Skip to main content

Arterial Pulse Transmission Characteristics

  • Chapter
The Arterial Circulation
  • 122 Accesses

Abstract

Structural and geometric nonuniformities of the arterial tree give rise to differences in observed pressure and flow waveforms in different anatomic locations in the arterial system. Simultaneous recordings of pressure and flow waveforms in different parts of the vascular tree in human and dog have made clear some distinct features as the pulse wave travels away from the heart. First, the pulse pressure (PP) increases and the flow amplitude decreases progressively, though the mean pressure falls very slowly until reaching the arteriolar beds. The fall of mean blood pressure in the arteriolar beds is dramatic. Second, the rate of rise of the pressure wave in early systole increases and the wavefront becomes steeper; that of the flow wave behaves in just the opposite manner. Third, the incisura, or dicrotic notch, casued by pressure fluctuation as a result of an aortic valve closure, is rounded off as the pressure wave propagates toward the periphery, and the diastolic portion of the pressure wave is accentuated. These observations are illustrated in Fig. 4-1. These changes and their explanations are significant in understanding the functional aspects of the arterial system. Consequently, there is considerable diagnostic information that can be derived from the pressure and flow waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel, F. L. Fourier analysis of left ventricular performance. Effect of impedance matching. Circ. Res. 28: 119–135, 1971.

    Article  Google Scholar 

  • Alexander, R. S. Transformation of the arterial pulse wave between the aortic arch and the femoral artery. Am. J. Physiol. 158: 287, 1949.

    PubMed  CAS  Google Scholar 

  • Alexander, R. S. The genesis of aortic standing wave. Circ. Res. 1: 145–151, 1953.

    Article  PubMed  CAS  Google Scholar 

  • Anliker, M., Histand, M. B., and Ogden, E. Dispersion and attenuation of small artificial pressure waves in the canine aorta. Circ. Res. 23: 539–551, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Aperia, A. Haemodynamical studies. Skand. Arch. Physiol. 83 (Suppl. 1): 1–230, 1940.

    Article  Google Scholar 

  • Arndt, J. O., Stegall, H. F., and Wicke, H. J. Mechanics of the aorta in vivo. Circ. Res. 28: 693–704, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Arntzenius, A. C. Importance of pulsations. Proc. CSDS Conf., Philadelphia, 1976.

    Google Scholar 

  • Attinger, E. O., Anne, A., and McDonald, D. A. Use of Fourier series for the analysis of biological systems. Biophys. J. 6: 291–304, 1966a.

    Article  PubMed  CAS  Google Scholar 

  • Attinger, E. O., Sugawara, H., Nvarro, A., Ricetto, A., and Martin, R. Pressure-flow relations in dog arteries. Circ. Res. 19: 230–246, 1966b.

    Article  PubMed  CAS  Google Scholar 

  • Avolio, A. P., O’Rourke, M. F., Mang, K., Bason, P. T., and Gow, B. S. Comparative study of pulsatile arterial hemodynamics in rabbits and guinea pigs. Am. J. Physiol. 230: 868–875, 1976.

    PubMed  CAS  Google Scholar 

  • Baan, J. Transverse Impedance of Arteries: Animal Eexperiments Related to Wave Transmission Theory. Ph. D. dissertation, University of Pennsylvania, Philadelphia, 1970.

    Google Scholar 

  • Barnett, G. O., Maillos, A. J., and Shapiro, A. Relationship of aortic pressure and diameter in the dog. J. Appl. Physiol. 16: 545, 1961.

    PubMed  CAS  Google Scholar 

  • Bergel, D. H. Dynamic elastic properties of the arterial wall. J. Physiol. 156: 458–469, 1961.

    PubMed  CAS  Google Scholar 

  • Bergel, D. H. and Milnor, W. R. Pulmonary vascular impedance in the dog. Circ. Res. 16: 401–415, 1965.

    Article  PubMed  CAS  Google Scholar 

  • Bramwell, J. C. and A. V. Hill. The velocity of the pulse wave in man. Proc. Roy. Soc. Lond. Biol. 93: 298–306, 1922.

    Article  Google Scholar 

  • Busse, R., Bauer, R. D., Schaben, A., Summa, Y., and Wettere, E. Improved method for the determination of the pulse transmission characteristics of arteries in vivo. Circ. Res. 44: 630–636, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Caro, C. G., Bergel, D. H., and Seed, W. A. Forward and backward transmission of pressure waves in the pulmonary vascular bed of the dog. Circ. Res. 20: 185–193, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Caro, C. G., Fitz-Gerald, J. M., and Schroter, R. C. Atheroma and arterial wall shear. Proc. Roy. Soc. London B177: 109–159, 1971.

    Article  CAS  Google Scholar 

  • Caro, C. G. and McDonald, D. A. Relation of pulsatile pressure and flow in the pulmonary vascular bed. J. Physiol. 157: 426–453, 1961.

    PubMed  CAS  Google Scholar 

  • Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A. Mechanics of the Circulation. Oxford University Press, Oxford, 1978.

    Google Scholar 

  • Clarke, T. N. S., Prys-Roberts, C., Biro, G., Foex, P., and Bennett, M. J. Aortic input impedance and left ventricular energetics in acute isovolumic anemia. Cardiovasc. Res. 12: 49–55, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R. H. Blood flow and pressure propagation in the canine femoral artery. J. Biomech. 3: 131–149, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R. H. Determination of the true phase velocity of arterial pressure waves in vivo. Circ. Res. 29: 407–418, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R. H. Pressure dependence of the mechanical properties of arteries in vivo. Am. J. Physiol. 229: 1371–1375, 1975.

    PubMed  CAS  Google Scholar 

  • Cox, R. H. and Pace, J. B. Pressure-flow relations in the vessels of the canine aortic arch. Am. J. Physiol. 228: 1–10, 1975.

    PubMed  CAS  Google Scholar 

  • Dick, D. E., Kendrick, J. E., Matson, G. L., and Rideout, V. C. Measurement of nonlinearity in the arterial system of the dog by a new method. Circ. Res. 22: 101, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Dow, P. and Hamilton, W. F. Experimental study of the velocity of the pulse wave propagated through the aorta. Am. J. Physiol. 125: 60–65, 1939.

    Google Scholar 

  • Dujardin, J.-P., Stone, D. N., Paul, L. T., and Pieper, H. P. Response of systemic arterial input impedance to volume expansion and hemorrhage. Am. J. Physiol. 238: H902 - H908, 1980.

    PubMed  CAS  Google Scholar 

  • Evans, C. L. and Matsuoka, Y. Effect of various mechanical conditions on the gaseous metabolism and efficiency of the mammalian heart. J. Physiol. 49: 378–405, 1915.

    PubMed  CAS  Google Scholar 

  • Fry, D. L., Griggs, D. M., Jr., and Greenfield, I. C., Jr. In vivo studies of pulsatile blood flow:The relationship of the pressure gradient to the blood velocity. In: Attinger, E. O., ed., Pulsatile Blood Flow, McGraw-Hill, New York, pp. 101–114, 1964.

    Google Scholar 

  • Gabe, I. T., Gault, H. J., Ross, J., Jr., Mason, D. T., Mills, C. J., Shillingford, J. P., and Braunwaid, E. Measurement of instantaneous blood flow velocity and pressure in conscious man with a catheter-tip velocity probe. Circulation 40: 603–614, 1964.

    Article  Google Scholar 

  • Gabe, I. T., Kamell, J., Porje, I. G„ and Rudewald, B. Measurement of input impedance and apparent phase velocity in the human aorta. Acta Physiol. Scand. 61: 73–84, 1964.

    Article  PubMed  CAS  Google Scholar 

  • Gessner, U. and Berge!, D. H. Methods of determining the distensibility of blood vessels. IEEE Trans. Biomed. Eng. BME-13: 2–10, 1966.

    Google Scholar 

  • Gosling, R. G., Newman, D. L., Bowden, N. L. R., and Twinn, K. W. Aortic configuration and pulse wave reflection. Br. J. Radiol. 44: 850–853, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Grashey, H. Die Welienbewegung elastischer Rohren and der Arterienpuls des Merschen. Vogel Verlag, Leipzig, 1881.

    Google Scholar 

  • Greenfield, J. C., Jr. and Fry, D. L. Relationship between instantaneous aortic flow and the pressure gradient. Circ. Res. 17: 340–348, 1965.

    Article  PubMed  Google Scholar 

  • Hagan, G. H. L. Uber die Bewegung des Wassers in engen cylindrischen Rohren. Ann. Phys. Chem. 46: 423–444, 1839.

    Google Scholar 

  • Hamilton, W. F. and Dow, P. Experimental study of the standing waves in the pulse propagated through the aorta. Am. J. Physiol. 125: 48–59, 1939.

    Google Scholar 

  • Hunt, W. A. Calculations of pulsatile flow across bifurcations in distensible tubes. Biophys. J. 9: 993, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Intaglietta, M., Parvula, R. F., and Thompkins, W. R. Pressure measurements in the mammalian microvasculature. Microvasc. Res. 2: 212–220, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Intaglietta, M., Richardson, D. R., and Thompkins, W. R. Blood pressure, flow, and elastic properties in microvessels of cat omentum. Am. J. Physiol. 221: 922–928, 1971.

    PubMed  CAS  Google Scholar 

  • Intaglietta, M. and Zweifach, V. W. Indirect method for measurement of pressure in blood capillaries. Circ. Res. 19: 199–205, 1966.

    Article  Google Scholar 

  • Jacobs, L. A., Klopp, E. H., Seamore, W., Topaz, S. R., and Gott, V. L. Improved organ functions during cardiac bypass with a roller pump modified to deliver pulsatile flow. J. Thorac. Cardiovasc. Surg. 58: 703–712, 1969.

    PubMed  CAS  Google Scholar 

  • Kapal, E., Martini, F., and Wetterer, E. Uber die Zuverlassigkeit der bisherigen Bestimmungsart der Pulswellen geschwindigkeit. Z. Biol. 104: 75–86, 1951.

    Google Scholar 

  • Karamanoglu M., O’Rourke, M., Avolio, A. O., et al. Analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur. Heart J. 14: 160–167, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Karreman, G. Some contributions to the mathematical biology of blood circulation: reflection of pressure waves in the arterial system. Bull. Math. Biophys. 14: 327–350, 1952.

    Article  Google Scholar 

  • Krovetz, L. J., Jennings, R. B., Jr., and Goldbloom, S. D. Limitations of corrections of frequency dependent artifact in pressure recordings using harmonic analysis. Circulation 50: 992–997, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Laszt, L. and Muller, A. Gleichzeitige Druckmes sung in der Aorta abdominalis and ihren Hauptasten. Helv. Physiol. Pharm. Acta 10: 259–272, 1952.

    CAS  Google Scholar 

  • Laskey, W. K., Kussmaul, W. G., Martin, J. L., et al. Characteristics of vascular hydraulic load in patients with heart failure. Circulation 72: 61–71, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Laskey W. K. and W. G. Kussmaul. Arterial wave reflections in heart failure. Circ. 75: 71 1722, 1987.

    Google Scholar 

  • Latham, R. D., Westehof, N., and Sipkema, P. Regional wave travel and reflections along the human aorta: a study with six simultatneous micromanometric presures. Circulation 72: 1257–1269, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Learoyd, B. M. and Taylor, M. G. Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res. 18: 278–292, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Lei, C. Q., Li, J. K.-J., Quick, C. Comparison of time domain and frequency domain assessments of arterial wave reflections. Proc. 22nd. NE Bioeng. Conf. 22: 7–8, 1996.

    Google Scholar 

  • Li, J. K.-J. Mammalian Hemodynamics: Wave Transmission Characteristics and Similarity Analysis. Ph. D. dissertation, University of Pennsylvania, Philadelphia, 1978.

    Google Scholar 

  • Li, J. K.-J. Time domain resolution of forward and reflected waves in the aorta. IEEE Trans. Biomed. Eng. BME-33: 783–785, 1986.

    Google Scholar 

  • Li, J. K.-J. Pulse wave reflections at the aorto-iliac junction. Angiology, J. Vasc. Dis. 36: 516–521, 1985.

    CAS  Google Scholar 

  • Li, J. K.-J. Dominance of geometric aver elastic factors in pulse transmission through arterial branching. Bull. Math. Biol. 48: 97–103, 1986b.

    PubMed  CAS  Google Scholar 

  • Li, J. K.-J. Increased arterial pulse wave reflections and pulsatile energy loss in acute hypertension. Angiology, J. Vasc. Dis. 40: 730–735, 1989.

    CAS  Google Scholar 

  • Li, J. K.-J. Cardiovascular diagnostic parameters derived from pressure and flow pulses. Frontiers Eng. Healthcare 4: 186–189, 1982.

    Google Scholar 

  • Li, J. K.-J. Arterial System Dynamics. New York University Press, New York, 1987.

    Google Scholar 

  • Li, J. K.-J. New similarity principle for cardiac energetics. Bull. Math. Biol. 45: 1005–1011, 1983.

    PubMed  CAS  Google Scholar 

  • Li, J. K.-J. Comparative Cardiovascular Dynamics of Mammals. CRC Press, New York, 1996.

    Google Scholar 

  • Li, J. K.-J., Melbin, J., Campbell, K., and Noordergraaf, A. Evaluations of a three-point pressure method for the determination of arterial transmission characteristics. J.Biomech. 13: 1023–1029, 1980a.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. K.-J., Melbin, J., and Noordergraaf, A. Pulse transmission to vascular beds. Proc. 33rd ACEMB 22: 109, 1980b.

    Google Scholar 

  • Li, J. K.-J., Melbin, J., and Noordergraaf, A. Optimality of pulse transmission at vascular branching junctions. Cardiovasc. Syst. Dynamics 6: 228–230, 1984a.

    Google Scholar 

  • Li, J. K.-J., Melbin, J., and Noordergraaf, A. Directional disparity of pulse wave reflections in dog arteries. Am. J. Physiol. 247: 495–499, 1984b.

    Google Scholar 

  • Li, J. K.-J., Melbin, J., Riffle, R. A., and Noordergraaf, A. Pulse wave propagation. Circ. Res. 49: 442–452, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Ling, S.C., Atabek, H. B., Letzing, W. G., and Patel, D. J. Nonlinear analysis of aortic flow in living dogs. Circ. Res. 33: 198–212, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Luchsinger, P. C., Snell, R. E., Patel, D. J., and Fry, D. L. Instantaneous pressure distribution among the human aorta. Circ. Res. 15: 503–510, 1964.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, D. A. and Taylor, M. G. Hydrodynamics of the arterial circulation. Progr. Biophys. Biophys. Chem. 9: 105, 107–173, 1959.

    Google Scholar 

  • McDonald, D. A. Blood Flow in Arteries. Arnold, London, 1960.

    Google Scholar 

  • McDonald, D. A. Blood Flow in Arteries. Arnold, London, 1974.

    Google Scholar 

  • McDonald, D. A. Regional pulse-wave velocity in the arterial tree. J. Appl. Physiol. 24: 73–78, 1968.

    PubMed  CAS  Google Scholar 

  • McDonald, D. A., and Gessner, U. Wave attenuation in viscoelastic arteries. In: Copley, A. L., ed., Hemorheology, Pergamon Press, Oxford, pp. 113–125, 1968.

    Google Scholar 

  • Malindzak, G. S. Fourier analysis of cardiovascular events. Math. Biosci. 7: 273, 1970.

    Article  Google Scholar 

  • Maxwell, J. A. and Anliker, M. The dissiparrions and dispersion of small waves in arteries and veins with viscoelastic wall properties. Biophys. J. 8: 920–950, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Mayrovitz, H. N. Assessment of human microvascular function. In: Drzewieki, G. and Li, J. K.-J., eds., Analysis and Assessment of Cardiovascular Function, Springer-Verlag, New York, pp. 248–273, 1998.

    Chapter  Google Scholar 

  • Mills, C. J., Gabe, I. T., Gault, J. H., Mason, D. T., Ross, J., Braunwald, E., and Shillingford, J. P. Pressure-flow relationships and vascular impedance in man. Cardiovasc. Res. 4: 405–417, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Milnor, W. R. Arterial impedance as ventricular afterload. Circ. Res. 36: 565–570, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Milnor, W. R. and Bertram, C. D. Relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo. Circ. Res. 43: 870–879, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Milnor, W. R. and Nichols, W. W. New method of measuring propagation coefficients and characteristic impedance in blood vessels. Circ. Res. 36: 631–639, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Murgo, J. P., Westerhof, N., Giolma, J. P., and Altobelli, S. A. Aortic input impedance in normal man:relationship to pressure waveforms. Circulation 62: 105–116, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Murgo, J. P., Westerhof, N., Giolma, J. P., and Altobelli, S. A. Manipulation of ascending aortic pressure and flow wave reflections with the Valsalva maneuver: relationship to input impedance. Circulation 63: 122–132, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Newman, D. L., Batten, J. R., and Bowden, N. L. R. Partial standing wave formations above an abdominal aortic stenosis. Cardiovasc. Res. 11: 160, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Newman, D. L. and Bowden, N. L. R. Effect of reflection from an unmatching junction of the abdominal aortic impedance. Cardiovasc. Res. 7: 827, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Newman, D. L., Greenwald, S. E., and N. L. R. Bowden. In vivo study of the total occlusion method for the analysis of forward and backward pressure waves. Cardiovasc. Res. 13:595–600, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, W. W., Conti, C. R., Walker, W. E., and Milnor, W. R. Input impedance of the systematic circulation in man. Circ. Res. 40: 451–458, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, W. W. and McDonald, D. A. Wave velocity in the proximal aorta. Med. Biol. Eng. 10: 327–335, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Noble, M. I. M., Gabe, I. T., and Guz, A. Blood pressure and flow in the ascending of conscious dogs. Cardiovasc. Res. 1: 9–0, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Noordergraaf, A. Circulatory System Dynamics. Academic, New York, 1978.

    Google Scholar 

  • O’Rourke, M. F. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J. Appl. Physiol. 23: 139–149, 1967.

    PubMed  Google Scholar 

  • O’Rourke, M. F. Impact pressure, lateral pressure, and impedance in the proximal aorta and pulmonary artery. J. Appl. Physiol. 25: 533–541, 1968.

    PubMed  Google Scholar 

  • O’Rourke, M. F. and Taylor, M. G. Vascular impedance of the femoral bed. Circ. Res. 18: 126–139, 1966.

    Article  Google Scholar 

  • O’Rourke, M. F. and Taylor, M. G. Input impedance of the systemic circulation. Circ. Res. 20: 365–380, 1967.

    Article  PubMed  Google Scholar 

  • Patel, D. J., DeFreitas, F. M., and Fry, D. L. Hydraulic input impedance to aorta and pulmonary artery in dogs. J. Appl. Physiol. 18: 134–140, 1963.

    PubMed  CAS  Google Scholar 

  • Patel, D. J., Greenfield, J. C., Jr., Austen, W. G., Morrow, A. G., and Fry, D. L. Pressure—flow relationships in the ascending aorta and femoral artery of man. J. Appl. Physiol. 20: 459–463, 1965.

    PubMed  CAS  Google Scholar 

  • Peluso, F., Topham, W. S. and Noordergraaf, A. Response of systemic input impedance to exercise and graded aortic constriction. In: Baan, J., Noordergraaf, A., and Raines, J., eds., Cardiovascular System Dynamics, MIT Press, Cambridge, pp. 432–440, 1978.

    Google Scholar 

  • Peterson, L. H. and Gerst, P. H. Significance of reflected waves within the arterial system. Fed. Proc. 15: 144, 1956.

    Google Scholar 

  • Poiseuliie, J. L. M. Recherches experimentales sur le mouvement des liquides dan les tubes de tres petit diameters. C. R. Acad. Sci. 12: 112, 1841.

    Google Scholar 

  • Porje, I. G. Studies of the arterial pulse wave, particularly in the aorta. Acta. Physiol. Scand. 42Supp1: 1–68, 1946.

    Google Scholar 

  • Porje, I. G. Energy design of the human circulatory system. Cardiology 51: 293–306, 1967.

    Article  CAS  Google Scholar 

  • Randall, J. E. and Stacy, R. W. Mechanical impedance of the dog’s hind leg to pulsatile blood flow. Am. J. Physiol. 187: 94–98, 1956.

    PubMed  CAS  Google Scholar 

  • Remington, J. W. Physiology of the aorta and major arteries. In: Handbook of Physiology, vol. 2, American Physiologial Society, Washington, DC, 1963.

    Google Scholar 

  • Remington, J. W. and Wood, E. H. Formations of peripheral pulse contour in man. J. Appl. Physiol. 9: 433, 1956.

    PubMed  CAS  Google Scholar 

  • Reuben, S. R., Swadling, J. P., Gersh, B. J., and Lee, G. de J. Impedance and transmission properties of the pulmonary arterial system. Cardiovasc. Res. 5: 1–9, 1971.

    Article  Google Scholar 

  • Rockwell, R. L., Anliker, M., and Ogden, E. Shock waves and other nonlinear phenomena of wave propagation in blood vessels. Proc. IOMBE 6: 4, 1969.

    Google Scholar 

  • Rodbard, S., Williams, F., and Williams, C. Spherical dynamics of the heart. Am. Heart J. 57: 348–360, 1959.

    Article  PubMed  CAS  Google Scholar 

  • Safar, M. E., Simon, A. C., and Levenson, J. A. Structural changes of large arteries in sustained essential hypertension. Hypertension 6 (SIII): 117–121, 1984.

    Google Scholar 

  • Salotto, A., Muscarella, L. F., Melbin, J., Li, J. K-J., and Noordergraaf, A. Pressure pulse transmission into vascular beds. Microvasc. Res. 32: 152–163, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Sarpkaya, T. Reflections and transmissions of pulse waves in distensible bifurcating vessels. Dig. 7th ICMBE, 1967.

    Google Scholar 

  • Shi, W.-M. and Li, J. K.-J. Time and frequency domain determination of the characteristic impedance of the aorta. Proc. 11th NE Bioeng. Conf. 11: 1–2, 1985.

    Google Scholar 

  • Simon, A. C., and Levenson, J. Use of arterial compliance for evaluation of hypertenion. Am. J. Hypertens. 3: 97–105, 1990.

    Google Scholar 

  • Smaje, L. H., Fraser, P. A., and Clough, G. Distensibility of single capillaries and venules in the cat mesentery. Microvasc. Res. 20: 358–370, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Solmyo, A. V. and Solmyo, A. P. Electrocmechanical and pharmaco-mechanical couling in cascular smooth muscle. J. Pharmacol. Exp. Therp. 159: 129–145, 1968.

    Google Scholar 

  • Spencer, M. P. and Denison, A. B. The aortic flow pulse as related to differential pressure. Circ. Res. 4: 476–484, 1956.

    Article  PubMed  CAS  Google Scholar 

  • Spengler, L. Symbolae et theoriam de sanguinis arteriosi fluimine. Dissertation, University of Marburg, Marburg, 1843.

    Google Scholar 

  • Sperling, W., Bauer, R. D., Busse, R., Komer, H., and Pasch, Th. Resolution of arterial pulses into forward and backward waves as an approach to the determination of the characteristic impedance. Pflugers Arch. 355: 217, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M. G. An approach to the analysis of the arterial pulse wave. 1. Oscillations in an attenuating line. Phys. Med. Biol. 1: 258–269, 1957.

    Article  Google Scholar 

  • Taylor, M. G. Use of random excitation and spectral analysis in the study of frequency-dependent parameters of the cardiovascular system. Circ. Res. 18: 585–595, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Van den Bos, G. C., Westerhof, N., Eizinga, G., and Sipkema, P. Reflection in the systemic arterial system:effects of aortic and carotid occlusion. Cardiovasc. Res. 10: 565–573, 1976.

    Article  Google Scholar 

  • Van den Bos, G. C., Westerhof, N., and Randall, O. S. Pulse wave reflection: can it explain the differenes between systematic and pulmonary pressure and flow waves? Circ. Res. 51: 470–485, 1982.

    Google Scholar 

  • Von Kries, J. Studien zur Pulslehre. Akad. Verlag, Freiberg, 1892.

    Google Scholar 

  • Wells S. M., Langeille, B. L., and Adamson, S. L. In vivo and in vitro mechanical properties of the sheep in thoracic aorta in the perinatal period and adulthood. Am. J. Physiol. 274:H1749–H1760, 1998.

    PubMed  CAS  Google Scholar 

  • Westerhof, N., Bosman, F., DeVries, C. J., and Noordergraaf, A. Analog studies of the human systemic arterial tree. J. Biomech. 2: 121–143, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Westerhof, N., Eizinga, G., and Van den Bos, G. C. Influence of central and peripheral changes on the hydraulic input impedance of the systemic arterial tree. Med. Biol. Eng. 11: 710–723, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Westerhof, N., Sipkema, P., Van Den Bos, G. C., and Eizinga, G. Forward and backward waves in the arterial system. Cardiovasc. Res. 6: 648–656, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Wetterer, E. and Kenner, T. Grundlagen der Dynamik des Arterienpulses. Springer-Verlag, Berlin, 1968.

    Google Scholar 

  • Wetterer, E., Bauer, R. and Busse, R. New ways of determining the propagation coefficient and the viscoelastic behavior of arteries in situ. In: Bauer, R. D. and Busse, R., eds., The Arterial System, Springer-Verlag, Berlin, pp. 35–47, 1978.

    Chapter  Google Scholar 

  • Wiederhelm, C. A., Woodbury, J. W., Kirk, S., and Rushmer, R. F. Pulsatile pressure in the microcirculation of the frog’s mesentery. Am. J. Physiol. 207: 173–176, 1964.

    Google Scholar 

  • Wiggers, C. J. Pressure Pulses in the Cardiovascular System. Longmans, London, 1928.

    Google Scholar 

  • Wilkins, H., Regdson, W., and Hoffmeister, F. S. The physiological importance of pulsatile blood flow. New Engl. J. Med. 267: 443–445, 1967.

    Article  Google Scholar 

  • Womersley, J. R. Oscillatory flow in arteries: the reflections of the pulse wave at junctions and rigid inserts in the arterial system. Phys. Med. Biol. 2: 313–323, 1958.

    Article  PubMed  CAS  Google Scholar 

  • Zamir, M. Local geometry of arterial branching. Bull. Math. Biol. 44: 597–607, 1982.

    PubMed  CAS  Google Scholar 

  • Zweifach, B. W. Quantitative studies of microcirculatory structure and functions. Circ. Res. 34: 858–866, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Zweifach, B. W. and Lipowsky, H. H. Quantitative studies of microcirculatory structure and function. III. Microcirculatory hemodynamics of cat mesentery and rabbit omentum. Circ. Res. 41: 380, 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, J.KJ. (2000). Arterial Pulse Transmission Characteristics. In: The Arterial Circulation. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-034-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-034-6_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-106-6

  • Online ISBN: 978-1-59259-034-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics