Skip to main content

Autologous Vaccine and Adoptive Cellular Immunotherapy as Treatment for Brain Tumors

  • Chapter
Brain Tumor Immunotherapy

Abstract

This chapter discusses a process that combines vaccination to induce an immune response (IR) against autologous tumor-associated antigens (TAAs) with adoptive transfer of autologous cancer Ag-specific effector T-lymphocytes to treat individuals with progressing cancer. The use of this approach for the treatment of brain malignancy is described. The rationale is that the multiple genetic defects accumulating in cells during malignant transformation and subsequent tumor growth lead to production of altered protein molecules that confer immunogenicity. The host immune system can recognize malignant cells as nonself. Vaccination with autologous cancer cells and an immunologic adjuvant primes T-lymphocytes against cancer Ags, and overcomes the Ag presentation defect that prevents malignancies from being recognized during their natural progression. Cancer Ags and nonspecific Ag receptor stimuli (such as anti-CD3) can activate primed T-lymphocytes to differentiate into Ag-specific effector cells in vitro, and interleukin-2 (IL-2) stimulates these cells to proliferate. Activated effector T-lymphocytes are able to travel to sites of tumor growth, enter and reject the tumor, and potentially cure tumor-bearing animals after being infused into the blood stream. This strategy has been used to cure several types of experimental gliomas, demonstrating that immune privilege, immune suppression, the blood-brain barrier (BBB), Ag presentation defects, and other theoretical barriers to successful IT can be overcome. Phase I/II clinical trials using patients with recurrent malignant astrocytoma have demonstrated that cancer Ag and adoptive transfer (AT) IT is feasible, minimally toxic, and potentially efficacious. The data justify further clinical trials of cancer Ag and AT in humans with central nervous system malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knudson, A. G. (1986) Genetics of human cancer. Ann. Rev. Genet. 20, 231–251.

    Article  PubMed  Google Scholar 

  2. Seemayer, T. A. and Cavanee, W. K. (1989) Molecular mechanisms of oncogenesis. Lab. Invest. 60, 585–599.

    PubMed  CAS  Google Scholar 

  3. van der Bruggen, P. and van den Eynde, B. (1992) Molecular definition of cancer antigens recognized by T-lymphocytes. Curr. Opin. Immunol. 4, 608–612.

    Article  PubMed  Google Scholar 

  4. Boon, T., Cerottini, J. C., Van den Eynde, B., van der Bruggen, P., and Van Pel, A. (1994) Tumor antigens recognized by T-lymphocytes. Annu. Rev. Immunol. 12, 337–365.

    Article  PubMed  CAS  Google Scholar 

  5. North, R. J. (1984) The murine anti-tumor immune response and its therapeutic manipulation. Adv. Immunol. 35, 89–122.

    Google Scholar 

  6. Srivastava, P. K. (1996) Do human cancers express shared protective antigens? Or the necessity of remembrance of things past. Semin. Immunol. 8, 295–302.

    Article  PubMed  CAS  Google Scholar 

  7. Lynch, S. A. and Houghton, A. N. (1993) Cancer immunology. Curr. Opin. Oncol. 5, 145–152.

    PubMed  CAS  Google Scholar 

  8. Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine GM-CSF stimulates potent, specific, long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Arca, M. J., Krauss, J. C., Aruga, A., Cameron, M. J., Shu, S., and Chang, A. E. (1996) Therapeutic efficacy of T cells derived from lymph nodes draining a poorly immunogenic tumor transduced to secrete granulocyte-macrophage colony-stimulating factor. Cancer Gene Ther. 3, 39–47.

    PubMed  CAS  Google Scholar 

  10. Simons, J. W., Jaffee, E. M., Weber, C. E., Levitsky, H. I., Nelson, W. G., Carducci, M. A., et al. (1997) Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res. 57, 1537–1546.

    PubMed  CAS  Google Scholar 

  11. Wood, G. W. and Morantz, R. A. (1979) Immunohistologic evaluation of the lympho-reticular infiltrate of human central nervous system tumors. J. Natl. Cancer Inst. 62, 485–491.

    PubMed  CAS  Google Scholar 

  12. Morantz, R. A., Foster, M., Clark, M., Gollahon, K. A., and Wood, G. W. (1979) Macrophages in experimental and human brain tumors. Studies of the macrophage content of experimental brain tumors of varying immunogenicity. J. Neurosurg. 50, 298–310.

    Article  PubMed  CAS  Google Scholar 

  13. Liau, L. M., Black, K. L., Prins, R. M., Sykes, S. N., DiPatre, P. L., Cloughesy, T. F., Becker, D. P., and Bronstein, J. M. (1999) Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J. Neurosurg. 90, 1115–1124.

    Article  PubMed  CAS  Google Scholar 

  14. Berd, D., Maguire, H. C., McCue, P., and Mastrangelo, M. J. (1990) Treatment of metastatic melanoma with autologous tumor-cell vaccine: clinical and immunologic results in 64 patients. J. Clin. Oncol. 8, 1858–1867.

    PubMed  CAS  Google Scholar 

  15. Hoover, H. C. and Hanna, Jr., M. G. (1989) Active immunotherapy in colorectal cancer. Semin. Surg. Oncol. 5, 436–440.

    Article  PubMed  Google Scholar 

  16. Lehner, B., Schlag, P., Liebrich, W., and Schirrmacher, V. (1990) Post-operative active specific immunization in curatively resected colorectal cancer patients with a virus-modified autologous tumor cell vaccine. Cancer Immunol. Immunother. 32, 173–178.

    Article  PubMed  CAS  Google Scholar 

  17. Vermorken, J. B., Claessen, A. M. E., van Tinteren, H., Gall, H. E., Ezinga, R., Meijer, S., et al. (1999) Active specific immunotherapy for stage II and stage III human colon cancer: a randomized trial. Lancet. 353, 345–350.

    Article  PubMed  CAS  Google Scholar 

  18. Chang, A. E., Yoshizawa, H., Sakai, K., Cameron, M. J., Sondak, V., and Shu, S. (1993) Clinical observations on adoptive immunotherapy with vaccine-primed T-lymphocytes secondarily sensitized with tumor in vitro. Cancer Res. 53, 1043–1050.

    PubMed  CAS  Google Scholar 

  19. Coveney, E., Wheatley, G. H. 3rd, and Lyerly, H. K. (1997) Active immunization using dendritic cells mixed with tumor cells inhibits the growth of primary breast cancer. Surgery 122, 228–234.

    Article  PubMed  CAS  Google Scholar 

  20. Herrlinger, U., Kramm, C. M., Johnston, K. M., Louis, D. N., Finkelstein, D., Reznikoff, G., et al. (1997) Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. Cancer Gene Ther. 4, 45–52.

    Google Scholar 

  21. Cheever, M. A., Greenberg, P. D., Gillis, S., and Fefer, A. (1982) Specific adoptive therapy of murine leukemia with cells secondarily sensitized in vitro and expanded in IL-2. Progr. Cancer Res. Ther. 22, 127–133.

    Google Scholar 

  22. Chou, T. and Shu, S. (1987) Cellular interactions and the role of interleukin-2 in the expression and induction of immunity against a syngeneic murine sarcoma. J. Immunol. 139, 2103–2109.

    PubMed  CAS  Google Scholar 

  23. Shu, S., Chou, T., and Sakai, K. (1989) Lymphocytes generated by in vivo priming and in vitro sensitization demonstrate therapeutic efficacy against a murine tumor that lacks apparent immunogenicity. J. Immunol. 143, 740–748.

    PubMed  CAS  Google Scholar 

  24. Holladay, F. P., Heitz, T., and Wood, G. W. (1992) Cytotoxic T-lymphocytes, but not lymphokine-activated killer cells, exhibit anti-tumor activity against established intracerebral gliomas. J. Neurosurg. 77, 757–762.

    Article  PubMed  CAS  Google Scholar 

  25. Geiger, J. D., Wagner, P. D., Cameron, M. J., Shu, S., and Chang, A. E. (1993) Generation of T-cells reactive to the poorly immunogenic B 16-BL6 melanoma with efficacy in the treatment of spontaneous metastases. J. Immunother. 13, 153–165.

    Article  CAS  Google Scholar 

  26. Saxton, M. L., Longo, D. L., Wetzel, H. E., Tribble, H., Alvord, W. G., Kwak, L. W., et al. (1997) Adoptive transfer of anti-CD3 activated CD4+ T-lymphocytes plus cyclophosphamide and liposome encapsulated interleukin-2 cure murine MC-38 and 3LL tumors and establish tumor specific immunity. Blood 89, 2529–2536.

    PubMed  CAS  Google Scholar 

  27. Chang, A. E. and Shu, S. (1996) Current status of immunotherapy of cancer. Crit. Rev. Oncol-Hematol. 22, 213–228.

    Article  PubMed  CAS  Google Scholar 

  28. Yamasaki, T., Handa, H., Yamashita, J., Watanabe, Y., Namba, Y., and Hanaoka, M. (1984) Specific adoptive immunotherapy with tumor-specific cytotoxic T-lymphocyte clone for murine malignant gliomas. Cancer Res. 44, 1776–1783.

    PubMed  CAS  Google Scholar 

  29. Holladay, F. P., Lopez, G., De, M., Morantz, R. A., and Wood, G. W. (1992) Generation of cytotoxic immune responses against a rat glioma by in vivo priming and secondary in vitro stimulation with tumor cells. Neurosurgery 30, 499–505.

    Article  PubMed  CAS  Google Scholar 

  30. Holladay, F. P., Heitz, T., Chen, Y-L., and Wood, G. W. (1992) Successful treatment of a malignant rat glioma with cytotoxic T-lymphocytes. Neurosurgery 31, 528–533.

    Article  PubMed  CAS  Google Scholar 

  31. Holladay, F. P., Choudhuri, R., Heitz, T., and Wood, G. W. (1994) Generation of cytotoxic immune responses during the progression of a rat glioma. J. Neurosurg. 80, 90–96.

    Article  PubMed  CAS  Google Scholar 

  32. Wood, G. W., Turner, T., Wang, Y. Y., and Holladay, F. P. (1999) Immune rejection of intracerebral gliomas using lymphocytes from glioma-bearing rats. J. Immunother. 22, 497–505.

    Article  PubMed  CAS  Google Scholar 

  33. Plautz, G. E., Toualisky, J. E., and Shu, S. (1997) Treatment of murine gliomas by adoptive transfer of ex vivo activated tumor draining lymph node cells. Cell. Immunol. 178, 101–107.

    Article  PubMed  CAS  Google Scholar 

  34. Baldwin, N. G., Rice, C. D., Tuttle, T. M., Bear, H. D., Hirsch, J. I., and Merchant, R. E. (1997) Ex vivo expansion of tumor-draining lymph node cells using compounds which activate intracellular signal transduction. I. Characterization and in vivo anti-tumor activity of glioma-sensitized lymphocytes. J. Neuro-oncol. 32, 19–28.

    Article  CAS  Google Scholar 

  35. Romieum, R., Baratin, M., Kayibanda, M., Lacabanne, V., Ziol, M., Guillet, J-G., and Viguier, M. (1998) Cutting edge: passive but not active CD8+ T-cell-based immunotherapy interferes with liver tumor progression in a transgenic mouse model. J. Immunol.161, 5133–5137.

    Google Scholar 

  36. Tanaka, H., Yoshizawa, H., Uamaguchi, Y., Ito, K., Kagamu, H., Suzuki, E., et al. (1999) Successful adoptive immunotherapy of murine poorly immunogenic tumor with specific effector cells generated from gene-modified tumor-primed lymph node cells. J. Immunol.162, 5133–5137.

    Google Scholar 

  37. Yoshizawa, H., Chang, A. E., and Shu, S. (1991) Specific adoptive immunotherapy mediated by tumor-draining lymph node cells sequentially activated with anti-CD3 and IL-2. J. Immunol. 147, 729–737.

    PubMed  CAS  Google Scholar 

  38. Shu, S., Krinock, R. A., Matsumura, T., Sussman, J. J., Fox, B. A., Chang, A. E., and Terman, D. S. (1994) Stimulation of tumor-draining lymph node cells with superantigenic staphylococcal toxins leads to the generation of tumor-specific effector T cells. J. Immunol. 152, 1277–1288.

    PubMed  CAS  Google Scholar 

  39. Kwak, L. W., Young, H. A., Pennington, R. W., and Weeks, S. D. (1996) Vaccination with syngeneic, lymphoma-derived Ig idiotype combined with GM-CSF primes mice for a protective T-cell response. Proc. Natl. Acad. Sci. USA 96, 10,972–10, 977.

    Google Scholar 

  40. Disis, M. L., Bernard, H., Shiota, F. M., Hand, S. L., Gralow, J. R., Huseby, E. S., Gillis, S. A., and Cheever, M. A. (1996) GM-CSF: an effective adjuvant for protein and peptide-based vaccines. Blood 88, 202–210.

    PubMed  CAS  Google Scholar 

  41. Jager, E., Ringhoffer, M., Dienes, H. P., Arand, M., Karbach, J., Jager, D., et al. (1996) Granulocyte-macrophage-colony-stimulating factor enhances immune responses to melanoma-associated peptides in vivo. Int. J. Cancer 67, 54–62.

    Article  PubMed  CAS  Google Scholar 

  42. Tao, M. H. and Levy, R. (1993) Idiotype/granulocyte-macrophage colony-stimulating factor fusion protein as a vaccine for B-cell lymphoma. Nature 362, 755–758.

    Article  PubMed  CAS  Google Scholar 

  43. Plautz, G. E., Barnett, G. H., Miller, D. W., Cohen, B. H., Prayson, R. A., Krauss, J. C., and Shu, S. (1998) Systemic adoptive immunotherapy of malignant gliomas. J. Neurosurg. 89, 42–51.

    Article  PubMed  CAS  Google Scholar 

  44. Chang, A. E., Aruga, A., Cameron, M. J., Sondak, V. K., Normolle, D. P., Fox, B. A., and Shu S. (1997) Adoptive immunotherapy with vaccine-primed lymph node cells secondarily activated with anti-CD3 and interleukin-2. J. Clin. Oncol. 15, 796–807.

    Google Scholar 

  45. Wahl, W. L., Sussman, J. J., Shu, S., and Chang, A. E. (1994) Adoptive immunotherapy of murine intracerebral tumors with anti-CD3/interleukin-2-activated tumor-draining lymph node cells. J. Immunother. 15, 242–250.

    Article  CAS  Google Scholar 

  46. Rosenberg, S. A., Packard, B. S., Aebersold, P. M., and Solomon, D. (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. N. Engl. J. Med. 319, 1676–1680.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenberg, S. A., Yannelli, J. R., Yang, J. C., Topalian, S. L., Schwartzentruber, D. J., Weber, J. S., et al. (1994) Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin-2. J. Natl. Cancer Inst. 86, 1159–1166.

    Article  PubMed  CAS  Google Scholar 

  48. Goedegebuure, P. S., Douville, L. M., Li, H., Richmond, G. C., Schoof, D. D., Scavone, M., and Eberlein, T. (1995) Adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 in patients with metastatic malignant melanoma and renal cell carcinoma: a pilot study. J. Clin. Oncol. 13, 1939–1949.

    Google Scholar 

  49. Holladay, F. P., Heitz-Turner, T., Bayer, W. L., and Wood, G. W. (1996) Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with grade III/IV astrocytoma. J. Neuro-oncol. 27, 179–189.

    CAS  Google Scholar 

  50. Wood, G. W., Holladay, F. P., Turner, T., Wang, Y.-Y. and Chiga, M. (2000) A pilot study of autologous cancer cell vaccination and cellular immunotherapy using anti-CD3 stimulated lymphocytes in patients with recurrent grade III/IV astrocytoma. J. Neuro-oncol. (in press).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wood, G.W., Holladay, F.P. (2001). Autologous Vaccine and Adoptive Cellular Immunotherapy as Treatment for Brain Tumors. In: Liau, L.M., Becker, D.P., Cloughesy, T.F., Bigner, D.D. (eds) Brain Tumor Immunotherapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-035-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-035-3_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-110-3

  • Online ISBN: 978-1-59259-035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics