Skip to main content

Oxidative Stress and Antioxidants in Type 2 Diabetes

  • Chapter

Part of the book series: Nutrition and Health ((NH))

Abstract

Diabetes mellitus is a leading cause of morbidity and mortality mostly because of its vascular complications (1,2). Diabetic complications can be broadly classified into microvascular (retinopathy, nephropathy) and macrovascular (coronary artery disease [CAD], cerebrovascular disease, peripheral vascular disease). This chapter focuses on the role of oxidative stress in the genesis of diabetic macrovascular disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pyorala K, Laasko M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 1987; 3: 463–524.

    Article  PubMed  CAS  Google Scholar 

  2. Everhart JE, Pettitt DJ, Knowler WC, et al. Medial arterial calcification and its association with mortality and complications of diabetes. Diabetologia 1988; 31: 16–23.

    PubMed  CAS  Google Scholar 

  3. Bierman E. Atherogenesis in diabetes. Arterioscl Thromb 1992; 12: 647–656.

    Article  PubMed  CAS  Google Scholar 

  4. Banga JD, Sixma JJ. Diabetes mellitus, vascular disease and thrombosis. Clin Hematol 1986; 15: 465–492.

    CAS  Google Scholar 

  5. Jones RL, Peterson CM. Hematologic alterations in diabetes mellitus. Am J Med 1981; 70: 339–352.

    Article  PubMed  CAS  Google Scholar 

  6. Brunzell JD, Chait A, Bierman EL. Plasma lipoproteins in human diabetes mellitus. In: The Diabetes Annual, Vol 1. Albertini KG, eds. Amsterdam: Elsevier, 1985; 463–479.

    Google Scholar 

  7. Howard BV. Lipoprotein metabolism in diabetes mellitus. J Lipid Res 1987; 28: 613–628.

    PubMed  CAS  Google Scholar 

  8. Barakat HA, Carpenter JW, McLendon VD, et al. Influence of obesity, IGT and NIDDM on LDL structure and composition: possible link between hyperinsulinemia and atherosclerosis. Diabetes 1990; 39: 1527–1533.

    Article  PubMed  CAS  Google Scholar 

  9. Hulley SB, Rosenman RH, Bawol RD, Brand RJ. Epidemiology as a guide to clinical decisions: association between TG and CHD. N Engl J Med 1980; 302: 1383–1389.

    Article  PubMed  CAS  Google Scholar 

  10. Pietri AO, Dunn FL, Grundy SM, Raskin P. The effect of continuous subcutaneous insulin infusion on VLDL TG metabolism in Type 1 diabetes mellitus. Diabetes 1983; 32: 75–81.

    PubMed  CAS  Google Scholar 

  11. Taskinen MR, Kuusi T, Helve E, et al. Insulin therapy induces anti-atherogenic changes of serum lipoproteins in NIDDM. Arteriosclerosis 1988; 8: 168–177.

    Article  PubMed  CAS  Google Scholar 

  12. Lyons TJ. Oxidized low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes? Diabetic Med 1991; 8: 411–419.

    Article  PubMed  CAS  Google Scholar 

  13. Chait A, Brazg R, Tribble D, Krauss R. Susceptibility of small, dense LDL to oxidative modification in subjects with pattern B. Am J Med 1993; 94: 350–356.

    Article  PubMed  CAS  Google Scholar 

  14. Laasko M, Pyorala K, Sarlund H, Voutilainen E. Lipid and lipoprotein abnormalities associated with CAD in patients with IDDM. Arteriosclerosis 1986; 6: 679–684.

    Article  Google Scholar 

  15. Gordon T, Castelli WP, Hjortland MC, et al. Diabetes, blood lipids and role of obesity in CAD risk for women: The Framingham Study. Ann Intern Med 1977; 87: 393–397.

    PubMed  CAS  Google Scholar 

  16. Reaven G. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med 1993; 44: 121–131.

    Article  PubMed  CAS  Google Scholar 

  17. DeFronzo R, Ferrannini E. Insulin resistance. A Multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173–194.

    Article  PubMed  CAS  Google Scholar 

  18. Lyons TJ, Jenkins Ai. Lipoprotein glycation and its metabolic consequences. Curr Opin Lipidol 1997; 8: 174–180.

    Article  PubMed  CAS  Google Scholar 

  19. Brownlee M. Glycation products and the pathogenesis of diabetic complications. Diabetes Care 1992; 15: 1835–1843.

    Article  PubMed  CAS  Google Scholar 

  20. Bucala R, Tracey K, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 1991; 87: 432–438.

    Article  PubMed  CAS  Google Scholar 

  21. Bucala R, Cerami, A. Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv Pharmacol 1992; 23: 1–34.

    Article  PubMed  CAS  Google Scholar 

  22. Bucala R, Makita Z, Koschinski T, Cerami A, Vlassara H. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA 1993; 90: 6434–6438.

    Article  PubMed  CAS  Google Scholar 

  23. Lopes-Virella M, Klein R, Lyons T, Stevenson H, Witztum J. Glycosylation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes 1988; 37: 550–557.

    Article  PubMed  CAS  Google Scholar 

  24. Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science 1986; 232: 1629–1632.

    Article  PubMed  CAS  Google Scholar 

  25. Witztum JL, Steinberg D. Role of Ox-LDL in atherogenesis. J Clin Invest 1991; 88: 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  26. Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenesis. Free Rad Biol Med 1992; 92: 127–143.

    Google Scholar 

  27. Devaraj S, halal I. Oxidized LDL and atherosclerosis. Int J Clin Lab Res 1996, 26: 178–184.

    Article  PubMed  CAS  Google Scholar 

  28. Strain J. Disturbances of micronutrient and antioxidant status in diabetes. Proc Nutr Soc 1991; 50: 591–604.

    Article  PubMed  CAS  Google Scholar 

  29. Baynes J. Perspectives in diabetes. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40: 405–412.

    Article  PubMed  CAS  Google Scholar 

  30. Sinclair A, Barnett A, Lunec J. Free radicals and antioxidant systems in health and disease. Br J Hosp Med 1990; 43: 334–344.

    PubMed  CAS  Google Scholar 

  31. Nath N, Chari S, Rath A. SOD in diabetic polymorphonuclear lymphocytes. Diabetes 1984; 33: 586–589.

    Article  PubMed  CAS  Google Scholar 

  32. Kitahara M, Eyre H, Lynch R, Rallison M, Hill H. Metabolic activity of diabetic monocytes. Diabetes 1980; 29: 251–256.

    PubMed  CAS  Google Scholar 

  33. Hiramatsu K, Rosen H, Heinecke J, Wollbauer G, Chait A. Superoxide initiates oxidation of low density lipoprotein by human monocytes. Arteriosclerosis 1987; 7: 55–60.

    Article  PubMed  CAS  Google Scholar 

  34. Sakurai T, Tsuchiya S. Superoxide production from nonenzymatically glycated protein. Fed Eur Biochem Soc 1988; 236: 406–410.

    Article  CAS  Google Scholar 

  35. Sakurai T, Sugioka K, Nakano M. 02 generation and lipid peroxidation during the oxidation of glycated polypeptide, glycated polylysine, in the presence of iron-ADP. Biochem Biophys Acta 1990; 1043: 17–33.

    Google Scholar 

  36. Babiy A, Gebicki J, Sullivan DR, Willey K. Increased oxidizability of plasma lipoproteins in diabetic patients can be decreased by probucol therapy and is not due to glycation. Biochem Pharmacol 1992; 43: 995–1000.

    Article  PubMed  CAS  Google Scholar 

  37. Beaudeaux J, Guillausseau P, Peynet J, Flourie F, et al. Enhanced susceptibility of LDL to in vitro oxidation in type 1 and 2 diabetic patients. Clin Chim Acta 1995; 239: 131–141.

    Article  Google Scholar 

  38. Cominacini L, Garbin U, pastorino AM, Pasini A, et al. Increased susceptibility of LDL to in vitro oxidation in patients with IDDM and NIDDM. Diabetes Res 1994; 26: 173–184.

    PubMed  CAS  Google Scholar 

  39. Yoshida H, Ishikawa T, Nakamura H. Vitamin E/Lipid peroxide ratio and susceptibility of LDL to oxidative modification in NIDDM. Arterioscl Thromb Vasc Biol 1997; 17: 1438–1446.

    Article  PubMed  CAS  Google Scholar 

  40. Bellomo G, Maggi E, Poli M, Agosta FG, Bollati P, Finardi G. Autoantibodies against Ox-LDLD in NIDDM. Diabetes 1995; 44: 60–66.

    Article  PubMed  CAS  Google Scholar 

  41. Witztum JL, Mahoney EM, Branks MJ, et al. Nonenzymatic glycation of LDL alters its biologic activity. Diabetes 1982; 31: 283–291.

    Article  PubMed  CAS  Google Scholar 

  42. Nourooz-zadeh J, Sarmadi J, McCarthy S, Betteridge DJ, Wolff SP. Elevated levels of authentic plasma hydroperoxides in NIDDM. Diabetes 1995; 44: 1054–1058.

    Article  CAS  Google Scholar 

  43. Oranje WA, Wolffenbuttel BHR. Lipid peroxidation and atherosclerosis in Type 2 diabetes. J Lab Clin Med 1999; 134: 19–32.

    Article  PubMed  CAS  Google Scholar 

  44. Gopaul NK, Anggard EE, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-zadeh. Plasma 8-epi-PGF2alpha are elevated in individuals with NIDDM. FEBS Lett 1995; 368: 225–229.

    Article  PubMed  CAS  Google Scholar 

  45. Davi G, Mezzett A, Vitacolonna E, Constantini F, et al. In vivo formation of 8-epi PGF2-alpha in diabetes mellitus: effect of tight control and vitamin E supplementation. Diabetes 1997; 46: 13.

    Google Scholar 

  46. Bowie A, Owens D, Collins P, Johnson A, Tomkin G. Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient? Atherosclerosis 1993; 102: 63–67.

    Article  PubMed  CAS  Google Scholar 

  47. Mullarkey J, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 1990; 173: 932–939.

    Article  PubMed  CAS  Google Scholar 

  48. Hunt, JV, Smith, CCT, Wolf, SP. Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 1990; 39: 1420–1424.

    Article  PubMed  CAS  Google Scholar 

  49. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New Engl J Med 1993; 329: 977–986.

    Article  Google Scholar 

  50. UK Prospective Diabetes Study Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837–853.

    Article  Google Scholar 

  51. Ceriello A, Giugliano D, Quatraro A, Donzella C, Diaplo G, Lefevbre PJ. AT reduction of protein glycosylation in diabetics: new prospect for prevention of diabetic complications. Diabetes Care 1991; 14: 68–72.

    Article  PubMed  CAS  Google Scholar 

  52. Ceriello A, Giugliano D, Quatraro A, Dello Russo P, Torella R. A preliminary note on inhibiting effect of alpha-tocopherol (vit. E) on protein glycation. Diab Metab 1988; 14: 40–42.

    CAS  Google Scholar 

  53. Jain SK, McVie R, Jaramillo JJ, Palmer M, Smith T. Effect of modest vitamin E supplementation on blood glycated hemoglobin and triglyceride levels and red cell indices in type 1 diabetic patients. J Amer Coll Nutr 1996; 15: 458–461.

    CAS  Google Scholar 

  54. Paolisso G, Giugliano D, D’Amore A, et al. Daily vitamin E supplementation improves control but not insulin secretion in elderly type 2 diabetic patients. Diabetes Care 1993; 16: 433–437.

    Google Scholar 

  55. Paolisso G, D’Amore A, Galzerano D, Cacciapuoti F, Varricchio G, Varricchio M, D’Onfario F. Pharmacological doses of vitamin E and insulin action in elderly subjects. Am J Clin Nutr 1994; 59: 1291–1296.

    CAS  Google Scholar 

  56. Li DJ, Devaraj S, Fuller CJ, Bucala R, Jialal I. The effect of AT on LDL oxidation and glycation:in vitro and in vivo studies. J Lipid Res 1996; 37: 1978–1986.

    PubMed  CAS  Google Scholar 

  57. Devaraj S, Jialal I. The effect of AT supplementation on monocyte function in Type 2 diabetic subjects with and without macrovascular complications. Circulation 1998; 98: 1601.

    Google Scholar 

  58. Fuller CJ, Chandalia M, Garg A, Grundy SM, Jialal I. RRR-AT acetate supplementation at pharmacological doses decreases LDL oxidation but nor protein glycation in patients with diabetes. Am J Clin Nutr 1996; 63: 753–759.

    PubMed  CAS  Google Scholar 

  59. Giardino I, Edelstein D, Brownlee M. BCL2 expression or antioxidants prevent hyperglycemia-induced formation of AGE in bovine EC. J Clin Invest 1996; 97: 1422–1428.

    Article  PubMed  CAS  Google Scholar 

  60. Reaven PD, Herold DA, Barnett J, Edelman S. Effects of Vitamin Eon susceptibility of LDL and LDL subfractions to oxidation and on protein glycation in NIDDM. Diabetes Care 1995; 18: 807–816.

    Article  PubMed  CAS  Google Scholar 

  61. Kunisaki M, Bursell SE, Clermont AC, Ishii H, Ballas LM, Jirousek MR, et al. Vitamin E prevents diabetes-induced abnormal retinal blood flow via the DAG-PKC pathway. Am J Physiol 1995; 269: E239–246.

    CAS  Google Scholar 

  62. Koya D, Haneda M, Kikkawa R, King GL. D-alpha tocopherol prevents glomerular dysfunction in diabetic rats through inhibition of PKC-DAG pathway. Biofactors 1998; 7: 69–76.

    Article  PubMed  CAS  Google Scholar 

  63. Kunisaki M, Bursell SE, Umeda F, Nawata H, King GL. Normalization of DAG-PKC activation by vitamin E in aorta of diabetic rats and cultured rat SMC exposed to elevated glucose levels. Diabetes 1994; 43: 1372–1377.

    CAS  Google Scholar 

  64. Bursell S, Clermont AC, Aiello LP, Aiello L, Schlossman DK, Feener EP, Laffel L, King GL. High dose Vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with Type I diabetes. Diabetes Case 1999; 22: 1245–1251.

    CAS  Google Scholar 

  65. Jain SK, Krueger KS, McVie R, Jaramillo JJ, Palmer M, Smith T. Relationship of TxB2 with LPO and effect of vitamin Eon these levels in type 1 diabetic patients. Diabetes Care 1998; 21: 1511–1516.

    Article  PubMed  CAS  Google Scholar 

  66. Colette C, Herbute N, Monnier LH, Cartry E. Platelet function in type I diabetes: effects of supplementation with large doses of vitamin E. Am J Clin Nutr 1988; 47: 256–261.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Devaraj, S., Jialal, I. (2001). Oxidative Stress and Antioxidants in Type 2 Diabetes. In: Bendich, A., Deckelbaum, R.J. (eds) Primary and Secondary Preventive Nutrition. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-039-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-039-1_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-173-8

  • Online ISBN: 978-1-59259-039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics