Skip to main content

Combining Radiation Therapy with Immunotherapy for Treatment of Brain Tumors

  • Chapter
Book cover Brain Tumor Immunotherapy
  • 102 Accesses

Abstract

Radiation therapy (RT) is a common component of the treatment of most intracerebral malignancies. In gliomas, it is used mostly to achieve local/regional control. In most cases, this is still a major challenge. Despite improvements in surgery, RT, and chemotherapy, patients often succumb to persistent local tumor growth or recurrence. Improvements in local control and survival rates may come from new technical advances in the delivery of RT (1–3) Also, as knowledge increases about the signal transduction pathways that determine the intrinsic radio-resistance of cancer, gene therapy approaches are being developed that should increase the probability of local control. However, rational appraisal of the impact of these, and other, newly introduced treatment options suggests that, although the patterns of failure may change, any improvement in survival is likely to be limited to selected patients and to be modest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, III, E. and Loeffler, J. S. (1998) Radiosurgery for primary malignant brain tumors. Sem. Surg. Oncol. 14, 43–52.

    Article  Google Scholar 

  2. Brada, M. and Laing, R. (1994) Radiosurgery/stereotactic external beam radiotherapy for malignant brain tumours: the Royal Marsden Hospital experience. Recent Results Cancer Res. 135, 91–104.

    Article  PubMed  CAS  Google Scholar 

  3. Flickinger, J. C., Loeffler, J. S., and Larson, D. A. (1994) Stereotactic radiosurgery for intracranial malignancies. Oncology 8, 81–86.

    PubMed  CAS  Google Scholar 

  4. Bloom, H. J. (1982) Intracranial tumors: response and resistance to therapeutic endeavors, 1970–1980. Int. J. Radiat. Oncol. Biol. Phys. 8, 1083–1113.

    Article  PubMed  CAS  Google Scholar 

  5. Hauck, M. L., Larsen, R. H., Welsh, P. C., and Zalutsky, M. R. (1998) Cytotoxicity of alpha-particle-emitting astatine-211-labelled antibody in tumour spheroids: no effect of hyperthermia. Br. J. Cancer 77, 753–759.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Buchsbaum, D. J. and Roberson, P. L. (1996) Experimental radioimmunotherapy: biological effectiveness and comparison with external beam radiation. Recent Results Cancer Res. 141, 9–18.

    Article  PubMed  CAS  Google Scholar 

  7. Knox, S. J., Goris, M. L., and Wessels, B. W. (1992) Overview of animal studies comparing radioimmunotherapy with dose equivalent external beam irradiation. Radiother. Oncol. 23, 111–117.

    Article  PubMed  CAS  Google Scholar 

  8. Williams, J. A., Edwards, J. A., and Dillehay, L. E. (1992) Quantitative comparison of radiolabeled antibody therapy and external beam radiotherapy in the treatment of human glioma xenografts. Int. J. Radiat. Oncol. Biol. Phys. 24, 111–117.

    Article  PubMed  CAS  Google Scholar 

  9. Cruickshank, G. S. and Rampling, R. (1994) Peri-tumoural hypoxia in human brain: peroperative measurement of the tissue oxygen tension around malignant brain tumours. Acta Neurochir. 60 (Suppl.), 375–377.

    CAS  Google Scholar 

  10. Cruickshank, G. S., Rampling, R. P., and Cowans, W. (1994) Direct measurement of the PO2 distribution in human malignant brain tumours. Adv. Exp. Med. Biol. 345, 465–470.

    Article  PubMed  CAS  Google Scholar 

  11. Rampling, R., Cruickshank, G., Lewis, A. D., Fitzsimmons, S. A., and Workman, P. (1994) Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 29, 427–431.

    Article  PubMed  CAS  Google Scholar 

  12. Kayama, T., Yoshimoto, T., Fujimoto, S., and Sakurai, Y. (1991) Intratumoral oxygen pressure in malignant brain tumor. J. Neurosurg. 74, 55–59.

    Article  PubMed  CAS  Google Scholar 

  13. Ugur, 0., Kostakoglu, L., Hui, E. T., Fisher, D. R., Garmestani, K., Gansow, O. A., Cheung, N. K., and Larson, S. M. (1996) Comparison of the targeting characteristics of various radioimmunoconjugates for radioimmunotherapy of neuroblastoma: dosimetry calculations incorporating cross-organ beta doses. Nuclear Med. Biol. 23, 1–8.

    Article  Google Scholar 

  14. Goodwin, D. A., Meares, C. F., and Osen, M. (1998) Biological properties of biotin-chelate conjugates for pretargeted diagnosis and therapy with the avidin/biotin system. J. Nuclear Med. 39, 1813–1818.

    CAS  Google Scholar 

  15. Maraveyas, A., Rowlinson-Busza, G., Murray, S., and Epenetos, A.A. (1998) Improving tumour targeting and decreasing normal tissue uptake by optimizing the stoichiometry of a two-step biotinylated-antibody/streptavidin-based targeting strategy: studies in a nude mouse xenograft model. Int. J. Cancer 78, 610–617.

    Article  PubMed  CAS  Google Scholar 

  16. Qin, D. X., Zheng, R., Tang, J., Li, J. X., and Hu, Y. H. (1990) Influence of radiation on the blood-brain barrier and optimum time of chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 19, 1507–1510.

    Article  PubMed  CAS  Google Scholar 

  17. Gridley, D. S., Smith, T. E., Liwnicz, B. H., and McMillan, P. J. (1994) Pilot study of monoclonal antibody localization in subcutaneous and intracranial lung tumor xenografts after proton irradiation. Anticancer Res. 14, 2493–2500.

    PubMed  CAS  Google Scholar 

  18. Brown, M. T., Coleman, R. E., Friedman, A. H., Friedman, H. S., McLendon, R. E., Reiman, R., et al. (1996) Intrathecal 131I-labeled antitenascin monoclonal antibody 8106 treatment of patients with leptomeningeal neoplasms or primary brain tumor resection cavities with subarachnoid communication: phase I trial results. Clin. Cancer Res. 2, 963–972.

    PubMed  CAS  Google Scholar 

  19. Bigner, D. D., Brown, M. T., Friedman, A. H., Coleman, R. E., Akabani, G., Friedman, H. S., et al. (1998) Iodine-131-labeled antitenascin monoclonal antibody 8 I C6 treatment of patients with recurrent malignant gliomas: phase I trial results. J. Clin. Oncol. 16, 2202–2212.

    PubMed  CAS  Google Scholar 

  20. Hopkins, K., Chandler, C., Eatough, J, Moss, T., and Kemshead, J. T. (1998) Direct injection of 90Y MAbs into glioma tumor resection cavities leads to limited diffusion of the radioimmunoconjugates into normal brain parenchyma: a model to estimate absorbed radiation dose. Int. J. Radiat. Oncol. Biol. Phys. 40, 835–844.

    Google Scholar 

  21. Arista, A., Sturiale, C., Riva, P., Tison, V., Frattarelli, M., Moscatelli, G. Franceschi, G., and Spinelli, A. (1995) Intralesional administration of I-131 labelled monoclonal antibodies in the treatment of malignant gliomas. Acta Neurochir 135, 159–162.

    CAS  Google Scholar 

  22. Riva, P., Arista, A., Sturiale, C., Tison, V., Lazzari, S., Franceschi, G., et al. (1994) Glioblastoma therapy by direct intralesional administration of I-131 radioiodine labeled antitenascin antibodies. Cell Biophys. 24 /25, 37–43.

    PubMed  Google Scholar 

  23. Riva, P., Arista, A., Tison, V., Sturiale, C., Franceschi, G., Spinelli, A., et al. (1994) Intralesional radioimmunotherapy of malignant gliomas. An effective treatment in recurrent tumors. Cancer73, 1076–1082.

    Google Scholar 

  24. Riva, P., Arista, A., Franceschi, G., Frattarelli, M., Sturiale, C., Riva, N., Casi, M., and Rossitti, R. (1995) Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with 131I: comparison of the results obtained in recurrent and newly diagnosed tumors. Cancer Res. 55, 5952s - 5956s.

    PubMed  CAS  Google Scholar 

  25. Riva, P., Franceschi, G., Arista, A., Frattarelli, M., Riva, N., Cremonini, A. M., Giuliani, G., and Casi, M. (1997) Local application of radiolabeled monoclonal antibodies in the treatment of high grade malignant gliomas: a six-year clinical experience. Cancer 80, 2733–2742.

    Article  PubMed  CAS  Google Scholar 

  26. Miyamoto, C. T., Brady, L. W., Rackover, M. A., Emrich, J., Class, R., Bender, H., Micaily, B., and Steplewski, Z. (1996) The use of epidermal growth factor receptor-425 monoclonal antibodies radiolabeled with iodine-125 in the adjuvant treatment of patients with high grade gliomas of the brain. Recent Results Cancer Res. 141, 183–192.

    Article  PubMed  CAS  Google Scholar 

  27. Pfosser, A., Brandl, M., Salih, H., Grosse-Hovest, L. and Jung, G. (1999) Role of target antigen in bispecific-antibody-mediated killing of human glioblastoma cells: a pre-clinical study. Int. J. Cancer 80, 612–616.

    Article  PubMed  CAS  Google Scholar 

  28. Dohi, T., Nakamura, K., Hanai, N., Taomoto, K. and Oshima, M. (1994) Reactivity of a mouse/human chimeric anti-GM2 antibody KM966 with brain tumors. Anticancer Res. 14, 2577–2581.

    PubMed  CAS  Google Scholar 

  29. Vriesendorp, F. J., Quadri, S. M., Flynn, R. E., Malone, M. R., Cromeens, D. M., Stephens

    Google Scholar 

  30. L. C., and Vriesendorp, H. M. (1997) Preclinical analysis of radiolabeled anti-GD2 immunoglobulin G. Cancer 80, 2642–2649.

    Article  Google Scholar 

  31. McBride, W. H. and Dougherty, G. J. (1995) Radiotherapy for genes that cause cancer. Nature Med. 1, 1215–1217.

    Article  PubMed  CAS  Google Scholar 

  32. O’Rourke, D. M., Kao, J. D., Singh, N., Park, B. W., Muschel, R. J., Wu, C. J., and Greene

    Google Scholar 

  33. M. I. (1998) Conversion of a radioresistant phenotype to a more sensitive one by disabling erbB receptor signaling in human cancer cells. Proc. Natl. Acad. Sci. USA 95, 10,842–10, 847.

    Google Scholar 

  34. Shapiro, W. R. and Shapiro, J. R. (1998) Biology and treatment of malignant glioma. Oncology 12, 233–240.

    PubMed  CAS  Google Scholar 

  35. Pillai, M. R., Jayaprakash, P. G., and Nair, M. K. (1998) Tumor-proliferative fraction and growth factor expression as markers of tumor response to radiotherapy in cancer of the uterine cervix. J. Cancer Res. Clin. Oncol. 124, 456–461.

    Article  PubMed  CAS  Google Scholar 

  36. Miyaguchi, M., Takeuchi, T., Morimoto, K., and Kubo, T. (1998) Correlation of epidermal growth factor receptor and radiosensitivity in human maxillary carcinoma cell lines. Acta Oto-Laryngol. 118, 428–431.

    Article  CAS  Google Scholar 

  37. Sheridan, M. T., O’Dwyer, T., Seymour, C. B., and Mothersill, C. E. (1997) Potential indicators of radiosensitivity in squamous cell carcinoma of the head and neck. Radiat. Oncol. Invest. 5, 180–186.

    Article  CAS  Google Scholar 

  38. Schmidt-Ullrich, R. K., Mikkelsen, R. B., Dent, P., Todd, T. G., Valerie, K., Kavanagh, B. D., et al. (1997) Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 15, 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  39. Balaban, N., Moni, J., Shannon, M., Dang, L., Murphy, E., and Goldkorn, T. (1996) The effect of ionizing radiation on signal transduction: antibodies to EGF receptor sensitize A431 cells to radiation. Biochim. Biophys. Acta 1314, 147–156.

    Article  PubMed  CAS  Google Scholar 

  40. Bandyopadhyay, D., Mandai, M., Adam, L., Mendelsohn, J., and Kumar, R. (1998) Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J. Biol. Chem. 273, 1568–1573.

    Article  PubMed  CAS  Google Scholar 

  41. Wu, L.-W., Reid, S., Ritchie, A., Broxmeyer, H. E., and Donner, D. B. (1999) The proteasome regulates caspase-dependent ands caspase-independent protease cascades during apoptosis of MO7e hematopoietic progenitor cells. Blood Cells Mol. Dis. 25, 20–29.

    Article  PubMed  CAS  Google Scholar 

  42. Brady, L. W., Miyamoto, C., Woo, D. V., Rackover, M., Emrich, J., Bender, H., et al. (1992) Malignant astrocytomas treated with iodine-125 labeled monoclonal antibody 425 against epidermal growth factor receptor: a phase II trial. Int. J. Radiat. Oncol. Biol. Phys. 22, 225–230.

    Article  PubMed  CAS  Google Scholar 

  43. Brady, L. W., Markoe, A. M., Woo, D. V., Amendola, B. E., Karlsson, U. L., Rackover, M. A., et al. (1990) Iodine-125-labeled anti-epidermal growth factor receptor-425 in the treatment of glioblastoma multiforme. A pilot study. Frontiers Rad. Ther. Oncol. 24, 151–160.

    CAS  Google Scholar 

  44. Ashley, D.M., Faiola, B., Nair„ S., Hale, L. P., Bigner, D. D., and Gilboa, E. (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J. Exper. Med. 186, 1177–1182.

    Article  CAS  Google Scholar 

  45. Baldwin, N. G., Rice, C. D., Tuttle, T. M., Bear, H. D., Hirsch, J. I., and Merchant, R. E. (1997) Ex vivo expansion of tumor-draining lymph node cells using compounds which activate intracellular signal transduction. I. Characterization and in vivo anti-tumor activity of glioma-sensitized lymphocytes. J. Neuro-oncol. 32, 19–28.

    Article  CAS  Google Scholar 

  46. Okada, H., Tahara, H., Shurin, M. R., Attanucci, J., Giezeman-Smits, K. M., Fellows, W. K., et al. (1998) Bone marrow-derived dendritic cells pulsed with a tumor-specific peptide elicit effective anti-tumor immunity against intracranial neoplasms. Int. J. Cancer 78, 196–201.

    Article  PubMed  CAS  Google Scholar 

  47. Liau, L. M., Black, K. L., Prins, R. M., Sykes, S. N., DiPatre, P.-L., Cloughesy, T. F., Becker, D. P., and Bronstein, J. M. (1999) Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J. Neurosurg. 90, 1115–1124.

    Article  PubMed  CAS  Google Scholar 

  48. Merchant, R. E., Baldwin, N. G., Rice, C. D., and Bear, H. D. (1997) Adoptive immunotherapy of malignant glioma using tumor-sensitized T lymphocytes. Neurolog. Res. 19, 145–152.

    CAS  Google Scholar 

  49. Baltuch, G. H., Villemure, J. G., McCrea, E. and Antel, J. P. (1994) T cell-mediated cytotoxicity of human gliomas: a tumor necrosis factor-independent mechanism. Neurosurgery 35, 450–456.

    Article  PubMed  CAS  Google Scholar 

  50. Yamada, N., Kato, M., Yamashita, H., Nistér, M., Miyazono, K., Heldin, C. H., and Funa, K. (1995) Enhanced expression of transforming growth factor-beta and its type-I and type-II receptors in human glioblastoma. Int. J. Cancer 62, 386–392.

    Article  PubMed  CAS  Google Scholar 

  51. Weller, M. and Fontana, A. (1995) The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-f3, T-cell apoptosis, and the immune privilege of the brain. Brain Res. 21, 128–151.

    Article  CAS  Google Scholar 

  52. Hishii, M., Nitta, T., Ishida, H., Ebato, M., Kurosu, A., Yagita, H., Sato, K., and Okumura, K. (1995) Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37, 1160–1166.

    Article  PubMed  CAS  Google Scholar 

  53. Huettner, C., Czub, S., Kerkau, S., Roggendorf, W., and Tonn, J. C. (1997) Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res. 17, 3217–3224.

    PubMed  CAS  Google Scholar 

  54. Morford, L. A., Elliott, L. H., Carlson, S. L., Brooks, W. H., and Roszman, T. L. (1997) T cell receptor-mediated signaling is defective in T cells obtained from patients with primary intracranial tumors. J. Immunol. 159, 4415–4425.

    PubMed  CAS  Google Scholar 

  55. Roussel, E., Gingras, M. C., Grimm, E. A., Bruner, J. M., and Moser, R. P. (1996) Predominance of a type 2 intratumoural immune response in fresh tumour-infiltrating lymphocytes from human gliomas. Clin. Exp. Immunol. 105, 344–352.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Fakhrai, H., Dorigo, O., Shawler, D. L., Lin, H., Mercola, D., Black, K. L., Royston, L, and Sobol, R. E. (1996) Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc. Natl. Acad. Sci. USA 93, 2909–2914.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Hong, J. H., Chiang, C. S., Campbell, I. L., Sun, J. R., Withers, H. R., and McBride, W. H. (1995) Induction of acute phase gene expression by brain irradiation. Int. J. Radiat. Oncol., Biol. Phys. 33, 619–626.

    CAS  Google Scholar 

  58. Hallahan, D. E., Virudachalam, S., and Kuchibhotla, J. (1998) Nuclear factor kappaB dominant negative genetic constructs inhibit X-ray induction of cell adhesion molecules in the vascular endothelium. Cancer Res. 58, 5484–5488.

    PubMed  CAS  Google Scholar 

  59. Hallahan, D. E., Staba-Hogan, M. J., Virudachalam, S., and Kolchinsky, A. (1998) X-ray-induced P-selectin localization to the lumen of tumor blood vessels. Cancer Res. 58, 5216–5220.

    PubMed  CAS  Google Scholar 

  60. Naganuma, H., Sasaki, A., Satoh, E., Nagasaka, M., Nakano, S., Isoe, S., and Nukui, H. (1998) Down-regulation of transforming growth factor-beta and interleukin-10 secretion from malignant glioma cells by cytokines and anticancer drugs. J. Neuro-oncol. 39, 227–236.

    CAS  Google Scholar 

  61. Cameron, R. B., Spiess, P. J., and Rosenberg, S. A. (1990) Synergistic antitumor activity of tumor-infiltrating lymphocytes, interleukin 2, and local tumor irradiation. Studies on the mechanism of action. J. Exp. Med. 171, 249–263.

    Article  PubMed  CAS  Google Scholar 

  62. Thompson, R. C., Pardoll, D. M., Jaffee, E. M., Ewend, M. G., Thomas, M. C., Tyler, B. M., and Brem, H. (1996) Systemic and local paracrine cytokine therapies using transduced tumor cells are synergistic in treating intracranial tumors. J. Immunother. Emphasis Tumor Immunol. 19, 405–413.

    Article  PubMed  CAS  Google Scholar 

  63. Salmaggi, A., Dufour, A., Silvani, A., Ciusani, E., Nespolo, A., and Boiardi, A. (1994) Immunological fluctuations during intrathecal immunotherapy in three patients affected by CNS tumours disseminating via CSF. Int. J. Neurosci. 77, 117–125.

    Article  PubMed  CAS  Google Scholar 

  64. Nakagawa, K., Kamezaki, T., Shibata, Y., Tsunoda, T., Meguro, K., and Nose, T. (1995) Effect of lymphokine-activated killer cells with or without radiation therapy against malignant brain tumors. Neurol. Med.-Chir. 35, 22–27.

    Article  CAS  Google Scholar 

  65. Merchant, R. E., Ellison, M. D., and Young, H. F. (1990) Immunotherapy for malignant glioma using human recombinant interleukin-2 and activated autologous lymphocytes. A review of pre-clinical and clinical investigations. J. Neuro-oncol. 8, 173–188.

    CAS  Google Scholar 

  66. Merchant, R. E., McVicar, D. W., Merchant, L. H., and Young, H. F. (1992) Treatment of recurrent malignant glioma by repeated intracerebral injections of human recombinant interleukin-2 alone or in combination with systemic interferon-alpha. Results of a phase I clinical trial. J. Neuro-oncol. 12, 75–83.

    CAS  Google Scholar 

  67. Savill, J,Fadok, V., Henson, P., and Haslett, C. (1993) Phagocyte recognition of cells undergoing apoptosis. Immunol. Today 14, 131–136.

    Google Scholar 

  68. Ochsenbein, A. F., Klenerman, P., Karrer, U., Ludewig, B., Percin, M., Hengartner, H., and Zinkernagel, R. M. (1986) Immune surveillance against a solid tumor fails because of immunological ignorance. Proc. Natl. Acad. Sci. USA 96, 2233–2238.

    Article  Google Scholar 

  69. McBride, W. H. and Howie, S. E. (1986) Induction of tolerance to a murine fibrosarcoma in two zones of dosage—the involvement of suppressor cells. Br. J. Cancer 53, 707–711.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Vile, R. G. and Hart, I. R. (1993) Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res. 53, 3860–3864.

    PubMed  CAS  Google Scholar 

  71. Mullen, C. A. (1994) Metabolic suicide genes in gene therapy. Pharmacol. Ther. 63, 199–207.

    Article  PubMed  CAS  Google Scholar 

  72. Cavallo, F., Di Pierro, F., Giovarelli, M., Gulino, A., Vacca, A., Stoppacciaro, A., et al. (1993) Protective and curative potential of vaccination with interleukin-2-gene-transfected cells from a spontaneous mouse mammary adenocarcinoma. Cancer Res. 53, 5067–5070.

    PubMed  CAS  Google Scholar 

  73. Colombo, M. P. and Forni, G. (1994) Cytokine gene transfer in tumor inhibition and tumor therapy: where are we now? Immunol. Today 15, 48–51.

    Article  PubMed  CAS  Google Scholar 

  74. Raychaudhuri, S. and Morrow, W.J. (1993) Can soluble antigens induce CD8+ cytotoxic T-cell responses? A paradox revisited. Immunol. Today 14, 344–348.

    Article  PubMed  CAS  Google Scholar 

  75. Kim, J. H., Kim, S. H., Brown, S. L., and Freytag, S. O. (1994) Selective enhancement by an antiviral agent of the radiation-induced cell killing of human glioma cells transduced with HSV-tk gene. Cancer Res. 54, 6053–6056.

    PubMed  CAS  Google Scholar 

  76. Gabel, M., Kim, J. H., Kolozsvary, A., Khil, M., and Freytag, S. (1998) Selective in vivo radiosensitization by 5-fluorocytosine of human colorectal carcinoma cells transduced with the E. coli cytosine deaminase (CD) gene Int. J. Rad. Oncol. Biol. Phys. 41, 883–887

    Google Scholar 

  77. Kim, S. H., Kim, J. H., Kolozsvary, A., Brown, S. L., and Freytag, S. O. (1997) Preferential radiosensitization of 9L glioma cells transduced with HSV-tk gene by acyclovir. J. Neurooncol. 33, 189–194

    Google Scholar 

  78. Rogulski, K. R., Kim, J. H., Kim, S. H., and Freytag, S. O. (1997) Glioma cells transduced with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity. Hum. Gene Ther. 8, 73–85.

    Article  PubMed  CAS  Google Scholar 

  79. Kim, J. H., Kim, S. H., Kolozsvary, A., Brown, S. L., Kim, O. B., and Freytag, S. O. (1995) Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents. Int. J. Radiat. Oncol. Biol. Phys.33, 861–868

    Google Scholar 

  80. Bernstein, M., Cabantog, A., Laperriere, N., Leung, P., and Thomason, C. (1995) Brachytherapy for recurrent single brain metastasis. Can. J. Neurol. Sci. 22, 13–16.

    PubMed  CAS  Google Scholar 

  81. Delattre, J. Y. and Uchuya, M. (1996) Radiotherapy and chemotherapy for gliomas. Curr. Opin. Oncol. 8, 196–203.

    Article  PubMed  CAS  Google Scholar 

  82. Fernandez, P. M., Zamorano, L., Yakar, D., Gaspar, L. and Warmelink, C. (1995) Permanent iodine-125 implants in the up-front treatment of malignant gliomas. Neurosurgery 36, 467–473.

    Article  PubMed  CAS  Google Scholar 

  83. Shiu, A. S., Kooy, H. M., Ewton, J. R., Tung, S. S., Wong, J., Antes, K., and Maor, M. H. (1997) Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment. Int. J. Radiat. Oncol. Biol. Phys. 37, 679–688.

    Article  PubMed  CAS  Google Scholar 

  84. Perez, C. A., Purdy, J. A., Harms, W., Gerber, R., Graham, M. V., Matthews, J. W., et al. (1995) Three-dimensional treatment planning and conformal radiation therapy: preliminary evaluation. Radiother. Oncol. 36, 32–43.

    Article  PubMed  CAS  Google Scholar 

  85. Vijayakumar, S. and Chen, G. T. (1995) Implementation of three-dimensional conformal radiation therapy: prospects, opportunities, and challenges. Int. J. Radias. Oncol. Biol. Phys. 33, 979–983

    Google Scholar 

  86. Withers, H. R. (1992) Biological basis of radiation therapy for cancer. Lancet 339, 156–159

    Google Scholar 

  87. Maciejewski, B., Withers, H. R., Taylor, J. M., and Hliniak, A. (1990) Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx. Part 2. Normal tissue responses: acute and late effects. Int. J. Radiat. Oncol. Biol. Phys. 18, 101–111.

    Article  PubMed  CAS  Google Scholar 

  88. Peters, L. J. and Withers, H. R. (1997) Applying radiobiological principles to combined modality treatment of head and neck cancer-the time factor. Int. J. Radiat. Oncol. Biol. Phys. 39, 831–836

    Google Scholar 

  89. Suwinski, R., Taylor, J. M., and Withers, H. R. (1998) Rapid growth of microscopic rectal cancer as a determinant of response to preoperative radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 42, 943–951

    Google Scholar 

  90. Chiang, C. S., Syljuäsen, R. G., Hong, J. H., Wallis, A., Dougherty, G. J., and McBride, W. H. (1997) Effects of IL-3 gene expression on tumor response to irradiation in vitro and in vivo. Cancer Res. 57, 3899–3903.

    PubMed  CAS  Google Scholar 

  91. Chi, D. D., Merchant, R. E., Rand, R., Conrad, A. J., Garrison, D., Turner, R., Morton, D. L., and Hoon, D. S. (1997) Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas. Am. J. Pathol. 150, 2143–2152.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Kuramoto, T. (1997) Detection of MAGE-1 tumor antigen in brain tumor. Kurume Med. J. 44, 43–51.

    Article  PubMed  CAS  Google Scholar 

  93. Plautz, G. E., Touhalisky, J. E., and Shu, S. (1997) Treatment of murine gliomas by adoptive transfer of ex vivo activated tumor-draining lymph node cells. Cell. Immunol. 178, 101–107.

    Article  PubMed  CAS  Google Scholar 

  94. Plautz, G. E., Barnett, G. H., Miller, D. W., Cohen, B. H., Prayson, R. A., Krauss, J. C., et al. (1998) Systemic T cell adoptive immunotherapy of malignant gliomas. J. Neurosurg. 89, 42–51.

    Article  PubMed  CAS  Google Scholar 

  95. Glick, R. P., Lichtor, T., Kim, T. S., Ilangovan, S., and Cohen, E. P. (1995) Fibroblasts genetically engineered to secrete cytokines suppress tumor growth and induce antitumor immunity to a murine glioma in vivo. Neurosurgery 36, 548–555.

    Article  PubMed  CAS  Google Scholar 

  96. Sawa, H., Tamaki, N., and Kokunai, T. (1996) Growth and immunogenicity of human glioma in severe combined immunodeficiency-human mice. Neurol. Med.-Chir. 36, 286–295.

    Article  CAS  Google Scholar 

  97. Wakimoto, H., Abe, J., Tsunoda, R., Aoyagi, M., Hirakawa, K., and Hamada, H. (1996) Intensified antitumor immunity by a cancer vaccine that produces granulocyte-macrophage colony-stimulating factor plus interleukin-4. Cancer Res. 56, 1828–1833.

    PubMed  CAS  Google Scholar 

  98. Book, A. A., Fielding, K. E., Kundu, N., Wilson, M. A., Fulton, A. M., and Laterra, J. (1998) IL-10 gene transfer to intracranial 9L glioma: tumor inhibition and cooperation with IL-2. J. Neuroimmunol. 92, 50–59.

    Article  PubMed  CAS  Google Scholar 

  99. Jean, W. C., Spellman, S. R., Wallenfriedman, M. A., Hall, W. A., and Low, W. C. (1998) Interleukin-l2-based immunotherapy against rat 9L glioma. Neurosurgery 42, 850–856.

    Article  PubMed  CAS  Google Scholar 

  100. Kikuchi, T., Joki, T., Saitoh, S., Hata, Y., Abe, T., Kato, N., et al. (1999) Anti-tumor activity of interleukin-2-producing tumor cells and recombinant interleukin-12 against mouse glioma cells located in the central nervous system. Int. J. Cancer 80, 425–430.

    Article  PubMed  CAS  Google Scholar 

  101. Kishima, H., Shimizu, K., Miyao, Y., Mabuchi, E., Tamura, K., Tamura, M., Sasaki, M., and Hakakawa, T. (1998) Systemic interleukin-12 displays antitumour activity in the mouse central nervous system. Br. J. Cancer 78, 446–453.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Sampson, J. H., Archer, G. E., Ashley, D. M., Fuchs, H. E., Hale, L. P., Dranoff, G., and Bigner, D. D. (1996) Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the “immunologically privileged” central nervous system. Proc. Natl. Acad. Sci. USA 93, 10,399–10, 404.

    Google Scholar 

  103. Matzinger, P. (1998) An innate sense of danger. Semin. Immunol. 10, 399–415.

    Article  PubMed  CAS  Google Scholar 

  104. Celluzzi, C. M. and Falo, Jr., L. D. (1998) Physical interaction between dendritic cells and tumor cells results in an immunogen that induces protective and therapeutic tumor rejection. J. Immunol. 160, 3081–3085.

    PubMed  CAS  Google Scholar 

  105. Lee, J., Fenton, B. M., Koch, C. J., Frelinger, J. G., and Lord, E. M. (1998) Interleukin-2 expression by tumor cells alters both the immune response and the tumor microenvironment. Cancer Res. 58, 1478 - 1485.

    PubMed  CAS  Google Scholar 

  106. Rock, K. L. (1996) A new foreign policy: MHC class I molecules monitor the outside world. Immunol. Today 17, 131–137.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

McBride, W.H. (2001). Combining Radiation Therapy with Immunotherapy for Treatment of Brain Tumors. In: Liau, L.M., Becker, D.P., Cloughesy, T.F., Bigner, D.D. (eds) Brain Tumor Immunotherapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-035-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-035-3_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-110-3

  • Online ISBN: 978-1-59259-035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics