11. Food and Nutrition Board. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. National Academy Press, Washington, DC, 1997.

    Google Scholar 

  12. Harper AE. Evaluating the concept of nutritional essentiality. Nutritional essentiality: Historical perspective. In: Roche AF, Gussler JD, Silverman E, Redfern DE, eds. Nutritional Essentiality: A Changing Paradigm, Report of the Twelfth Ross Conference on Medical Research. Ross Products Division, Abbott Laboratories, Columbus, OH, 1993,pp. 3–11.

    Google Scholar 

  13. McCormick DB. The meaning of nutritional essentiality in today’s context of health and disease. In: Roche AF, Gussler JD, Silverman E, Redfern DE, eds. Nutritional Essentiality: A Changing Paradigm, Report of the Twelfth Ross Conference on Medical Research. Ross Products Division, Abbott Laboratories, Columbus, OH, 1993,pp. 11–15.

    Google Scholar 

  14. Nielsen FH. The importance of diet composition in ultratrace element research. J Nutr 1985; 115: 1239–1247.

    PubMed  CAS  Google Scholar 

  15. Tapp WN, Natelson BH. Consequences of stress: a multiplicative function of health status. FASEB J 1988; 2: 2268–2271.

    PubMed  CAS  Google Scholar 

  16. Hunt CD. The biochemical effects of physiologic amounts of dietary boron in animal nutrition models. Environ Health Perspect 1994; 1029 (Suppl 7): 35–43.

    Google Scholar 

  17. Bai Y, Hunt CD. Dietary boron enhances efficacy of cholecalciferol in broiler chicks. J Trace Elem Exp Med 1996; 9: 117–132.

    Article  CAS  Google Scholar 

  18. Uthus EO. Evidence for arsenic essentiality. Environ Geochem Health 1992; 14: 55–58.

    Article  CAS  Google Scholar 

  19. Uthus EO, Nielsen FH. Effect of vanadium, iodine and their interaction on growth, blood variables, liver trace elements and thyroid indices in rats. Magnesium Trace Elem 1990; 9: 219–226.

    CAS  Google Scholar 

  20. Nielsen FH. Dietary vanadium affects carbohydrate and thyroid metabolism in the BB rat. North Dakota Acad Sci Proc 1998; 52: 43.

    Google Scholar 

  21. Mertz W. Essential trace metals: New definitions based on new paradigms. Nutr Rev 1993; 51: 287–295.

    Article  PubMed  CAS  Google Scholar 

  22. Anke M, Groppel B, Müller M, Regius A. Effects of aluminum-poor nutrition in animals. In: Pais I, ed. Proceedings of the 4 International Trace Element Symposium. New Results in the Research of Hardly Known Trace Elements and Their Importance in the International Geosphere-Biosphere Programme, University of Horticulture and Food Industry, Budapest, 1990,pp. 303–324.

    Google Scholar 

  23. Angelow L, Anke M, Groppel B, Glei M, Müller M. Aluminum: an essential element for goats. In: Anke M, Meissner D, Mills CF, eds. Trace Elements. Man and Animals-TEMA 8.Verlag Media Touristik, Gersdorf, 1993,pp. 699–704.

    Google Scholar 

  24. Carlisle EM, Curran MJ. Aluminum: an essential element for the chick in Trace Elements. In: Anke M, Meissner D, Mills CF, eds. Trace Elements. Man and Animals-TEMA 8. Verlag Media Touristik, Gersdorf, 1993,pp. 695–698.

    Google Scholar 

  25. Stemweis PC, Gilman AG. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci USA 1982; 79: 4888–4891.

    Article  Google Scholar 

  26. Smith JB. Aluminum ions stimulate DNA synthesis in quiescent cultures of Swiss 3T3 and 3T6 cells. J Cell Physiol 1984; 118: 298–304.

    Article  PubMed  CAS  Google Scholar 

  27. Quarles LD, Hartle JE II, Middleton JP, Zhang J, Arthur JM, Raymond JR. Aluminum-induced DNA synthesis in osteoblasts: Mediation by a G-protein coupled cation sensing mechanism. J Cell Biochem 1994; 56: 106–117.

    Article  PubMed  CAS  Google Scholar 

  28. Crapper McLachlan DR, Farnell BJ. Aluminum and neuronal degeneration. In: Gabay S, Harris J, Ho BT, eds. Metal Ions in Neurology and Psychiatry Alan R Liss, New York, 1985,pp. 69–87.

    Google Scholar 

  29. Crapper McLachlan DR, Lukiw WJ, Kruck TPA. Aluminum altered transcription and the pathogenesis of Alzheimer’s disease. Environ Geochem Health 1990; 12: 103–114.

    Article  Google Scholar 

  30. Glenner GG. The pathobiology of Alzheimer’s disease. Ann Rev Med 1989; 40: 45–51.

    Article  PubMed  CAS  Google Scholar 

  31. Joshi JG, Dhar M, Clauberg M, Chauthaiwale V. Iron and aluminum homeostasis in neural disorders. Environ Health Perspect 1994; 102 (Suppl 3): 207–213.

    Article  PubMed  CAS  Google Scholar 

  32. Van De Vyver FL, Visser WJ. Aluminum accumulation in bone. In: Priest ND, Van De Vyver FL, eds. Trace Metals and Fluoride in Bones and Teeth. CRC Press, Boca Raton, FL, 1990,pp. 41–81.

    Google Scholar 

  33. Alfrey AC. Aluminum. In: Mertz W, ed. Trace Elements in Human and Animal Nutrition, Vol 2. Academic Press, Orlando, 1986,pp. 399–413.

    Chapter  Google Scholar 

  34. Greger JL. Aluminum metabolism. Ann Rev Nutr 1993; 13: 43–63.

    Article  CAS  Google Scholar 

  35. Nielsen FH, Uthus EO. Arsenic. In: Frieden E, ed. Biochemistry of the Essential Ultratrace Elements. Plenum, New York, 1984,pp. 319–340.

    Chapter  Google Scholar 

  36. Uthus EO. Arsenic essentiality and factors affecting its importance. In: Chappell WR, Abernathy CO, Cothern CR, eds. Arsenic: Exposure and Health. Science and Technology Letters, Northwood, 1994,pp. 199–208.

    Google Scholar 

  37. Anke M. Arsenic. In: Mertz W, ed. Trace Elements in Human and Animal Nutrition, Vol 2. Academic Press, Orlando. 1986;pp:347–372.

    Google Scholar 

  38. Uthus EO. Diethyl maleate, an in vivo chemical depletor of glutathioine affects the response of male and female rats to arsenic deprivation. Biol Trace Elem Res 1994; 46: 247–259.

    Article  PubMed  CAS  Google Scholar 

  39. Desrosiers R, Tanguay RM. Further characterization of the posttranslational modifications of core histones in response to heat and arsenite stress in Drosphilia: Biochem Cell Bio 1986; 64: 750–757.

    CAS  Google Scholar 

  40. Wang L, Roop BC, Mass MJ. Arsenic hypermethylates the p53 promotor in human lung cells. Fund Appl Toxicol Toxicologist 1996; 30: 87.

    Google Scholar 

  41. Meng Z, Meng N. Effects of inorganic arsenicals on DNA synthesis in unsensitized human blood lymphocytes in vitro. Biol Trace Elem Res 1994; 42: 201–208.

    Article  PubMed  CAS  Google Scholar 

  42. Vahter M. Metabolism of arsenic. In: Fowler BA, ed. Biological and Environmental Effects of Arsenic. Elsevier, Amsterdam, 1983;pp,171–198.

    Google Scholar 

  43. Phillips DJH. The chemical forms of arsenic in aquatic organisms and their interrelationships. hi: Nriagu JO, ed. Arsenic in the Environment, Part I: Cycling and Characterization. Wiley & Sons, New York, 1994,pp.263–288.

    Google Scholar 

  44. Ahmann D, Roberts AL, Krumholz LR, Morel FMM. Microbe grows by reducing arsenic. Nature 1994; 371: 750.

    Google Scholar 

  45. Aposhian HV. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 1997; 37: 397–419.

    Article  PubMed  CAS  Google Scholar 

  46. Mushak P. Arsenic and human health: some persisting scientific issues. In: Chappell WR, Abernathy CO, Cothem CR, eds. Arsenic: Exposure and Health. Science and Technology Letters, Northwood, 1994,pp. 305–318.

    Google Scholar 

  47. Mayer DR, Kosmus W, Pogglitsch H, Mayer D, Beyer W. Essential trace elements in humans. Serum arsenic concentrations in hemodialysis patients in comparison to healthy controls. Biol Trace Elem Res 1993; 37: 27–38.

    Article  PubMed  CAS  Google Scholar 

  48. Dizik M, Christman JK, Wainfan E. Alternatives in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet. Carcinogenesis 1991; 12: 1307–1312.

    Article  PubMed  CAS  Google Scholar 

  49. Zapisek WF, Cronin GM, Lyn-Cook BD, Poirier LA. The onset of oncogene hypomethylation in the livers of rats fed methyl-deficient amino acid-defined diets. Carcinogenesis 1992; 13: 1869–1872.

    Article  PubMed  CAS  Google Scholar 

  50. Uthus EO Estimation of safe and adequate daily intake for arsenic. In: Mertz W, Abernathy CO, Olin SS, eds. Risk Assessment of Essential Elements. ILSI Press, Washington, DC, 1994,pp. 273–282.

    Google Scholar 

  51. Abernathy CO, Dourson ML. Derivation of the inorganic arsenic reference dose. In: Chappell WR, Abernathy CO, Cothern CR, eds. Arsenic: Exposure and Health. Science and Technology Letters, Northwood, 1994,pp. 295–303.

    Google Scholar 

  52. Adams MA, Bolger PM, Gunderson EL. Dietary intake and hazards of arsenic. In: Chappell WR, Abernathy CO, Cothern CR, eds. Arsenic Exposure and Health. Science and Technology Letters, Northwood, 1994,pp. 41–49.

    Google Scholar 

  53. Rowe RI, Eckhert CD. Boron is essential for zebrafish embryogenesis. FASEB J 1998; 12: A205.

    Google Scholar 

  54. Forte DJ, Propst TL, Schetter T, Stover EL, Strong PL, Murray FJ. Adverse development and reproductive effects of insufficient boron in Xenopus: Building a case for nutritional essentiality. FASEB J 1998; 12: A205.

    Google Scholar 

  55. Lovatt CJ, Dugger WM. Boron. In: Frieden E, ed. Biochemistry of the Essential Ultratrace Elements. Plenum, New York, 1984,pp. 389–421.

    Chapter  Google Scholar 

  56. Hunt CD. Biochemical effects of physiological amounts of dietary boron. J Trace Elem Exp Med 1996; 9: 185–213.

    Article  CAS  Google Scholar 

  57. Power PP, Wood WG. The chemistry of boron and its speciation in plants. Plant and Soil 1997; 193: 1–13.

    Article  CAS  Google Scholar 

  58. Nielsen FH. Evidence for the nutritional essentiality of boron. J Trace Elem Exp Med 1996; 9: 215–229.

    Article  CAS  Google Scholar 

  59. Bai Y, Hunt CD. Dietary boron alleviates adjuvant-induced arthritis (AIA) in rats. FASEB J 1995; 9: A576.

    Google Scholar 

  60. Bai Y, Hunt CD. Dietary boron (B) increases serum antibody concentrations in rats immunized with heat-killed mycobacterium tuberculosis (MT). FASEB J 1996; 10: A819.

    Google Scholar 

  61. Beattie JH, MacDonald A. Effect of boron on bone metabolism in rats. In: Momcilovic B, ed. Trace Elements in Man and Animals-7. IMI, Zagreb, 1991,pp.26: 29–26: 30.

    Google Scholar 

  62. Nielsen FH. Biochemical and physiologic consequences of boron deprivation in humans. Environ Health Perspec 1994; 102 (Supp17): 59–63.

    CAS  Google Scholar 

  63. Nielsen FH, Gallagher SK, Johnson LK, Nielsen EJ. Boron enhances and mimics some effects of estrogen therapy in postmenopausal women. J Trace Elem Exp Med 1992: 5: 237–246.

    CAS  Google Scholar 

  64. Penland JG. Dietary boron: brain function and cognitive performance. Environ Health Perspect 1994; 102 (Suppl 7): 65–72.

    Article  PubMed  CAS  Google Scholar 

  65. Beattie JH, Peace HS. The influence of a low-boron diet and boron supplementation on bone, major mineral and sex steroid metabolism in postmenopausal women. Br J Nutr 1993; 69: 871–884.

    Article  PubMed  CAS  Google Scholar 

  66. Nielsen FH. Boron–an overlooked element of potential nutritional importance. Nutr Today 1988; 23: 4–7.

    Article  Google Scholar 

  67. Nielsen FH. Facts and fallacies about boron. Nutr Today 1992; 27: 6–12.

    Article  Google Scholar 

  68. WHO/FAO/IAEA. Trace Elements in Human Nutrition and Health, World Health Organization, Geneva, 1996,pp. 175–179.

    Google Scholar 

  69. Nielsen FH. Dietary supplementation of physiological amounts of boron increases plasma and urinary boron of perimenopausal women. Proc ND Acad Sci 1996; 50: 52.

    Google Scholar 

  70. Rainey CJ, Christensen RE, Nyquist LA, Strong PL, Coughlin JR. Boron daily intake from the American diet. FASEB J 1996; 10: A785.

    Google Scholar 

  71. Anderson DL, Cunningham WC, Lindstrom TR. Concentration and intakes of H, B, S, K, Na, Cl, and NaC1, in foods. J Food Comp Anal 1994; 7: 59–82.

    CAS  Google Scholar 

  72. Anke M, Regius A, Groppel B, Arnhold W. Essentiality of the trace element bromine. Acta Agron Hung 1990; 39: 297–303.

    CAS  Google Scholar 

  73. Anke M, Groppel B, Angelow L, Dorn W, Drusch S. Bromine: an essential element for goats. In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals-TEMA 8. Verlag Media Touristik, Gersdorf, 1993,pp. 737–738.

    Google Scholar 

  74. Oe PL, Vis RD, Meijer JH, van Langevelde F, Allon W, Meer Cvd, Verheul H. Bromine deficiency and insomnia in patients on dialysis. In: Howell JMcC, Gawthorne JM, White CL, eds. Trace Element Metabolism in Man and Animals, TEMA-4. Australian Academy of Science, Canberra, 1981,pp. 526–529.

    Chapter  Google Scholar 

  75. Huff JW, Bosshardt DK, Miller OP, Barnes RH. A nutritional requirement for bromine. Proc Soc Exp Biol Med 1956; 92: 216–219.

    PubMed  CAS  Google Scholar 

  76. Bosshardt DK, Huff JW, Barnes RH. Effect of bromine on chick growth. Proc Soc Exp Biol Med 1956; 92: 219–221.

    PubMed  CAS  Google Scholar 

  77. Leach RM Jr, Nesheim MC. Studies on chloride deficiency in chicks. J Nutr 1963; 81: 193–199.

    PubMed  CAS  Google Scholar 

  78. Yanagisawa I, Yoshikawa H. A bromine compound isolated from human cereobrospinal fluid. Biochim Biophys Acta 1973; 329: 283–294.

    Article  PubMed  CAS  Google Scholar 

  79. Torii S, Mitsumori K, Inubushi S, Yanagisawa I. The REM sleep-inducing action of a naturally occurring organic bromine compound in the encéphale isolé cat. Psychopharmacologia 1973; 29: 65–75.

    Article  PubMed  CAS  Google Scholar 

  80. Nielsen FH. Other elements: Sb, Ba, B, Br, Cs, Ge, Rb, Ag, Sr, Sn, Ti, Zr, Be, Bi, Ga, Au, In, Nb, Sc, Te, Tl, W. In: Mertz W, ed. Trace Elements in Human and Animal Nutrition, Vol 2. Academic Press, Orlando, 1986,pp:415–463.

    Google Scholar 

  81. Anke M, Hennig A, Groppel B, Partschefeld M, Grün M. The biochemical role of cadmium. In: Kirchgessner M, ed. Trace Element Metabolism in Man and Animals-3 Tech Univ Munchen, FreisingWeihenstephen, 1978,pp. 540–548.

    Google Scholar 

  82. Schwarz K, Spallholz JE. The potential essentiality of cadmium. In: Bolck F, Anke M, Schneider H-J, eds. Kadmium-Symposium. Friedrich-Schiller Universitat, Jena, 1979,pp. 188–194.

    Google Scholar 

  83. Barham SS, Tarara JE, Enger MD. Cadmium as a transforming growth factor. Fed Proc 1985; 44: 520.

    Google Scholar 

  84. Kostial K. Cadmium. In: Mertz W, ed. Trace Elements in Human and Animal Nutrition, Vol 2. Academic Press, Orlando, 1986,pp:319–345.

    Google Scholar 

  85. World Health Organization. Evaluation of Certain Food Additives and Contaminants. 33rd Report of the Joint FAO/WHO Expert Committee on Food Additives 776. World Health Organization, Geneva, 1989,pp. 28–31.

    Google Scholar 

  86. Vincent JB. Mechanism of chromium action. In: International Symposium on the Health Effects of Dietary Chromium Abstracts. Dedham, MA, 1998,pp. 16.

    Google Scholar 

  87. Schwarz K, Milne DB. Fluorine requirement for growth in the rat. Bioinorg Chem 1972; 1: 331–338.

    Article  Google Scholar 

  88. Anke M, Groppel B, Krause U. Fluorine deficiency in goats. In: Momcilovic B, ed. Trace Elements in Man and Animals-7. IMI, Zagreb, 1991,pp. 26: 28–26: 29.

    Google Scholar 

  89. Avtsyn AP, Anke M, Zhavoronkov AA, Groppel B, Kaktursky LV, Mikhaleva LM, Lösch E. Pathological anatomy of the experimentally-induced fluorine deficiency in she-goats. In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals-TEMA 8. Verlag Media Touristik, Gersdorf, 1993,pp. 745–746.

    Google Scholar 

  90. Messer HH. Fluorine. In: Frieden E, ed. Biochemistry of the Essential Ultratrace Elements. Plenum, New York, 1984,pp. 55–87.

    Chapter  Google Scholar 

  91. Fransbergen AJ, Lemmens AG, Beynen AC. Dietary fluoride, unlike bromide or iodide, counteracts phosphorus-induced nephrocalcinosis in female rats. Biol Trace Elem Res 1991; 31: 71–78.

    Article  PubMed  CAS  Google Scholar 

  92. Jenkins GN. The metabolism and effects of fluoride. In: Priest ND, Van De Vyver FL, eds. Trace Metals and Fluoride in Bones and Teeth. CRC Press, Boca Raton, FL, 1990,pp. 141–173.

    Google Scholar 

  93. Kleerekoper M, Balena R. Fluorides and osteoporosis. Annu Rev Nutr 1991; 11: 309–324.

    Article  PubMed  CAS  Google Scholar 

  94. Krishnamachari KAVR. Fluorine. In: Mertz W, ed. Trace Elements in Human and Animal Nutrition, Vol 1. Academic Press, San Diego, CA, 1987,pp:365–415.

    Google Scholar 

  95. Phipps KR. Fluoride. In: Ziegler EE, FilerLJ Jr, eds. Present Knowledge in Nutrition, 7f ed. ILSI Press, Washington, DC, 1996,pp:329–333.

    Google Scholar 

  96. Seaborn CD, Nielsen FH. Effects of germanium and silicon on bone mineralization. Biol Trace Elem Res 1994; 42: 151–164.

    Article  PubMed  CAS  Google Scholar 

  97. Schauss AG. Nephrotoxicity and neurotoxicity in humans from organogermanium compounds and germanium dioxide. Biol Trace Elem Res 1991; 29: 267–280.

    Article  PubMed  CAS  Google Scholar 

  98. Loomis WD, Durst RW. Chemistry and biology of boron. Biofactors 1992; 3: 229–239.

    PubMed  CAS  Google Scholar 

  99. Kirchgessner M, Reichlmayr-Lais AM. Lead deficiency and its effects on growth and metabolism. In: Howell JMcC, Gawthorne JM, White CL, eds. Trace Element Metabolism in Man and Animals, TEMA-4. Australian Academy of Science, Canberra 1981,pp. 390–393.

    Chapter  Google Scholar 

  100. Reichlmayr-Lais AM, Kirchgessner M. Newer research on lead essentiality. In: Mills CF, Bremner I, Chesters JK, eds. Trace Elements in Man and Animals-TEMA 5. Commonwealth Agricultural Bureaux, Farnham Royal, 1985,pp. 283–286.

    Google Scholar 

  101. Reichlmayr-Lais AM, Kirchgessner M. Lead - an essential trace element. In: Momcilovic B, ed. Trace Elements in Man and Animals 7. IMI, Zagreb, 1991,pp.35:l-35:2.

    Google Scholar 

  102. Kirchgessner M, Plass DL, Reichlmayr-Lais AM. Lead deficiency in swine. In: Momcilovic B, ed. Trace Elements in Man and Animals 7. IMI, Zagreb, 1991,pp.11: 20–11: 21.

    Google Scholar 

  103. Schwarz K. Potential essentiality of lead. Ash Hig Rada Toksikol 1975; 26 (Suppl): 13–28.

    Google Scholar 

  104. Uthus EO, Nielsen FH. Effects in rats of iron on lead deprivation. Biol Trace Elem Res 1988; 16: 155–163.

    Article  PubMed  CAS  Google Scholar 

  105. Quarterman J. Lead. In: Mertz W, ed. Trace Elements in Human and Animal Nutrition, Vol 2. Academic Press, Orlando, 1986,pp:281–317.

    Google Scholar 

  106. Patterson C, Ericson J, Manca-Krichten M, Shirahara H. Natural skeletal levels of lead in Homo sapiens sapiens uncontaminated by technological lead. Sci Total Environ 1991; 107: 205–236.

    Article  PubMed  CAS  Google Scholar 

  107. Goyer RA. Lead. In: Bronner F, Cobum JW, eds. Disorders of Mineral Metabolism, Vol I. Academic Press, New York, 1981,pp. 159–199.

    Google Scholar 

  108. Müller M, Anke M, Thiel C, Hartmann E. Exposure of adults to lead from food estimated by analysis and calculation-comparison of methods. In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals-TEMA 8. Verlag Media Touristik, Gersdorf, 1993,pp. 241–242.

    Google Scholar 

  109. Birch NJ. Lithium in medicine. In: Berthon G, ed. Handbook of Metal-Ligand Interactions in Biological Fluids. Bioinorganic Medicine, Vol 2. Marcel Dekker, New York, 1995,pp. 1274–1281.

    Google Scholar 

  110. Schrauzer GN, Shrestha KP. Lithium in drinking water and the incidence of crimes, suicides, and arrests related to drug addictions. Biol Trace Elem Res 1990; 25: 105–113.

    Article  PubMed  CAS  Google Scholar 

  111. Klemfuss H, Schrauzer GN. Effects of nutritional lithium deficiency on behavior in rats. Biol Trace Elem Res 1995; 48: 131–139.

    Article  PubMed  CAS  Google Scholar 

  112. Anke M, Grün M, Groppel B, Kronemann H The biological importance of lithium. In: Anke M, Schneider H-J, eds. Mengen-und Spurenelemente. Karl-Marx- Universitat, Leipzig, 1981,pp:217–239.

    Google Scholar 

  113. Anke M, Arnhold W, Groppel B, Krause U. The biological importance of lithium. In: Schrauzer GN, Klippel K-F, eds. Lithium in Biology and Medicine. VCH Publishers, Weinheim, 1990,pp. 148–167.

    Google Scholar 

  114. Patt EL, Pickett EE, O’Dell BL. Effect of dietary lithium levels on tissue lithium concentrations, growth rate and reproduction in the rat. Bioinorg Chem 1978; 9: 299–310.

    Article  CAS  Google Scholar 

  115. Pickett EE, O’Dell BL. Evidence for dietary essentiality of lithium in the rat. Biol Trace Elem Res 1992; 34: 299–319.

    Article  PubMed  CAS  Google Scholar 

  116. Rybak SM, Stockdale FE. Growth effects of lithium chloride in BALB/c 3T3 fibroblasts and MadinDarby canine epithilial cells. Exp Cell Res 1981; 136: 263–270.

    Article  PubMed  CAS  Google Scholar 

  117. Rossetti L, Giaccari A, Klein-Robbenhaar E, Vogel LR. Insulinomimetic properties of trace elements and characterization of their in vivo mode of action. Diabetes 1990; 39: 1243–1250.

    Article  PubMed  CAS  Google Scholar 

  118. Amdisen A. Serum level monitoring and clinical pharmacokinetics of lithium. Clin Pharmacokinet 1977; 2: 73–91.

    Article  PubMed  CAS  Google Scholar 

  119. Nielsen FH. Nickel. In: Frieden E, ed. Biochemistry of the Essential Ultratrace Elements. Plenum, New York, 1984,pp. 293–308.

    Chapter  Google Scholar 

  120. Kirchgessner M, Roth-Maier DA, Schnegg A. Progress of nickel metabolism and nutrition research. In: Howell JMcC, Gawthome JM, White CL, eds. Trace Element Metabolism in Man and Animals, TEMA-4. Australian Academy of Science, Canberra 1981,pp. 621–624.

    Chapter  Google Scholar 

  121. Anke M, Groppel B, Kronemann H, Grün M. Nickel–an essential element. In: Sunderman FW, ed. Nickel in the Human Environment. International Agency for Research of Cancer, Lyon, 1984,pp. 339–365.

    Google Scholar 

  122. Spears JW. Nickel as a “newer trace element” in the nutrition of domestic animals. J Anim Sci 1984; 59: 823–835.

    PubMed  CAS  Google Scholar 

  123. Nielsen FH, Shuler TR, McLeod TG, Zimmerman TJ. Nickel influences iron metabolism through physiologic pharmacologic and toxicologic mechanisms in the rat. J Nutr 1984; 114: 1280–1288.

    PubMed  CAS  Google Scholar 

  124. Nielsen FH. Individual functional roles of metal ions in vivo. Beneficial metal ions. Nickel, In: Berthon G, ed. Handbook of Metal-Ligand Interactions in Biological Fluids. Bioinorganic Medicine, Vol I. Marcel Dekker, New York, 1995, pp. 257–260.

    Google Scholar 

  125. Nielsen FH, Zimmerman TJ, Shuler TR, Brossait B, Uthus EO. Evidence for a cooperative metabolic relationship between nickel and vitamin Bit in rats. J Trace Elem Exp Med 1989; 2: 21–29.

    CAS  Google Scholar 

  126. Nielsen FH, Uthus EO, Peollot RA, Shuler TR. Dietary vitamin Biz sulfur amino acids and odd-chain fatty acids affect the response of rats to nickel deprivation. Biol Trace Elem Res 1993; 37: 1–15.

    Article  PubMed  CAS  Google Scholar 

  127. Uthus EO, Poellot RA. Dietary folate affects the response of rats to nickel deprivation. Biol Trace Elem Res 1996; 52: 23–35.

    Article  PubMed  CAS  Google Scholar 

  128. Przybyla AE, Robbins J, Menon N, Peck HD, Jr. Structure-function relationships among the nickel-containing hydrogenases. FEMS Microbiol Rev 1992; 88: 109–136.

    Article  CAS  Google Scholar 

  129. Hausinger RP. Nickel enzymes in microbes. Sci Tot Environ 1994; 148: 157–166.

    Article  CAS  Google Scholar 

  130. Andrews RK, Blakely RL, Zerner B. Urease–a Ni (II) metalleonzyme. In: Lancaster JR Jr, ed. The Bioinorganic Chemistry of Nickel. VCH, New York, 1988,pp. 141–165.

    Google Scholar 

  131. Mobley HL, Island MD, Hausinger RP. Molecular biology of microbiol ureases. Microbiol Rev 1995; 59: 451–480.

    PubMed  CAS  Google Scholar 

  132. Nomoto S, Sunderman FW Jr. Presence of nickel in alpha-2 macroglobulin isolated from human serum by high performance liquid chromatography. Ann Clin Lab Sci 1988; 18: 78–84.

    PubMed  CAS  Google Scholar 

  133. Malinow MR. Plasma homocyst(e)ine: A risk factor for arterial occlusive diseases. J Nutr 1996; 126: 1238S - 1243S.

    PubMed  CAS  Google Scholar 

  134. Oakley GP Jr, Adams MJ, Dickinson CM. More folic acid for everyone now. JNutr 1996;126:751S-755 S.

    Google Scholar 

  135. Nielsen FH. Nickel toxicity. In: Goyer RA, Mehlman MA, eds. Advances in Modern Toxicology: Toxicology of Trace Elements, Vol 2. Wiley, New York 1977;pp. 129–146.

    Google Scholar 

  136. Cronin E, DiMichiel AD, Brown SS. Oral challenge in nickel-sensitive women with hand eczema. In: Brown SS, Sunderman FW Jr, eds. Nickel Toxicology. Academic Press, New York,1980,pp:149–152.

    Google Scholar 

  137. Anke M, Angelow L, Müller M, Glei M. Dietary trace element intake and excretion of man. In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals-TEMA 8. Verlag Media Touristik, Gersdorf 1993,pp:180–188.

    Google Scholar 

  138. Pennington JAT, Jones JW. Molybdenum, nickel, cobalt, vanadium, and strontium in total diets. J Am Diet Assoc 1987; 87: 1644–1650.

    PubMed  CAS  Google Scholar 

  139. Anke M, Angelow L, Schmidt A, Gürtler H. Rubidium: an essential element for animal and man? In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals-TEMA 8. Verlag Media Touristik, Gersdorf 1993,pp. 719–723.

    Google Scholar 

  140. Stolk JM, Nowack WI, Barchas JD, Platman SR. Brain norepinephrine• enhanced turnover after rubidium treatment. Science 1970; 168: 501–503.

    Article  PubMed  CAS  Google Scholar 

  141. Meltzer HL, Nowack WJ, Barchas JD, Platman SR. Rubidium: A potential modifier of affect and behaviour. Nature (London) 1969; 223: 321–322.

    Article  CAS  Google Scholar 

  142. Anke M, Angelow L. Rubidium in the food chain. Fresenius J Anal Chem 1995; 352: 236–239.

    Article  CAS  Google Scholar 

  143. Carlisle EM. Silicon in bone formation. In: Simpson TL, Volcani BE, eds. Silicon and Siliceous Structures in Biological Systems. Springer, New York, 1981,pp. 69–94.

    Chapter  Google Scholar 

  144. Carlisle EM. Silicon. In: Frieden E, ed. Biochemistry of the Essential Ultratrace Elements. Plenum, New York, 1984,pp. 257–291.

    Chapter  Google Scholar 

  145. Schwarz K. Recent dietary trace element research exemplified by tin, fluorine, and silicon. Fed Proc 1974; 33: 1748–1757.

    PubMed  CAS  Google Scholar 

  146. Seaborn CD, Nielsen FH. Silicon: A nutritional beneficence for bones, brains, and blood vessels? Nutr Today 1993; 28: 13–18.

    Article  Google Scholar 

  147. Carlisle EM, Curran MJ. Effect of dietary silicon and aluminum on silicon and aluminum levels in the rat brain. Alzheimer Dis Assoc Disorders 1987; 1: 83–89.

    Article  CAS  Google Scholar 

  148. Carlisle EM, Berger JW, Alpenfels WF. A silicon requirement for prolyl hydroxylase activity. Fed Proc 1981; 40: 886.

    Google Scholar 

  149. Villota R, Hawkes JG. Food applications and the toxicological and nutritional implications of amorphous silicon dioxide. CRC Crit Rev Food Sci Nutr 1986; 23: 289–321.

    Article  CAS  Google Scholar 

  150. Gouget MA. Athérome expérimental et silicate de soude. La Presse Medicale 1911; 97: 1005–1006.

    Google Scholar 

  151. Carlisle EM. Silicon as an essential element. Fed Proc 1974; 33: 1758–66.

    PubMed  CAS  Google Scholar 

  152. Nasolodin VV, Rusin VY, Vorob’ ev VA. Zinc and silicon metabolism in highly trained athletes under hard physical stress (in Russian). Vopr Pitan 1987; 4: 37–39.

    PubMed  Google Scholar 

  153. Kelsay JL, Behall KM, Prather ES. Effect of fiber from fruits and vegetables on metabolic responses of human subjects. II. Calcium, magnesium, iron, and silicon balances. Am J Clin Nutr 1979; 32: 1876–1880.

    PubMed  CAS  Google Scholar 

  154. Bowen HJM, Peggs A. Determination of the silicon content of food. J Sci Food Agric 1984; 35: 1225–1229.

    Article  CAS  Google Scholar 

  155. Pennington JAT. Silicon in foods and diets. Foods Addit Contam 1991; 8: 97–118.

    Article  CAS  Google Scholar 

  156. Schwarz K, Milne DB, Vinyard E. Growth effects of tin compounds in rats maintained in a trace element-controlled environment. Biochem Biophys Res Commun 1970; 40: 22–29.

    Article  PubMed  CAS  Google Scholar 

  157. Yokoi K, Kimura M, Itokawa Y. Effect of dietary tin deficiency on growth and mineral status in rats. Biol Trace Elem Res 1990; 24: 223–231.

    Article  PubMed  CAS  Google Scholar 

  158. Cardarelli N. Tin and the thymus gland: A review. Thymus 1990; 15: 223–231.

    Google Scholar 

  159. Greger JL. Tin and aluminum. In: Smith KT, ed. Trace Minerals in Foods. Marcel Dekker, New York, 1988,pp. 291–323.

    Google Scholar 

  160. Schroeder HA, Balassa JJ, Tipton IH. Abnormal trace metals in man–vanadium. J Chronic Dis 1963; 16: 1047–1071.

    Article  PubMed  CAS  Google Scholar 

  161. Anke M, Groppel B, Gruhn K, Langer M, Arnhold W. The essentiality of vanadium for animals. In: Anke M, Baumann W, Bräunlich H, Bruckner C, Groppel B, Grün M, eds. 6th International Trace Element Symposium, Vol 1. Friedrich-Schiller-Universitat, Jena, 1989,pp. 17–27.

    Google Scholar 

  162. Vilter H. Vanadium-dependent haloperoxidases. In: Sigel H, Sigel A, eds. Metal Ions in Biological Systems, Vol 31, Vanadium and Its Role in Life. Marcel Dekker, New York, 1995,pp,325–362.

    Google Scholar 

  163. Weyer R, Krenn BE. Vanadium haloperoxidases. In: Chasteen ND, ed. Vanadium in Biological Systems, Physiology and Biochemistry. Kluwer Academic, Dordrecht, Netherlands, 1990,pp. 81–97.

    Google Scholar 

  164. van Schijndel JWPM, Vollenbroek EGM, Weyer R. The chloroperoxidase from the fungus Curvularia inaequalis; a novel vanadium enzyme. Biochim Biophys Acta 1993; 1161: 249–256.

    Article  PubMed  Google Scholar 

  165. Eady RR. Vanadium nitrogenases of Azotobacter. In: Sigel H, Sigel A, eds. Metal Ions in Biological Systems, Vol 31, Vanadium and Its Role in Life. Marcel Dekker, New York, 1995,pp. 363–405.

    Google Scholar 

  166. Boyd DW, Kustin K. Vanadium: a versatile biochemical effector with an elusive biological function. Adv Inorg Biochem 1984; 6: 311–365.

    PubMed  CAS  Google Scholar 

  167. Nechay BR. Mechanisms of action of vanadium. Annu Rev Pharmacol Toxicol 1984; 24: 501–524.

    Article  PubMed  CAS  Google Scholar 

  168. Willsky GR. Vanadium in the biosphere. In: Chasteen ND, ed. Vanadium in Biological Systems, Physiology and Biochemistry. Kluwer Academic, Dordrecht, Netherlands, 1990,pp. 1–24.

    Chapter  Google Scholar 

  169. Stern A, Yin X, Tsang S-S, Davison A, Moon J. Vanadium as a modulator of cellular regulatory cascades and oncogene expressions. Biochem Cell Biol 1993; 71: 103–112.

    Article  PubMed  CAS  Google Scholar 

  170. Orvig C, Thompson KH, Battell M, McNeill JH. Vanadium compounds as insulin mimics. In: Sigel H, Sigel A, eds. Metal Ions in Biological Systems, Vol 31, Vanadium and Its Role in Life. Marcel Dekker, New York, 1995,pp. 575–594.

    Google Scholar 

  171. Carmignani M, Boscolo P, Ripanti G, Porcelli G, Volpe AR. Mechanisms of the vanadate-induced arterial hypertension only in part depend on the levels of exposure. In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals–TEMA 8. Verlag Media Touristik, Gersdorf, 1993,pp. 971–975.

    Google Scholar 

  172. Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological Profile for Vanadium, US Department of Health and Human Services, Public Health Service, Atlanta, GA, 1992.

    Google Scholar 

  173. Cohen N, Halbertstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1995; 95: 2501–2509.

    Article  PubMed  CAS  Google Scholar 

  174. Goldfine AB, Simonson DC, Folli F, Patti M-E, Kahn R. Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J Clin Endocrinol Metab 1995; 80: 3311–20.

    Article  PubMed  CAS  Google Scholar 

  175. Halbertstam M, Cohen N, Shlimovich P, Rossetti L, Shamoon H. Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes 1996; 45: 659–666.

    Article  Google Scholar 

  176. Boden G, Chen X, Ruiz J, van Rossum GDV, Turco S. Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism 1996; 45: 1130–35.

    Article  PubMed  CAS  Google Scholar 

  177. Nielsen FH. Other Trace Elements. In: Ziegler EE, Filer LJ Jr, eds. Present Knowledge in Nutrition. ILSI Press, Washington, DC, 1996,pp. 353–376.

    Google Scholar 

  178. Byrne AR, Kosta L. Vanadium in foods and in human body fluids and tissues. Sci Total Environ 1978; 10: 17–30.

    Article  PubMed  CAS  Google Scholar 

  179. Myron DR, Zimmerman TJ, Shuler TR, Klevay LM, Lee DE, Nielsen FH. Intake of nickel and vanadium by humans. A survey of selected diets. Am J Clin Nutr 1978; 31: 527–531.

    PubMed  CAS  Google Scholar 

  180. Myron DR, Givand SH, Nielsen FH. Vanadium content of selected foods as determined by nameless atomic absorption spectroscopy. Agric Food Chem 1977; 25: 297–300.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nielsen, F.H. (2000). Possibly Essential Trace Elements. In: Bogden, J.D., Klevay, L.M. (eds) Clinical Nutrition of the Essential Trace Elements and Minerals. Nutrition ◊ and ◊ Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-040-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-040-7_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-090-8

  • Online ISBN: 978-1-59259-040-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics