Skip to main content

How to Determine If, and by How Much, Genetic Variation Influences Osteoporosis

  • Chapter
The Genetics of Osteoporosis and Metabolic Bone Disease
  • 238 Accesses

Abstract

Discussion of nature vs nurture, or “genes vs environment,” is often obscured by a failure to understand that what is being considered is the variation in genetic make-up of individuals, and how it relates to differences between them in the characteristic or trait of interest. Therefore, a clear distinction needs to be made between genetic differences within a population, and genetic differences between populations (e.g., between different races, or between blacks and whites). For example, genetic factors may explain much of the difference in a characteristic between two racial groups, but within any such group, the variation may be entirely due to nongenetic factors. Consequently, discussion about the roles of genes and environment in explaining variation in a trait must depend on, first, whether one is considering within or between population comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin, N., Boomsma, D., and Machin, G. (1997) A twin-pronged attack on complex traits. Nat. Genet. 17, 387–392.

    Article  PubMed  CAS  Google Scholar 

  2. Hopper, J. L. and Mathews, J. D. (1983) Extensions to multivariate normal models for pedigree analysis. II. Modeling the effect of shared environment in the analysis of blood lead levels. Am. J. Epidemiol. 117, 344–355.

    PubMed  CAS  Google Scholar 

  3. Hopper, J. L., Green, R. M., Nowson, C. A., Young, D., Sherwin, A. J., Kaymakci, B., Larkins, R. G., and Wark, J. D. (1998) Genetic, common environment, and individual specific components of variance for bone mineral density in 10- to 26-year-old females, a twin study. Am. J. Epidemiol. 147, 17–29.

    Article  PubMed  CAS  Google Scholar 

  4. Hopper, J. L. (1999) On why “common environment effects” are so uncommon in the literature, in Advances in Twin Sub-Pair Analysis (Spector, T., Sneider, H., and MacGregor, A. J., eds.), Greenwich Medical Media, London, pp. 15–165.

    Google Scholar 

  5. Hopper, J. L. and Seeman, E. (1994) The bone density of twins discordant for tobacco use. N. Engl. J. Med. 330, 37–92.

    Article  Google Scholar 

  6. Lange, K. (1997) Mathematical and Statistical Methods for Genetic Analysis. Springer, New York.

    Book  Google Scholar 

  7. Hopper, J. L. and Mathews, J. D. (1982) Extensions to multivariate normal models for pedigree analysis. Ann. Hum. Genet. 46, 373–383.

    Article  PubMed  CAS  Google Scholar 

  8. Fisher, R. A. (1918) Correlations between relatives on the supposition of Mendelian inheritance. Trans. Roy. Soc. (Edinburgh) 52, 399–433.

    Article  Google Scholar 

  9. Bulmer, M. G. (1980) The Mathematical Theory of Quantitative Genetics. Clarendon Press, Oxford, UK.

    Google Scholar 

  10. Falconer, D. S. (1989) Introduction to Quantitative Genetics. Wiley, New York.

    Google Scholar 

  11. Ewens, W. J. (1979) Mathematical Population Genetics. Springer-Verlag, Berlin, pp. 5–9.

    Google Scholar 

  12. Neale, M. C. and Cardon, L. R. (1992) Methodology for Genetic Studies of Twins and Families. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  13. Hopper, J. L. (1993) Variance components for statistical genetics, applications in medical research to characteristics related to human diseases and health. Statist. Methods Med. Res. 2, 199–223.

    Article  CAS  Google Scholar 

  14. Hopper, J. L. and Mathews, J. D. (1994) Amultivariate normal model for pedigreee and longitudinal data and the software FISHER. Aust. J. Stat. 36, 153–176.

    Article  Google Scholar 

  15. Clifford, C. A., Hopper, J. L., Fulker, D. W., and Murray, R. M. (1984) A genetic and environmental analysis of a twin family study of alcohol use, anxiety and depression. Genet. Epidemiol. 1, 63–79.

    Article  PubMed  CAS  Google Scholar 

  16. Christian, J. C., Norton, J. A., Sorbel, J., and Williams, C. J. (1995) Comparison of analysis of of variance and maximum likelihood based path analysis of twin data, partitioning genetic and environmental sources of covariance. Genet. Epidemiol. 12, 27–35.

    Article  PubMed  CAS  Google Scholar 

  17. Lange, K., Boehnke, M., and Weeks, D. (1987) Programs for pedigree analysis. Department of Biomathematics, University of California, Los Angeles, CA.

    Google Scholar 

  18. Neale, M. C. (1997) M: Statistical Modeling. 4th ed. Box 980126 MCV, Richmond, VA.

    Google Scholar 

  19. Huggins, R. M., Loesch, D. Z., and Hoang, N. H. (1998) A comparison of methods of fitting models to twin data. Aust. N. Z. J. Stat. 40, 129–140.

    Article  Google Scholar 

  20. Hopper, J. L. (1996) Commentary. Genes for osteoarthritis, interpreting twin studies. Br. Med. J. 312, 943–944.

    Article  CAS  Google Scholar 

  21. Hopper, J. L. (1998) Heritability, in Encyclopedia of Biostatistics, vol. 3, Wiley, London, pp. 1905–1906.

    Google Scholar 

  22. Hopper, J. L. (1998) Twin concordance, in Encyclopedia of Biostatistics, vol. 6, Wiley, London, pp. 4626–4629.

    Google Scholar 

  23. Witte, J., Carlin, J. B., and Hopper, J. L. (1999) A likelihood-based approach to estimating twin concordance for dichotomous traits. Genet. Epidemiol. 16, 290–304.

    Article  PubMed  CAS  Google Scholar 

  24. Hopper, J. L. and Carlin, J. C. (1994) Familial aggregation of a disease consequent upon correlation between relatives in-risk factor measured on a continuous scale. Am. J. Epidemiol. 136, 1138–47.

    Google Scholar 

  25. Flicker, L., Faulkner, K. G., Hopper, J. L., et al. (1996) Determinants of hip axis length in women aged 10–89 years, a twin study. Bone 18, 41–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hopper, J.L. (2000). How to Determine If, and by How Much, Genetic Variation Influences Osteoporosis. In: Econs, M.J. (eds) The Genetics of Osteoporosis and Metabolic Bone Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-033-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-033-9_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-142-4

  • Online ISBN: 978-1-59259-033-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics