Skip to main content

Death Ligand/Death Receptor-Mediated Apoptosis for Treatment of Brain Tumors

  • Chapter
  • 102 Accesses

Abstract

The poor prognosis for patients with malignant gliomas calls for novel therapeutic approaches in this field of oncology. At present, involved-field radiotherapy is the single most effective treatment. Most of the currently available chemotherapy strategies fail because of the resistance of glioma cells to cytotoxic agents. Mutations of tumor suppressor genes (such as Rb or p53) or enhanced expression of oncogenes (such as bcl-2 or bcl-X), both common features of malignant gliomas, may inhibit the efficient killing of tumor cells by cytotoxic drugs or radiotherapy. Because activation of apoptotic cell death cascades is now considered to be a powerful instrument to rapidly and specifically induce the death of target cells, many researchers are seeking ways to utilize the apoptotic signaling pathway for therapeutic purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson, C. B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  2. Smith, C. A., Farrah, T., and Goodwin, R. G. (1994) TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76, 959–962.

    Article  PubMed  CAS  Google Scholar 

  3. Tartaglia, L. A., Ayres, T. M., Wong, G. H., and Goeddel, D. V. (1993) Novel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845–853.

    Article  PubMed  CAS  Google Scholar 

  4. Banner, D. W., D’Arcy, A., Janes, W., Gentz, R., Schoenfeld, H. J., Broger, C., Loetscher, H., and Lesslauer, W. (1993) Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 73, 431–445.

    Article  PubMed  CAS  Google Scholar 

  5. Krammer, P. H., Dhein, J., Walczak, H., Behrmann, I., Mariani, S., Matiba, B., et al. (1994) Role of APO-1-mediated apoptosis in the immune system. Immunol. Rev. 142, 175–191.

    Article  PubMed  CAS  Google Scholar 

  6. Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S., and Peter, M. E. (1998) Apoptosis signaling by death receptors. Eur. J. Biochem. 254, 439–459.

    Article  PubMed  CAS  Google Scholar 

  7. Ashkenazi, A. and Dixit, V. M. (1998) Death receptors: signaling and modulation. Science 281, 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  8. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50.

    Article  PubMed  CAS  Google Scholar 

  9. Yoshida, J., Wakabayashi, T., Mizuno, M., Sugita, K., Yoshida, T., Hori, S., et al. (1992) Clinical effect of intra-arterial tumor necrosis factor for malignant glioma. J. Neurosurg. 77, 78–83.

    Article  PubMed  CAS  Google Scholar 

  10. Bodmer, J. L., Burns, K., Schneider, P., Hofmann, K., Steiner, V., Thome, M., et al. (1997) TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95). Immunity 6, 79–88.

    Article  PubMed  CAS  Google Scholar 

  11. Trauth, B. C., Klas, C., Peters, A. M., Matzku, S., Moller, P., Falk, W., Debatin, K. M., and Krammer, P. H. (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301–305.

    Article  PubMed  CAS  Google Scholar 

  12. Yonehara, S., Ishii, A., and Yonehara, M. (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169, 1747–1756.

    Article  PubMed  CAS  Google Scholar 

  13. Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355–365.

    Article  PubMed  CAS  Google Scholar 

  14. Chinnaiyan, A. M., O’Rourke, K., Tewari, M., and Dixit, V. M. (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512.

    Article  PubMed  CAS  Google Scholar 

  15. Boldin, M. P., Goncharov, T. M., Goltsev, Y. V., and Wallach, D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803–815.

    Google Scholar 

  16. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O’Rourke, K., Shevchenko, A., Ni, J., et al. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827.

    Article  PubMed  CAS  Google Scholar 

  17. Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H., and Peter, M. E. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Medema, J. P., Scaffidi, C., Kischkel, F. C., Shevchenko, A., Mann, M., Krammer, P. H., and Peter, M. E. (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16, 2794–2804.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Nicholson, D. W. and Thornberry, N. A. (1997) Caspases: killer proteases. Trends Biochem. Sci. 22, 299–306.

    Article  PubMed  CAS  Google Scholar 

  20. Reed, J. C. (1997) Double identity for proteins of the Bcl-2 family. Nature 387, 773–776.

    Article  PubMed  CAS  Google Scholar 

  21. Weller, M., Malipiero, U., Aguzzi, A., Reed, J. C., and Fontana, A. (1995) Protooncogene bd-2 gene transfer abrogates Fas/APO-1 antibody-mediated apoptosis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation. J. Clin. Invest. 95, 2633–2643.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Itoh, N., Tsujimoto, Y., and Nagata, S. (1993) Effect of bcl-2 on Fas antigen-mediated cell death. J. Immunol. 151, 621–627.

    PubMed  CAS  Google Scholar 

  23. Roy, N., Mahadevan, M. S., McLean, M., Shutler, G., Yaraghi, Z., Farahani, R., et al. (1995) Gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80, 167–178.

    Article  PubMed  CAS  Google Scholar 

  24. Duckett, C. S., Nava, V. E., Gedrich, R. W., Clem, R. J., Dongen, J. L., Gilfillan, M. C., et al. (1996) A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J. 15, 2685–2694.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Liston, P., Roy, N., Tamai, K., Lefebvre, C., Baird, S., Cherton Horvat, G., et al. (1996) Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379, 349–353.

    Article  PubMed  CAS  Google Scholar 

  26. Ambrosini, G., Adida, C., and Altieri, D. C. (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med 3, 917–921.

    Article  PubMed  CAS  Google Scholar 

  27. Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, F., et al. (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–521.

    Article  PubMed  CAS  Google Scholar 

  28. Pitti, R. M., Marsters, S. A., Lawrence, D. A., Roy, M., Kischkel, F. C., Dowd, P., et al. (1998) Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396, 699–703.

    Article  PubMed  CAS  Google Scholar 

  29. Weller, M., Kleihues, P., Dichgans, J., and Ohgaki, H. (1998) CD95 ligand: lethal weapon against malignant glioma? Brain Pathol. 8, 285–293.

    Article  PubMed  CAS  Google Scholar 

  30. Leithäuser, F., Dhein, J., Mechtersheim, G., Koretz, K., Brüderlein, S., Henne, C., et al. (1993) Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor superfamily, in normal and neoplastic cells. Lab. Invest. 69, 415–429.

    PubMed  Google Scholar 

  31. French, L. E., Hahne, M., Viard, I., Radlgruber, G., Zanone, R., Becker, K., Muller, C., and Tschopp, J. (1996) Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J. Cell Biol. 133, 335–343.

    Article  PubMed  CAS  Google Scholar 

  32. Weller, M., Frei, K., Groscurth, P., Krammer, P. H., Yonekawa, Y., and Fontana, A. (1994) Anti-Fas/APO-1 antibody-mediated apoptosis of cultured human glioma cells. Induction and modulation of sensitivity by cytokines. J. Clin. Invest. 94, 954–964.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Tachibana, O., Nakazawa, H., Lampe, J., Watanabe, K., Kleihues, P., and Ohgaki, H. (1995) Expression of Fas/APO-1 during the progression of astrocytomas. Cancer Res. 55, 5528–5530.

    PubMed  CAS  Google Scholar 

  34. Gratas, C., Tohma, Y., Meir, E., Klein, M., Tenan, M., Ishii, N., et al. (1997) Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol. 7, 863–869.

    Article  PubMed  CAS  Google Scholar 

  35. Tohma, Y., Gratas, C., Meir, E. G., Desbaillets, I., Tenan, M., Tachibana, O., Kleihues, P., and Ohgaki, H. (1998) Necrogenesis and Fas/APO-1 (CD95) expression in primary (novo) and secondary glioblastomas. J. Neuropathol. Exp. Neurol. 57, 239–245.

    PubMed  CAS  Google Scholar 

  36. Frei, K., Ambar, B., Adachi, N., Yonekawa, Y., and Fontana, A. (1998) Ex vivo malignant glioma cells are sensitive to Fas (CD95/APO-1) ligand-mediated apoptosis. J. Neuroimmunol. 87, 105–113.

    Article  PubMed  CAS  Google Scholar 

  37. Tachibana, O., Lampe, J., Kleihues, P., and Ohgaki, H. (1996) Preferential expression of Fas/APO 1 (CD95) and apoptotic cell death in perinecrotic cells of glioblastoma multiforme. Acta Neuropathol. (Berl.) 92, 431–434.

    Article  CAS  Google Scholar 

  38. Weller, M., Weinstock, C., Will, C., Wagenknecht, B., Dichgans, J., Lang, F., and Gulbins, E. (1997) CD95-dependent T cell killing by glioma cells expressing CD95L: more on tumor immune escape, the CD95 counterattack, and the immune privilege of the brain. Cell Physiol. Biochem. 7, 282–288.

    Article  CAS  Google Scholar 

  39. Saas, P., Walker, P. R., Hahne, M., Quiquerez, A. L., Schnuriger, V., Perrin, G., et al. (1997) Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J. Clin. Invest. 99, 1173–1178.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Roth, W., Fontana, A., Trepel, M., Reed, J. C., Dichgans, J., and Weller, M. (1997) Immunochemotherapy of malignant glioma: synergistic activity of CD95 ligand and chemotherapeutics. Cancer Immunol. Immunother 44, 55–63.

    Article  PubMed  CAS  Google Scholar 

  41. Zipp, F., Martin, R., Lichtenfels, R., Roth, W., Dichgans, J., Krammer, P. H., and Weller, M. (1997) Human autoreactive and foreign antigen-specific T cells resist apoptosis induced by soluble recombinant CD95 ligand. J. Immunol. 159, 2108–2115.

    PubMed  CAS  Google Scholar 

  42. Schneider, P., Holler, N., Bodmer, J. L., Hahne, M., Frei, K., Fontana, A., Tschopp, J. (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J. Exp. Med. 187, 1205–1213.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Weller, M., Malipiero, U., Rensing Ehl, A., Barr, P. J., and Fontana, A. (1995) Fas/APO-1 gene transfer for human malignant glioma. Cancer Res. 55, 2936–2944.

    PubMed  CAS  Google Scholar 

  44. Wagenknecht, B., Schulz, J. B., Gulbins, E., and Weller, M. (1998) Crm-A, bcl-2 and NDGA inhibit CD95L-induced apoptosis of malignant glioma cells at the level of caspase 8 processing. Cell Death Differ. 5, 894–900.

    Article  PubMed  CAS  Google Scholar 

  45. Krajewski, S., Krajewska, M., Ehrmann, J., Sikorska, M., Lach, B., Chatten, J., and Reed, J. C. (1997) Immunohistochemical analysis of Bcl-2, Bel-X, Mcl-1, and Bax in tumors of central and peripheral nervous system origin. Am. J. Pathol. 150, 805–814.

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Roth, W., Grimmel, C., Rieger, L., Strik, H., Takayama, S., Pichgans, J., et al. (2000) Bag-1 and bcl-2 gene transfer in malignant glioma: modulation of cell cycle regulation and aptosis. Brain Pathol. 10, 223–234.

    Article  PubMed  CAS  Google Scholar 

  47. Weller, M., Rieger, J., Grimmel, C., Meir, E. G., Tribolet, N., Krajewski, S., et al. (1998) Predicting chemoresistance in human malignant glioma cells: the role of molecular genetic analyses. Int. J. Cancer 79, 640–644.

    Article  PubMed  CAS  Google Scholar 

  48. Rensing-Ehl, A., Frei, K., Flury, R., Matiba, B., Mariani, S. M., Weller, M., et al. (1995) Local Fas/APO-1 (CD95) ligand-mediated tumor cell killing in vivo. Eur. J. Immunol. 25, 2253–2258.

    Article  PubMed  CAS  Google Scholar 

  49. Arai, H., Gordon, D., Nabel, E.G., and Nabel, G. J. (1997) Gene transfer of Fas ligand induces tumor regression in vivo. Proc. Natl. Acad. Sci. U.S.A. 94, 13,862–13, 867.

    Google Scholar 

  50. Seino, K., Kayagaki, N., Okumura, K., and Yagita, H. (1997) Antitumor effect of locally produced CD95 ligand. Nat. Med. 3, 165–170.

    Article  PubMed  CAS  Google Scholar 

  51. Yu, J. S., Sena Esteves, M., Paulus, W., Breakefield, X. O., and Reeves, S. A. (1996) Retroviral delivery and tetracycline-dependent expression of IL-lbeta-converting enzyme (ICE) in a rat glioma model provides controlled induction of apoptotic death in tumor cells. Cancer Res. 56, 5423–5427.

    PubMed  CAS  Google Scholar 

  52. Kondo, S., Tanaka, Y., Kondo, Y., Ishizaka, Y., Hitomi, M., Haqqi, T., et al. (1998) Retro-viral transfer of CPP32beta gene into malignant gliomas in vitro and in vivo. Cancer Res. 58, 962–967.

    PubMed  CAS  Google Scholar 

  53. Kondo, S., Ishizaka, Y., Okada, T., Kondo, Y., Hitomi, M., Tanaka, Y., et al. (1998) FADD gene therapy for malignant gliomas in vitro and in vivo. Hum. Gene Ther. 9, 1599–1608.

    Article  PubMed  CAS  Google Scholar 

  54. Roth, W., Wagenknecht, B., Grimmel, C., Dichgans, J., and Weller, M. (1998) Taxolmediated augmentation of CD95 ligand-induced apoptosis of human malignant glioma cells. Association with bc1–2 phosphorylation but neither activation of p53 nor G2/M cell cycle arrest. Br. J. Cancer 77, 404–411.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Winter, S., Roth, W., Dichgans, J., and Weller, M. (1998) Synergy of CD95 ligand and teniposide: no role of cleavable complex formation and enhanced CD95 expression. Eur. J. Pharmacol. 352, 111–115.

    Article  PubMed  Google Scholar 

  56. Winter, S. and Weller, M. (1998) Potentiation of CD95L-induced apoptosis of human malignant glioma cells by topotecan involves inhibition of RNA synthesis but not changes in CD95 or CD95L protein expression. J. Pharmacol. Exp. Ther. 286, 1374–1382.

    PubMed  CAS  Google Scholar 

  57. Weller, M., Winter, S., Schmidt, C., Esser, P., Fontana, A., Dichgans, J., and Groscurth, P. (1997) Topoisomerase-I inhibitors for human malignant glioma: differential modulation of p53, p21, bax and bc1–2 expression and of CD95-mediated apoptosis by camptothecin and beta-lapachone. Int. J. Cancer 73, 707–714.

    Article  PubMed  CAS  Google Scholar 

  58. Hueber, A., Durka, S., and Weller, M. (1998) CD95-mediated apoptosis: no variation in cellular sensitivity during cell cycle progression. FEBS Lett. 432, 155–157.

    Article  PubMed  CAS  Google Scholar 

  59. Micheau, O., Solary, E., Hammann, A., Martin, F., and Dimanche-Boitrel, M. T. (1997) Sensitization of cancer cells treated with cytotoxic drugs to fas-mediated cytotoxicity. J. Natl. Cancer Inst. 89, 783–789.

    Article  PubMed  CAS  Google Scholar 

  60. Müller, M., Strand, S., Hug, H., Heinemann, E. M., Walczak, H., Hofmann, W. J., et al. (1997) Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J. Clin. Invest. 99, 403–413.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Friesen, C., Herr, I., Krammer, P. H., and Debatin, K. M. (1996) Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat. Med. 2, 574–577.

    Article  PubMed  CAS  Google Scholar 

  62. Fulda, S., Sieverts, H., Friesen, C., Herr, I., and Debatin, K.M. (1997) The CD95 (APO-1/ Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res. 57, 3823–3829.

    PubMed  CAS  Google Scholar 

  63. Eischen, C. M., Kottke, T. J., Martins, L. M., Basi, G. S., Tung, J. S., Earnshaw, W. C., Leibson, P. J., and Kaufmann, S. H. (1997) Comparison of apoptosis in wild-type and Fas-resistant cells: chemotherapy-induced apoptosis is not dependent on Fas/Fas ligand interactions. Blood 90, 935–943.

    PubMed  CAS  Google Scholar 

  64. Gamen, S., Anel, A., Lasierra, P., Alava, M. A., Martinez Lorenzo, M. J., Pineiro, A., and Naval, J. (1997) Doxorubicin-induced apoptosis in human T-cell leukemia is mediated by caspase-3 activation in a Fas-independent way. FEBS Lett. 417, 360–364.

    Article  PubMed  CAS  Google Scholar 

  65. Villunger, A., Egle, A., Kos, M., Hartmann, B. L., Geley, S., Kofler, R., and Greil, R. (1997) Drug-induced apoptosis is associated with enhanced Fas (Apo-1/CD95) ligand expression but occurs independently of Fas (Apo-1/CD95) signaling in human T-acute lymphatic leukemia cells. Cancer Res. 57, 3331–3334.

    PubMed  CAS  Google Scholar 

  66. Ogasawara, J., Watanabe Fukunaga, R., Adachi, M., Matsuzawa, A., Kasugai, T., Kitamura, Y., et al. (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364, 806–809.

    Article  PubMed  CAS  Google Scholar 

  67. Nagata, S. (1996) Fas ligand and immune evasion. Nat. Med. 2, 1306–1307.

    Article  PubMed  CAS  Google Scholar 

  68. Weller, M. and Fontana, A. (1995) The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-(3, T-cell apoptosis, and the immune privilege of the brain. Brain Res. Rev. 21, 128–151.

    Article  PubMed  CAS  Google Scholar 

  69. Wiley, S. R., Schooley, K., Smolak, P. J., Din, W. S., Huang, C. P., Nicholl, J. K., et al. (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673–682.

    Google Scholar 

  70. Pitti, R. M., Marsters, S. A., Ruppert, S., Donahue, C. J., Moore, A., and Ashkenazi, A. (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 271, 12,687–12, 690.

    Google Scholar 

  71. Marsters, S. A., Pitti, R. M., Donahue, C. J., Ruppert, S., Bauer, K. D., and Ashkenazi, A. (1996) Activation of apoptosis by Apo-2 ligand is independent of FADD but blocked by CrmA. Curr. Biol. 6, 750–752.

    Article  PubMed  CAS  Google Scholar 

  72. Pan, G., O’Rourke, K., Chinnaiyan, A. M., Gentz, R., Ebner, R., Ni, J., and Dixit, V. M. (1997) The receptor for the cytotoxic ligand TRAIL. Science 276, 111–113.

    Article  PubMed  CAS  Google Scholar 

  73. Pan, G., Ni, J., Wei, Y. F., Yu, G., Gentz, R., and Dixit, V. M. (1997) Antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277, 815–818.

    Article  PubMed  CAS  Google Scholar 

  74. Chaudhary, P. M., Eby, M., Jasmin, A., Bookwalter, A., Murray, J., and Hood, L. (1997) Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 7, 821–830.

    Article  PubMed  CAS  Google Scholar 

  75. Sheridan, J. P., Marsters, S. A., Pitti, R. M., Gurney, A., Skubatch, M., Baldwin, D., et al. (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818–821.

    Article  PubMed  CAS  Google Scholar 

  76. Schneider, P., Bodmer, J. L., Thome, M., Hofmann, K., Holler, N., and Tschopp, J. (1997) Characterization of two receptors for TRAIL. FEBS Lett. 416, 329–334.

    Article  PubMed  CAS  Google Scholar 

  77. Degli-Esposti, M. A., Smolak, P. J., Walczak, H., Waugh, J., Huang, C. P., DuBose, R. F., Goodwin, R. G., and Smith, C. A. (1997) Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J. Exp. Med. 186, 1165–1170.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Marsters, S. A., Sheridan, J. P., Pitti, R. M., Huang, A., Skubatch, M., Baldwin, D., et al. (1997) Novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr. Biol. 7, 1003–1006.

    Article  PubMed  CAS  Google Scholar 

  79. Degli-Esposti, M. A., Dougall, W. C., Smolak, P. J., Waugh, J. Y., Smith, C. A., and Goodwin, R. G. (1997) The novel receptor TRAIL-R4 induces NF-KB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7, 813–820.

    Article  PubMed  CAS  Google Scholar 

  80. Pan, G., Ni, J., Yu, G., Wei, Y. F., and Dixit, V. M. (1998) TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signaling. FEBS Lett. 424, 41–45.

    Article  PubMed  CAS  Google Scholar 

  81. Glaser, T., Wagenknecht, B., Groscurth, P., Krammer, P. H., and Weller, M. (1999) Death ligand/receptor-independent caspase activation mediates drug-induced cytotoxic cell death in human malignant glioma cells. Oncogene 18, 5044–5053.

    Article  PubMed  CAS  Google Scholar 

  82. Golstein, P. (1997) Cell death: TRAIL and its receptors. Curr. Biol. 7, R750 — R753.

    Article  PubMed  CAS  Google Scholar 

  83. Mongkolsapaya, J., Cowper, A. E., Xu, X. N., Morris, G., McMichael, A. J., Bell, J. I., and Screaton, G. R. (1998) Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL. J. Immunol. 160, 3–6.

    PubMed  CAS  Google Scholar 

  84. Griffith, T. S., Chin, W. A., Jackson, G. C., Lynch, D. H., and Kubin, M. Z. (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J. Immunol. 161, 2833–2840.

    PubMed  CAS  Google Scholar 

  85. Walczak, H., Degli Esposti, M. A., Johnson, R. S., Smolak, P. J., Waugh, J. Y., Boiani, N., et al. (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. 16, 5386–5397.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Schneider, P., Thome, M., Burns, K., Bodmer, J. L., Hofmann, K., Kataoka, T., Holler, N., and Tschopp, J. (1997) TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity 7, 831–836.

    Article  PubMed  CAS  Google Scholar 

  87. MacFarlane, M., Ahmad, M., Srinivasula, S. M., Fernandes Alnemri, T., Cohen, G. M., and Alnemri, E. S. (1997) Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J. Biol. Chem. 272, 25,417–25, 420.

    Google Scholar 

  88. Griffith, T. S. and Lynch, D. H. (1998) TRAIL: a molecule with multiple receptors and control mechanisms. Curr. Opin. Immunol. 10, 559–563.

    Article  PubMed  CAS  Google Scholar 

  89. Rieger, J., Naumann, U., Glaser, T., Ashkenazi, A., and Weller, M. (1998) APO2 ligand: a novel lethal weapon against malignant glioma? FEBS Lett. 427, 124–128.

    Article  PubMed  CAS  Google Scholar 

  90. Rieger, J., Ohgaki, H., Kleihues, P., and Weller, M. (1999) Human astrocytic brain tumors express APO2L/TRAIL. Acta Neuropathol. 97, 1–4.

    Article  PubMed  CAS  Google Scholar 

  91. Snell, V., Clodi, K., Zhao, S., Goodwin, R., Thomas, E. K., Morris, S. W., et al. (1997) Activity of TNF-related apoptosis-inducing ligand (TRAIL) in haematological malignancies. Br. J. Haematol. 99, 618–624.

    Article  PubMed  CAS  Google Scholar 

  92. Thomas, W. D. and Hersey, P. (1998) TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J. Immunol. 161, 2195–2200.

    PubMed  CAS  Google Scholar 

  93. Mariani, S. M., Matiba, B., Armandola, E. A., and Krammer, P. H. (1997) Interleukin 1 beta-converting enzyme related proteases/caspases are involved in TRAIL-induced apoptosis of myeloma and leukemia cells. J. Cell Biol. 137, 221–229.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Roth, W., Wagenknecht, B., Dichgans, J., and Weller, M. (1998) Interferon-a enhances CD95L-induced apoptosis of human malignant glioma cells. J. Neuroimmunol. 87, 121–129.

    Article  PubMed  Google Scholar 

  95. Weller, M., Schmidt, C., Roth, W., and Dichgans, J. (1997) Chemotherapy of human malignant glioma: prevention of efficacy by dexamethasone? Neurology 48, 1704–1709.

    Article  PubMed  CAS  Google Scholar 

  96. Naumann, U., Durka, S., and Weller, M. (1998) Dexamethasone-mediated protection from drug cytotoxicity: association with p21 WAF1/CIP1 protein accumulation? Oncogene 17, 1567–1575.

    Article  PubMed  CAS  Google Scholar 

  97. Fujisawa, K., Asahara, H., Okamoto, K., Aono, H., Hasunuma, T., Kobata, T., et al. (1996) Therapeutic effect of the anti-Fas antibody on arthritis in HTLV-1 tax transgenic mice. J. Clin. Invest. 98, 271–278.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Zhang, H., Yang, Y., Horton, J. L., Samoilova, E. B., Judge, T. A., Turka, L. A., Wilson, J. M., and Chen, Y. (1997) Amelioration of collagen-induced arthritis by CD95 (Apo-1/Fas)ligand gene transfer. J. Clin. Invest. 100, 1951–1957.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  99. Richardson, B. C., Lalwani, N. D., Johnson, K. J., and Marks, R. M. (1994) Fas ligation triggers apoptosis in macrophages but not endothelial cells. Eur. J. Immunol. 24, 2640–2645.

    Article  PubMed  CAS  Google Scholar 

  100. Walczak, H., Miller, R. E., Ariail, K., Gliniak, B., Griffith, T. S., Kubin, M., et al. (1999) Tumoricidal activity of tumor necrosis factor-related aptosis-inducing ligand in vivo. Nat. Med. 5, 159–163.

    Google Scholar 

  101. Ashkenazi, A., Pai, R. C., Fong, S., Leung, S., Lawrence, D. A., Marsters, S. A., et al. (1999) Safety and antitumor activity of recombinant soluble Apo2L ligand. J. Clin. Invest. 104, 155–162.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Roth, W., Isenmann, S., Naumann, U., Kugler, S., Bahr, M., Dichgans, J., et al. (1999) Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem. Res. Commun. 265, 479–483.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roth, W., Weller, M. (2001). Death Ligand/Death Receptor-Mediated Apoptosis for Treatment of Brain Tumors. In: Liau, L.M., Becker, D.P., Cloughesy, T.F., Bigner, D.D. (eds) Brain Tumor Immunotherapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-035-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-035-3_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-110-3

  • Online ISBN: 978-1-59259-035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics