Skip to main content

Part of the book series: Nutrition ◊ and ◊ Health ((NH))

Abstract

The spectrum of diseases which are passed on from parent to offspring i.e., the inherited or genetic diseases, encompasses most aspects of metabolism. The field of mineral metabolism is no exception and there exist a number of significant genetic abnormalities in humans affecting iron, copper, and zinc homeostasis. These diseases can lead to a deficiency of the metal in the tissues (e.g., Menkes disease — copper, acrodermatitis enteropathica — zinc) or an excess (e.g., hemochromatosis — iron, Wilson disease — copper) and thus can mimic the situations found in nutritional deficiency of the metal or those associated with excess exposure and toxicity. Although by their nature genetic disorders are often very rare, some are found in populations at sufficiently high frequencies that they represent a major health issue and can influence nutritional policies for the adequacy and safety of dietary trace element intake. The best example of this is the iron overload disease hemochromatosis, the most common of all autosomally inherited genetic diseases with an incidence in some populations as high as 1 in 250–300 (1,2). In populations where hemochromatosis is prevalent there have been active campaigns to prevent the fortification of dietary staples with iron since this will accelerate iron accumulation in susceptible members of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edwards CQ, Griffen LM, Goldgar D, Drummond C, Skolnick MH, Kushner JP. Prevalence of hemochromatosis among 11,065 presumably healthy blood donors. N Engl J Med 1988; 318: 1355–1362.

    Article  CAS  PubMed  Google Scholar 

  2. Leggett BA, Halliday JW, Brown NN, Bryant S, Powell LW. Prevalence of haemochromatosis amongst asymptomatic Australians. Br J Haematol 1990; 74: 525–530.

    Article  CAS  PubMed  Google Scholar 

  3. Powell LW, Jazwinska EC, Halliday JW. Primary iron overload. In: Brock JH, Halliday JW, Pippard MJ, Powell LW, eds. Iron Metabolism in Health and Disease. WB Saunders Company, London, 1994, pp. 227–270.

    Google Scholar 

  4. Pippard MJ. Secondary iron overload. In: Brock JH, Halliday JW, Pippard MJ, Powell LW, eds. Iron Metabolism in Health and Disease. WB Saunders Company, London, 1994, pp. 271–309.

    Google Scholar 

  5. Simon M, Bourel M, Genetet B, Fauchet R. Idiopathic hemochromatosis: demonstration of recessive transmission and early detection by family HLA typing. N Engl J Med 1977; 297: 1017–1021.

    Article  CAS  PubMed  Google Scholar 

  6. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R, Ellis MC, Fullan A, Hinton LM, Jones NL, Kimmel BE, Kronmal GS, Lauer P, Lee VK, Loeb DB, Mapa FA, McClelland E, Meyer GA, Mintier GA, Moeller N, Moore T, Morikang E, Prass CE, Quintana L, Starnes SM, Schatzman RC, Brunke KJ, Drayna DT, Risch NJ, Bacon BR, Wolff RK. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996; 13: 399–408.

    Article  CAS  PubMed  Google Scholar 

  7. Muir WA, McLaren GD, Braun W, Askari A. Evidence for heterogeneity in hereditary hemochromatosis: evaluation of 174 individuals in nine families. Am J Med 1984; 76: 806–814.

    Article  CAS  PubMed  Google Scholar 

  8. Crawford DHG, Powell LW, Leggett BA, Francis JS, Fletcher LM, Webb SI, Halliday JW, Jazwinska EC. Evidence that the ancestral haplotype in Australian hemochromatosis patients may be associated with a common mutation in the gene. Am J Hum Genet 1995; 57: 362–367.

    CAS  PubMed  Google Scholar 

  9. Bulaj ZJ, Griffen LM, Jorde LB, Edwards CQ, Kushner JP. Clinical and biochemical abnormalities in people heterozygous for hemochromatosis. N Engl J Med 1996; 335: 1837–1839.

    Article  Google Scholar 

  10. Gordeuk VR, McLaren GD, Samowitz W. Etiologies, consequences and treatment of iron overload. Crit Rev Clin Lab Sci 1994; 31: 89–123.

    Article  CAS  PubMed  Google Scholar 

  11. Halliwell B, Gutteridge JMC, Cross CE. Free radicals, antioxidants, and human disease: Where are we now? J Lab Clin Med 1992; 119: 598–620.

    CAS  PubMed  Google Scholar 

  12. Bacon BR, Tavill AS, Brittenham GM, Park CH, Recknagel RO. Hepatic lipid peroxidation in vivo in rats with chronic iron overload. J Clin Invest 1983; 71: 429–439.

    Article  CAS  PubMed  Google Scholar 

  13. Britton RS, O’Neill R, Bacon BR. Chronic dietary iron overload in rats results in impaired calcium sequestration by hepatic mitochondria and microsomes. Gastroenterology 1991; 101: 806–811.

    CAS  PubMed  Google Scholar 

  14. Sharma BK, Bacon BR, Britton RS, Park CH, Magiera CJ, O’Neill R, Dalton N, Smanik P, Speroff T. Prevention of hepatocyte injury and lipid peroxidation by iron chelators and alpha-tocopherol in isolated iron-loaded rat hepatocytes. Hepatology 1990; 12: 31–39.

    Article  CAS  PubMed  Google Scholar 

  15. Bassett ML, Halliday JW, Powell LW. Value of hepatic iron measurements in early hemochromatosis and determination of the critical iron level associated with fibrosis. Hepatology 1986; 6: 24–29.

    Article  CAS  PubMed  Google Scholar 

  16. Powell LW, Kerr JFR. The pathology of the liver in hemochromatosis. Pathobiol Annual 1975; 5: 317–337.

    CAS  Google Scholar 

  17. McLaren CE, McLachlan GJ, Halliday JW, Webb SI, Leggett BA, Jazwinska EC, Crawford DHG, Gordeuk VR, McLaren GD, Powell LW. Distribution of transferrin saturation in an Australian population: relevance to the early diagnosis of hemochromatosis. Gastroenterology 1998; 114: 543–549.

    Article  CAS  PubMed  Google Scholar 

  18. Powell LW, George DK, McDonnell SM, Kowdley KV. Diagnosis of hemochromatosis. Ann Intern Med 1998; 129: 925–931.

    CAS  PubMed  Google Scholar 

  19. Burke W, Thomson E, Khoury MJ, McDonnell SM, Press N, Adams PC, Barton JC, Beutler E, Brittenham G, Buchanan A, Clayton EW, Cogswell ME, Meslin EM, Motulsky AG, Powell LW, Sigal E, Wilfond BS, Collins, FS. Hereditary hemochromatosis Gene discovery and its implications for population-based screening. JAMA 1998; 280: 173–178.

    Google Scholar 

  20. McDonnell SM, Phatak PD, Felitti V, Hover A, McLaren GD. Screening for hemochromatosis in primary care settings. Ann Intern Med 1998; 129: 962–970.

    CAS  PubMed  Google Scholar 

  21. Barton JC, McDonnell SM, Adams PC, Brissot P, Powell LW, Edwards CQ, Cook JD, Kowdley KV. Management of hemochromatosis. Ann Intern Med 1998; 129: 932–939.

    CAS  PubMed  Google Scholar 

  22. McLaren GD. Iron overload disorders. In: Mazza JJ, ed. Manual of Clinical Hematology. Little Brown and Company, Boston, 1995, pp. 115–145.

    Google Scholar 

  23. Niederau C, Fisher R, Sonnenberg A, Stremmel W, Trammpisch HJ, Strohmeyer G. Survival and causes of death in cirrhotic and non-cirrhotic patients with primary hemochromatosis. N Engl J Med 1985; 313: 1256–1262.

    Article  CAS  PubMed  Google Scholar 

  24. McLaren GD, Nathanson MH, Saidel GM. 1995; Compartmental analysis of intestinal iron absorption and mucosal iron kinetics. In: Siva Subramanian KN, Wastney ME, eds. Kinetic Models of Trace Element and Mineral Metabolism During Development. CRC Press, Boca Raton, pp. 187–204.

    Google Scholar 

  25. Cox TM, Peters TJ. Uptake of iron by duodenal biopsy specimens from patients with iron deficiency anaemia and primary haemochromatosis. Lancet 1978;i:123–124.

    Google Scholar 

  26. Marx JJ. Mucosal uptake, mucosal transfer and retention of iron, measured by whole-body counting. Scand J Haematol 1979; 23: 293–302.

    Article  CAS  PubMed  Google Scholar 

  27. Powell LW, Campbell CB, Wilson E. Intestinal mucosal uptake of iron and iron retention in idiopathic haemochromatosis as eveidence for a mucosal abnormality. Gut 1970; 11: 727–731.

    Article  CAS  PubMed  Google Scholar 

  28. McLaren GD, Nathanson MH, Jacobs A, Trevett D, Thomson W. Control of iron absorption in hemochromatosis. Mucosal iron kinetics in vivo. Ann NY Acad Sci 1988; 526: 185–198.

    Article  CAS  PubMed  Google Scholar 

  29. McLaren GD, Nathanson MH, Jacobs A, Trevett D, Thomson W. Regulation of intestinal iron absorption and mucosal iron kinetics in hereditary hemochromatosis. J Lab Clin Med 1991; 117: 390–401.

    CAS  PubMed  Google Scholar 

  30. Francanzani AL, Fargion S, Romano R, Piperno A, Arosio P, Ruggeri G, Ronchi G, Fiorelli G. Immunohistochemical evidence for a lack of ferritin in duodenal absorptive epithelial cells in idiopathic hemochromatosis. Gastroenterology 1989; 96: 1071–1078.

    CAS  PubMed  Google Scholar 

  31. Pietrangelo A, Casalgrandi G, Quaglino D, Gualdi R, Conte D, Milani S, Montosi G, Cesarini L, Ventura E, Cairo G. Duodenal ferritin synthesis in genetic hemochromatosis. Gastroenterology 1995; 108: 208–217.

    Article  CAS  PubMed  Google Scholar 

  32. Whittaker P, Skikne BS, Covell AM, Flowers C, Cooke A, Lynch SR, Cook JD. Duodenal iron proteins in idiopathic hemochromatosis. J Clin Invest 1989; 83: 261–267.

    Article  CAS  PubMed  Google Scholar 

  33. Fillet G, Beguin Y, Baldelli L. Model of reticuloendothelial iron metabolism in humans: abnormal behavior in idiopathic hemochromatosis and in inflammation. Blood 1989; 74: 844–851.

    CAS  PubMed  Google Scholar 

  34. Parkkila S, Waheed A, Britton RS, Bacon BR, Zhou XY, Tomatsu S, Fleming RE, Sly WS. Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci USA 1997; 94: 13198–13202.

    Article  CAS  PubMed  Google Scholar 

  35. Waheed A, Parkkila S, Zhou XY, Tomatsu S, Tsuchihashi Z, Feder JN, Schatzman RC, Britton RS, Bacon BR, Sly WS. Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with (32-microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells. Proc Natl Acad Sci USA 1997; 94: 12384–12389.

    Article  CAS  PubMed  Google Scholar 

  36. Santos M, Schilham MW, Rademakers LH, Marx JJ, de Sousa M, Clevers H. Defective iron homeostasis in 132-microglobulin knockout mice recapitulates hereditary hemochromatosis in man J Exp Med 1996; 184: 1975–1985.

    CAS  Google Scholar 

  37. Gordeuk V, Mukiibi J, Hasstedt SJ, Samowitz W, Edwards CQ, West G, Ndambire S, Emmanual J, Nkanza N, Chapanduka Z, et al. Iron overload in Africa. Interaction between a gene and dietary iron content. N Engl J Med 1992; 326: 95–100.

    Article  CAS  PubMed  Google Scholar 

  38. Barton JC, Edwards CQ, Bertoli LF, Shroyer TW, Hudson SL. Iron overload in African Americans. Am J Med 1995; 99: 616–623.

    Article  CAS  PubMed  Google Scholar 

  39. Wuropa RP, Gordeuk VR, Brittenham GM, Khiyami A, Schechter GP, Edwards CQ. Primary iron overload in African Americans. Am J Med 1996; 101: 9–18.

    Article  Google Scholar 

  40. McLaren CE, Gordeuk VR, Looker AC, Hasselblad V, Edwards CQ, Griffen LM, Kushner JP, Brittenham GM. Prevalence of heterozygotes for hemochromatosis in the white population of the United States. Blood 1995; 86: 2021–2027.

    CAS  PubMed  Google Scholar 

  41. Gordeuk VR, McLaren CE, Looker AC, Hasselblad V, Brittenham GM. Distribution of transferrin staurations in the African-American population. Blood 1998; 91: 2175–2179.

    CAS  PubMed  Google Scholar 

  42. Eason RJ, Adams PC, Aston CE, Searle J. Familial iron overload with possible autosomal dominant inheritance. Aust N Z J Med 1990; 20: 226–230.

    Article  CAS  PubMed  Google Scholar 

  43. Hamill RL, Woods JC, Cook BA. Congenital atransferrinemia. A case report and review of the literature. Am J Clin Pathol 1991; 96: 215–218.

    CAS  PubMed  Google Scholar 

  44. Hayashi A, Wada Y, Suzuki T, Shimizu A. Studies on familial hypotransferrinemia: unique clinical course and molecular pathology. Am J Hum Genet 1993; 53: 201–213.

    CAS  PubMed  Google Scholar 

  45. Goya N, Miyazaki S, Kodate S, Ushio B. A family of congenital atransferrinemia. Blood 1972; 40: 239–245.

    CAS  PubMed  Google Scholar 

  46. Huggenvik JI, Craven CM, Idzerda RL, Bernstein S, Kaplan J, McKnight GS. A splicing defect in the mouse transferrin gene leads to congenital atransferrinemia. Blood 1989; 74: 482–486.

    CAS  PubMed  Google Scholar 

  47. Baker E, Morgan EH. Iron transport. In: Brock JH, Halliday JW, Pippard MJ, Powell LW, eds. Iron Metabolism in Health and Disease. WB Saunders Company, London, 1994, pp. 63–95.

    Google Scholar 

  48. Bernstein SE. Hereditary hypotransferrinemia with hemosiderosis; a murine disorder resembling human atransferrinemia. J Lab Clin Med 1987; 110: 690–705.

    CAS  PubMed  Google Scholar 

  49. Simpson RJ, Konijn AM, Lombard M, Raja KB, Salisbury JR, Peters TJ. Tissue iron loading and histopathological changes in hypotransferrinaemic mice. J Pathol 1993; 171: 237–244.

    Article  CAS  PubMed  Google Scholar 

  50. Craven CM, Alexander J, Eldridge M, Kushner JP, Bernstein S, Kaplan J. Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis. Proc Natl Acad Sci USA 1987; 84: 3457–3461.

    Article  CAS  PubMed  Google Scholar 

  51. Girelli D, Olivieri O, De Franceschi L, Corrocher R, Bergamaschi G, Cazzola M. A linkage between hereditary hyperferritinaemia not related to iron overload and autosomal dominant congenital cataract. Br J Haematol 1995; 90: 931–934.

    Article  CAS  PubMed  Google Scholar 

  52. Bonneau D, Winter Fuseau I, Loiseau MN, Amati P, Berthier M, Oriot D, Beaumont C. Bilateral cataract and high serum ferritin: a new dominant genetic disorder? J Med Genet 1995; 32: 778–779.

    Article  CAS  PubMed  Google Scholar 

  53. Martin ME, Fargion S, Brissot P, Pellat B, Beaumont C. A point mutation in the bulge of the iron-responsive element of the L ferritin gene in two families with the hereditary hyperferritinemia-cataract syndrome. Blood 1998; 91: 319–323.

    CAS  PubMed  Google Scholar 

  54. Girelli D, Corrocher R, Bisceglia L, Olivieri O, De Franceschi L, Zelante L, Gasparini P. Molecular basis for the recently described hereditary hyperferritinemia-cataract syndrome: a mutation in the iron-responsive element of ferritin L-subunit gene (the “Verona mutation”) Blood 1995; 86: 4050–4053.

    CAS  PubMed  Google Scholar 

  55. Beaumont C, Leneuve P, Devaux I, Scoazec JY, Berthier M, Loiseau MN, Grandchamp B, Bonneau D. Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nat Genet 1995; 11: 444–446.

    Article  CAS  PubMed  Google Scholar 

  56. Girelli D, Corrocher R, Bisceglia L, Olivieri O, Zelante L, Panozzo G, Gasparini P. Hereditary hyperferritinemia-cataract syndrome caused by a 29-base pair deletion in the iron responsive element of ferritin L-subunit gene. Blood 1997; 90: 2084–2088.

    CAS  PubMed  Google Scholar 

  57. Cazzola M, Bergamaschi G, Tonon L, Arbustini E, Grasso M, Vercesi E, Barosi G, Bianchi PE, Cairo G, Arosio P. Hereditary hyperferritinemia-cataract syndrome: relationship between phenotypes and specific mutations in the iron-responsive element of ferritin light-chain mRNA. Blood 1997; 90: 814–821.

    CAS  PubMed  Google Scholar 

  58. Levi S, Girelli D, Perrone F, Pasti M, Beaumont C, Corrocher R, Albertini A, Arosio P. Analysis of ferritins in lymphoblastoid cell lines and in the lens of subjects with hereditary hyperferritinemia-cataract syndrome. Blood 1998; 91: 4180–4187.

    CAS  PubMed  Google Scholar 

  59. Koenig M, Mandel JL. Deciphering the cause of Friedrich ataxia. Curr Opin Neurobiol 1997; 7: 689–694.

    Article  CAS  PubMed  Google Scholar 

  60. Gray JV, Johnson KJ. Waiting for frataxin. Nat Genet 1997; 16: 323–325.

    Article  CAS  PubMed  Google Scholar 

  61. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michelle G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel J-L, Cocozza S, Koenig M, Pandolfo M. Friedreich’ s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271: 1423–1427.

    Article  CAS  PubMed  Google Scholar 

  62. Koutnikova H, Campuzano V, Foury F, Dolle P, Cazzalini O, Koenig M. Studies of human mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 1997; 16: 345–351.

    Article  CAS  PubMed  Google Scholar 

  63. Wilson RB, Roof DM. Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nat Genet 1997; 16: 352–357.

    Article  CAS  PubMed  Google Scholar 

  64. Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S, Trottier Y, Kish SJ, Faucheux B, Trouillas P, Authier FJ, Durr A, Mandel JL, Vescovi A, Pandolfo M, Koenig M. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 1997; 6: 1771–1780.

    Article  CAS  PubMed  Google Scholar 

  65. Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J. Regulation of mitochondrial iron accumulation by Ylhlp, a putative homolog of frataxin. Science 1997; 276: 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  66. Foury F, Cazzalini O. Deletion of the yeast homologue of the human gene associated with Friedreich’ s ataxia elicits iron accumulation in mitochondria. FEBS Lett 1997; 411: 373–377.

    Article  CAS  PubMed  Google Scholar 

  67. Lamarche JB, Shapcott D, Cote M, Lemieux B. Cardiac iron deposits in Friedreich’s ataxia. In: Lechtenberg R, ed. Handbook of Cerebellar Diseases. Marcel Dekker, New York, 1993,pp. 373–377.

    Google Scholar 

  68. Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 1997; 17: 215–217.

    Article  CAS  PubMed  Google Scholar 

  69. Gitlin JD. Aceruloplasminemia. Pediatr Res 1998; 44: 271–276.

    Article  CAS  PubMed  Google Scholar 

  70. Miyajima H, Nishimura Y, Mizoguchi K, Sakamoto M, Shimizu T, Honda N. Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology 1987; 37: 761–767.

    Article  CAS  PubMed  Google Scholar 

  71. Logan JI, Harveyson KB, Wisdom GB, Hughes AE, Archbold GP. Hereditary ceruloplasmin deficiency dementia and diabetes. Quarter J Med 1994; 87: 663–670.

    CAS  Google Scholar 

  72. Morita H, Ikeda S, Yamamoto K, Morita S, Yoshida K, Nomoto S, Kato M, Yanagisawa N. Hereditary ceruloplasmin deficiency with hemosiderosis: a clinicopathological study of a Japanese family. Ann Neurol 1995; 37: 646–656.

    Article  CAS  PubMed  Google Scholar 

  73. Yoshida K, Furihata K, Takeda S, Nakamura A, Yamamoto K, Morita H, Hiyamuta S, Ikeda S, Shimizu N, Yanagisawa N. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet 1995; 9: 267–272.

    Article  CAS  PubMed  Google Scholar 

  74. Okamoto N, Wada S, Oga T, Kawabata Y, Baba Y, Habu D, Takeda Z, Wada Y. Hereditary ceruloplasmin deficiency with hemosiderosis. Hum Genet 1996; 97: 755–758.

    Article  CAS  PubMed  Google Scholar 

  75. Miyajima H, Takahashi Y, Kamata T, Shimizu H, Sakai N, Gitlin JD. Use of desferrioxamine in the treatment of aceruloplasminemia. Ann Neurol 1997; 41: 404–407.

    Article  CAS  PubMed  Google Scholar 

  76. Harris ZL, Klomp LWJ, Gitlin JD. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am J Clin Nutr 1998; 67 (suppl), 972S–977S.

    CAS  PubMed  Google Scholar 

  77. Calabrese L, Carbonaro M, Musci G. Presence of coupled trinuclear copper cluster in mammalian ceruloplasmin is essential for efficient electron transfer to oxygen. J Biol Chem 1993; 264: 6183–6187.

    Google Scholar 

  78. Roeser HP, Lee GR, Nacht S, Cartwright GE. The role of ceruloplasmin in iron metabolism. J Clin Invest 1970; 49: 2408–2417.

    Article  CAS  PubMed  Google Scholar 

  79. Osaki S, Johnson DA, Frieden E. The mobilization of iron from the perfused mammalian liver by a serum copper enzyme ferroxiase I. J Biol Chem 1971; 246: 3018–3023.

    CAS  PubMed  Google Scholar 

  80. Klomp LWJ, Gitlin JD. Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia. Hum Mol Genet 1996; 5: 1989–1996.

    Article  CAS  PubMed  Google Scholar 

  81. Mukhopadhyay CK, Attieth ZK, Fox PL. Role of ceruloplasmin in cellular iron uptake. Science 1998; 279: 714–717.

    Article  CAS  PubMed  Google Scholar 

  82. Vulpe CD, Kuo Y-M, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ. Hephaestin: a ceruloplasmin homologue implicated in intestinal iron transport and its defect in the sla mouse. Nat Genet 1999; 21: 195–199.

    Article  CAS  PubMed  Google Scholar 

  83. Buchanan GR, Sheehan RG. Malabsorption and defective utilization of iron in three siblings. J Pediatr 1981; 98: 723–728.

    Article  CAS  PubMed  Google Scholar 

  84. Hartman KR, Barker JA. Microcytic anemia with iron malabsorption: an inherited disorder of iron metabolism. Am J Hematol 1996; 51: 269–275.

    Article  CAS  PubMed  Google Scholar 

  85. McCance RA, Widdowson EM. Absorption and excretion of iron. Lancet 1937;ii:680–684.

    Google Scholar 

  86. Bannerman RM, Edwards JA, Pinkerton PH. Hereditary disorders of the red cell in animals. Prog Hematol 1973; 8: 131–179.

    CAS  PubMed  Google Scholar 

  87. Russell ES. Hereditary anemias of the mouse: a review for geneticists. Adv Genet 1979; 20: 357–459.

    Article  CAS  PubMed  Google Scholar 

  88. Bannerman RM, Edwards JA, Kreimer Birnbaum M, McFarland E, Russell ES. Hereditary microcytic anaemia in the mouse; studies in iron distribution and metabolism. Br J Haematol 1972; 23: 235–245.

    Article  CAS  PubMed  Google Scholar 

  89. Garrick M, Scott D, Walpole S, Finkelstein E, Whitbred J, Chopra S, Trivikram L, Mayes D, Rhodes D, Cabbagestalk K, Oklu R, Sadiq A, Mascia B, Hoke J, Garrick L. Iron supplementation moderates but does not cure the Belgrade anemia. Biometals 1997; 10: 65–76.

    Article  CAS  PubMed  Google Scholar 

  90. Farcich EA, Morgan EH. Diminished iron acquisition by cells and tissues of Belgrade laboratory rats. Am J Physiol 1992; 262: R220–R224.

    CAS  PubMed  Google Scholar 

  91. Fleming MD, Trenor CC, Su MA, Foernzler D, Beier DR, Dietrich WF, Andrews NC. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transport gene. Nat Genet 1997; 16: 383–386.

    CAS  PubMed  Google Scholar 

  92. Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence for a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci USA 1998; 95: 1148–1153.

    Article  CAS  PubMed  Google Scholar 

  93. Garrick LM, Edwards JA, Hoke JE, Bannerman RM. Diminished acquisition of iron by reticulocytes from mice with hemoglobin deficit. Exp Hematol 1987; 15: 671–675.

    CAS  PubMed  Google Scholar 

  94. Anderson GJ, Murphy TL, Cowley L, Evans BA, Halliday JW, McLaren GD. Mapping the gene for murine sex-linked anemia: an inherited defect of intestinal iron absorption in the mouse. Genomics 1998; 48: 34–39.

    Article  CAS  PubMed  Google Scholar 

  95. Kishi F, Tabuchi M. Human natural resistance-associated macrophage protein 2: gene cloning and identification. Biochem Biophys Res Commun 1998; 251: 775–783.

    Article  CAS  PubMed  Google Scholar 

  96. Danks DM. Disorders of copper transport. In: Scriver CR, Beaudet AI, Sly WS, Valle D, eds. The Metabolic Basis of Inherited Disease. McGraw-Hill, New York, 1995, pp. 2211–2235.

    Google Scholar 

  97. Vulpe CD, Packman S. Cellular copper transport. Annu Rev Nutr 1995; 15: 293–322.

    Article  CAS  PubMed  Google Scholar 

  98. DiDonato M, Sarkar B. Copper transport and its alterations in Menkes and Wilson diseases. Biochim Biophys Acta 1997; 1360: 3–16.

    Article  CAS  PubMed  Google Scholar 

  99. Turner Z, Horn N. Menkes disease: recent advances and new aspects. J Med Genet 1997; 34: 265–274.

    Article  Google Scholar 

  100. Kaler SG. Diagnosis and therapy of Menkes syndrome, a genetic form of copper deficiency. Am J Clin Nutr 1998; 67 (suppl): 1029S–1034S.

    CAS  PubMed  Google Scholar 

  101. Lucky AW, Hsia YE. Distribution of ingested and injected radiocopper in two patients with Menkes’ kinky-hair disease. Pediatr Res 1980; 13: 1280–1284.

    Article  Google Scholar 

  102. Camakaris J, Mann JR, Danks DM. Copper metabolism in mottled mouse mutants: copper concentrations in tissues during development. Biochem J 1979; 180: 597–604.

    CAS  PubMed  Google Scholar 

  103. Darwish HM, Hoke JE, Ettinger MJ. Kinetics of Cu(II) transport and accumulation by hepatocytes from copper-deficient mice and the brindled mouse model of Menkes disease. J Biol Chem 1983; 258: 13621–13626.

    CAS  PubMed  Google Scholar 

  104. Goka TJ, Stevenson RE, Hefferan PM, Howell RR. Menkes’ disease: a biochemical abnormality in cultured human fibroblasts. Proc Natl Acad Sci USA 1976; 73: 604–606.

    Article  CAS  PubMed  Google Scholar 

  105. Camakaris J, Danks DM, Ackland L, Cartwright E, Borger P, Cotton RGH. Altered copper metabolism in cultered cells from Menkes’ syndrome and mottled mouse mutants. Biochem Genet 1980; 18: 117–131.

    Article  CAS  PubMed  Google Scholar 

  106. Vulpe C, Levinson B, Whitney S, Packman S Gitschier J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 1993; 3: 7–13.

    Article  CAS  PubMed  Google Scholar 

  107. Chelly J, Tumer Z, Tonnesen T, Petterson A, Ishikawa Brush Y, Tommerup N, Horn N, Monaco AP. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 1993; 3: 14–19.

    Article  CAS  PubMed  Google Scholar 

  108. Mercer JF, Livingston J, Hall B, Paynter JA, Begy C, Chandrasekharappa S, Lockhart P, Grimes A, Bhave M, Siemieniak D, et al. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet 1993; 3: 20–25.

    Article  CAS  PubMed  Google Scholar 

  109. Das S, Levinson B, Whitney S, Vulpe C, Packman S, Gitschier J. Diverse mutations in patients with Menkes disease often lead to exon skipping. Am J Hum Genet 1994; 55: 883–889.

    CAS  PubMed  Google Scholar 

  110. Turner Z, Tonnesen T, Horn N. Detection of genetic defects in Menkes disease by direct mutation analysis and its implications in carrier diagnosis. J Inherit Metab Dis 1994; 17: 267–270.

    Article  Google Scholar 

  111. Turner Z, Lund C, Tolshave J, Vural B, Tonnesen T, Horn N. Identification of point mutations in 41 unrelated patients affected with Menkes disease. Am J Hum Genet 1997; 60: 63–71.

    Google Scholar 

  112. Das S, Levinson B, Vulpe C, Whitney S, Gitschier J, Packman S. Similar splicing mutations of the Menkes/mottled copper-transporting ATPase gene in occipital horn syndrome and the blotchy mouse. Am J Hum Genet 1995; 56: 570–576.

    CAS  PubMed  Google Scholar 

  113. Kaler SG, Gallo LK, Proud VK, Percy AK, Mark Y, Segal NA, Goldstein DS, Holmes CS, Gahl WA. Occipital horn syndrome and a mild Menkes phenotype associated with splice site mutations at the MNK locus. Nat Genet 1994; 8: 195–202.

    Article  CAS  PubMed  Google Scholar 

  114. Camakaris J, Petris MJ, Bailey L, Shen P, Lockhart P, Glover TW, Barcroft C, Patton J, Mercer JF. Gene amplification of the Menkes (MNK; ATP7A) P-type ATPase gene of CHO cells is associated with copper resistance and enhanced copper efflux. Hum Mol Genet 1995; 4: 2117–2123.

    Article  CAS  PubMed  Google Scholar 

  115. Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 1996; 15: 6084–6095.

    CAS  PubMed  Google Scholar 

  116. Dierick HA, Adam AN, Escara Wilke JF, Glover TW. Immunocytochemical localization of the Menkes copper transport protein (ATP7A) to the trans-Golgi network. Hum Mol Genet 1997; 6: 409–416.

    Article  CAS  PubMed  Google Scholar 

  117. Yamaguchi Y, Heiny ME, Suzuki M, Gitlin JD. Biochemical characterization and intracellular localization of the Menkes disease protein. Proc Natl Acad Sci USA 1996; 93: 14030–14035.

    Article  CAS  PubMed  Google Scholar 

  118. Roberts EA, Cox DW. Wilson disease. Baillieres Clin Gastroenterol 1998; 12: 237–256.

    Article  CAS  Google Scholar 

  119. Bingham MJ, Ong TJ, Summer KH, Middleton RB, McArdle HJ. Physiologic function of the Wilson disease gene product, ATP7B. Am J Clin Nutr 1998; 67 (suppl) 982S–987S.

    CAS  PubMed  Google Scholar 

  120. Dobyns WB, Goldstein NP, Gordon H. Clinical spectrum of Wilson’s disease. Mayo Clin Proc 1979; 54: 35–42.

    CAS  PubMed  Google Scholar 

  121. Sternlieb I. Perspectives on Wilson’s disease. Hepatology 1990; 12: 1234–1239.

    Article  CAS  PubMed  Google Scholar 

  122. Schilsky ML, Sternlieb I. Overcoming obstacles to the diagnosis of Wilson’s disease. Gastroenterology 1997; 113: 350–353.

    CAS  PubMed  Google Scholar 

  123. Poison RJ, Rolles K, Caine RY, Williams R, Marsden D. Reversal of severe neurological manifestations of Wilson’s disease following orthotopic liver transplantation. Quarter J Med 1987; 244: 685–691.

    Google Scholar 

  124. Gibbs K, Walshe JM. Biliary excretion of copper in Wilson’s disease. Lancet 1980;ii:538–539.

    Google Scholar 

  125. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 1993; 5: 327–337.

    Article  CAS  PubMed  Google Scholar 

  126. Yamaguchi Y, Heiny ME, Gitlin JD. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Commun 1993; 197: 271–277.

    Article  CAS  PubMed  Google Scholar 

  127. Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM, et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 1993; 5: 344–350.

    Article  CAS  PubMed  Google Scholar 

  128. Bull PC, Cox DW. Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet 1994; 10: 246–252.

    Article  CAS  PubMed  Google Scholar 

  129. Shah AB, Chernov I, Zhang HT, Ross BM, Das K, Lutsenko S, Parano E, Pavone L, Evgrafov O, Ivanova Smolenskaya IA, Anneren G, Westermark K, Urrutia FH, Penchaszadeh GK, Sternlieb I, Scheinberg IH, Gilliam TC, Petrukhin K Identification and analysis of mutations in the Wilson disease gene (ATP7B): population frequencies genotype-phenotype correlation and functional analyses. Am J Hum Genet 1997; 61: 317–328.

    Article  CAS  PubMed  Google Scholar 

  130. Thomas GR, Forbes JR, Roberts EA, Walshe JM, Cox DW. The Wilson disease gene: spectrum of mutations and their consequences. Nat Genet 1995; 9: 210–217.

    Article  CAS  PubMed  Google Scholar 

  131. Bingham MJ, Ong TJ, Ingledew WJ, McArdle HJ. ATP-dependent copper transporter in the Golgi apparatus of rat hepatocytes transports Cu(II) not Cu(I). Am J Physiol 1996; 271: G741–G746.

    CAS  PubMed  Google Scholar 

  132. Hung IH, Suzuki M, Yamaguchi Y, Yuan DS, Klausner RD, Gitlin JD. Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem 1997; 272: 21461–21466.

    Article  CAS  PubMed  Google Scholar 

  133. Yang XL, Miura N, Kawarada Y, Terada K, Petrukhin K, Gilliam T, Sugiyama T. Two forms of Wilson disease protein produced by alternative splicing are localized in distinct cellular compartments. Biochem J 1997; 326: 897–902.

    CAS  PubMed  Google Scholar 

  134. Payne AS, Kelly EJ, Gitlin JD. Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H1069Q mutation. Proc Natl Acad Sci USA 1998; 95: 10854–10859.

    Article  CAS  PubMed  Google Scholar 

  135. Yuan DS, Stearman R, Dancis A, Dunn T, Beeler T, Klausner RD. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci USA 1995; 92: 2632–2636.

    Article  CAS  PubMed  Google Scholar 

  136. Camakaris J, Phillips M, Danks DM, Brown R, Stevenson T. Mutations in humans and animals which affect copper metabolism. J Inherit Metab Dis 1983; 6 (Suppl 1): 44–50.

    Article  PubMed  Google Scholar 

  137. Levinson B, Vulpe C, Elder B, Martin C, Verley F, Packman S, Gitschier J. The mottled gene is the mouse homologue of the Menkes disease gene. Nat Genet 1994; 6: 369–373.

    Article  CAS  PubMed  Google Scholar 

  138. Reed V, Boyd Y. Mutation analysis provides additional proof that mottled is the mouse homologue of Menkes’ disease. Hum Mol Genet 1997; 6: 417–423.

    Article  CAS  PubMed  Google Scholar 

  139. Cecchi C, Biasotto M, Tosi M, Avner P. The mottled mouse as a model for human Menkes disease: identification of mutations in the Atp7a gene. Hum Mol Genet 1997; 6: 425–433.

    Article  CAS  PubMed  Google Scholar 

  140. Grimes A, Hearn CJ, Lockhart P, Newgreen DF, Mercer JF. Molecular basis of the brindled mouse mutant (Mo(br)): a murine model of Menkes disease. Hum Mol Genet 1997; 6: 1037–1042.

    Article  CAS  PubMed  Google Scholar 

  141. Theophilos MB, Cox DW, Mercer JF. The toxic milk mouse is a murine model of Wilson disease. Hum Mol Genet 1996; 5: 1619–1624.

    Article  CAS  PubMed  Google Scholar 

  142. Wu J, Forbes JR, Chen HS, Cox DW. The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nat Genet 1994; 7: 541–545.

    Article  CAS  PubMed  Google Scholar 

  143. Kuo YM, Gitschier J, Packman S. Developmental expression of the mouse mottled and toxic milk genes suggests distinct functions for the Menkes and Wilson disease copper transporters. Hum Mol Genet 1997; 6: 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  144. Mercer JF. Menkes syndrome and animal models. Am J Clin Nutr 1998; 67 (suppl): 1022S–1028S.

    CAS  PubMed  Google Scholar 

  145. Masson W, Hughes H, Papworth D, Boyd Y, Horn N. Abnormalities of copper accumulation in cell lines established from nine different alleles of mottled are the same as those found in Menkes disease. J Med Genet 1997; 34: 729–732.

    Article  CAS  PubMed  Google Scholar 

  146. Biempica L, Rauch H, Quintana N, Sternlieb I. Morphological and chemical studies on a murine mutation (toxic milk) resulting in hepatic copper toxicosis. Lab Invest 1988; 59: 500–508.

    CAS  PubMed  Google Scholar 

  147. Nagano K, Nakamura K, Urakami K-I, Umeyama K, Uchiyama H, Koiwai K, Hattori S, Yamamoto T, Matsuda I, Endo F. Intracellular distribution of the Wilson’s disease gene product (ATPase7B) after in vitro and in vivo exogenous expression in hepatocytes from the LEC rat an animal model of Wilson’ s disease. Hepatology 1998; 27: 799–807.

    Article  CAS  PubMed  Google Scholar 

  148. Yoshida K, Tokusashi Y, Lee G-H, Ogawa K. Intrahepatic transplantation of normal hepatocytes prevents Wilson’s disease in Long-Evans Cinnamon rats. Gastroenterology 1996; 111: 1654–1660.

    Article  CAS  PubMed  Google Scholar 

  149. Aggett PJ. Acrodermatitis enteropathica. J Inherit Metab Dis 1983; 6 (Suppl 1): 39–43.

    Article  PubMed  Google Scholar 

  150. Van Wouwe JP. Clinical and laboratory diagnosis of acrodermatitis enteropathica. Eur J Pediatr 1989; 149: 2–8.

    Article  PubMed  Google Scholar 

  151. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiological reviews 1993; 73: 79–118.

    Article  CAS  PubMed  Google Scholar 

  152. Atherton DJ, Muller DPR, Aggett PJ, Harries JT. A defect in zinc uptake by jejunal biopsies in acrodermatitis enteropathica. Clin Sci 1979; 56: 505–507.

    CAS  PubMed  Google Scholar 

  153. Weissman K, Hoe S, Knudson L, Sorensen SS. 65Zinc absorption in patients suffering from acrodermatitis enteropathica and in normal adults assessed by whole-body counting technique. Br J Dermatol 1979; 101: 573–579.

    Article  Google Scholar 

  154. Sandstrom B, Cederblad A, Lindblad BS, Lonnerdal B. Acrodermatitis enteropathica: zinc metabolism, copper status and immune function. Arch Pediatr Adolesc Med 1994; 148: 980–985.

    Article  CAS  PubMed  Google Scholar 

  155. Grider A, Young EM. The acrodermatitis enteropathica mutation transiently affects zinc metabolism in human fibroblasts. J Nutr 1996; 126: 219–224.

    CAS  PubMed  Google Scholar 

  156. Vazquez F, Grider A. The effect of the acrodermatitis enteropathica mutation on zinc uptake in human fibroblasts. Biol Trace Elem Res 1995; 50: 109–117.

    Article  CAS  PubMed  Google Scholar 

  157. Grider A, Lin YF, Muga SJ. Differences in the cellular zinc content and 5’-nucleotidase activity of normal and acrodermatitis enteropathica (AE) fibroblasts. Biol Trace Elem Res 1998; 61: 1–8.

    Article  CAS  PubMed  Google Scholar 

  158. Grider A, Mouat MF. The acrodermatitis enteropathica mutation affects protein expression in human fibroblasts: analysis by two-dimensional gel electrophoresis. J Nutr 1998; 128: 1311–1314.

    CAS  PubMed  Google Scholar 

  159. Chesters JK. Zinc metabolism in animals: pathology, immunology, and genetics. J Inherit Metab Dis 1983; 6 (Suppl 1): 34–38.

    Article  CAS  PubMed  Google Scholar 

  160. Weismann K, Flagstad T. Hereditary zinc deficiency (Adema disease) in cattle, and animal parallel to acrodermatitis enteropathica. Acta Derm Venereol 1976; 56: 151–154.

    CAS  PubMed  Google Scholar 

  161. Machen M, Montgomery T, Holland R, Braselton E, Dunstan R, Brewer G, Yuzbasiyan-Gurkan V. Bovine hereditary zinc deficiency: lethal trait A 46. J Vet Diagn Invest 1996; 8: 219–227.

    Article  CAS  PubMed  Google Scholar 

  162. AcklandML and MercerJF. 1992; The murine mutation, lethal milk, results in production of zinc-deficient milk J Nutr 122 1214–1218.

    Google Scholar 

  163. Lee DY, Shay NF, Cousins RJ. Altered zinc metabolism occurs in murine lethal milk syndrome. J Nutr 1992; 122: 2233–2238.

    CAS  PubMed  Google Scholar 

  164. Piletz JE, Ganschow RE. Lethal milk mutation results in dietary zinc deficiency in nursing mice. Am J Clin Nutr 1978; 31: 560–562.

    CAS  PubMed  Google Scholar 

  165. Huang L, Gitschier J. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet 1998; 17: 292–297.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, G.J., McLaren, G.D. (2000). Genetic Disorders of Trace Element Metabolism. In: Bogden, J.D., Klevay, L.M. (eds) Clinical Nutrition of the Essential Trace Elements and Minerals. Nutrition ◊ and ◊ Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-040-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-040-7_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-090-8

  • Online ISBN: 978-1-59259-040-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics