Skip to main content

Genetic and Environmental Determinants of Variance in Bone Size, Mass, and Volumetric Density of the Proximal Femur

  • Chapter
The Genetics of Osteoporosis and Metabolic Bone Disease
  • 245 Accesses

Abstract

The genetic and environmental factors responsible for age, gender and race specific differences in bone fragility and fracture rates of the proximal femur are unknown. There are several possible reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Melton, L. J. III, Atkinson, E. J., and Madhok, R. (1996) Downturn in hip fracture incidence. Public Health Rep. 111, 146–150.

    PubMed  Google Scholar 

  2. Gullberg, B., Johnell, O., and Kanis, J. A. (1997) World-wide projections for hip fracture. Osteoporosis Int. 7, 407–413.

    Article  CAS  Google Scholar 

  3. Seeman, E. (1997) From density to structure: growing up and growing old on the surfaces of bone. J. Bone Miner. Res. 12 (4), 1–13.

    Article  Google Scholar 

  4. Lu, P. W., Cowell, C. T., Lloyd-Jones, S. A., Brody, J. N., and Howman-Giles, R. (1996) Volumetric bone mineral density in normal subjects aged 5–27 years. J. Clin. Endocrinol. Metab. 81, 1586–1590.

    Article  PubMed  CAS  Google Scholar 

  5. Garn, S. M. (1970) The Earlier Gain and Later Loss of Cortical Bone. Charles C. Thomas Publishers, Springfield, IL.

    Google Scholar 

  6. Bass, S., Pearce, G., and Seeman, E. Regional heterogeneity in growth of the axial and appendicular bone mass, bone size and bone density: implications regarding the pathogenesis and epidemiology of fractures (submitted).

    Google Scholar 

  7. Seeman, E., Tsalamandris, C., Formica, C., Hopper, J. L., and McKay, J. (1994) Reduced femoral neck bone density in the daughters of women with hip fractures: the role of low peak bone density in the patho-genesis of osteoporosis. J. Bone Miner. Res. 9, 739–743.

    Article  PubMed  CAS  Google Scholar 

  8. Hopper, J. L. (1993) Variance components for statistical genetics: applications in medical research to characteristics related to human diseases and health. Stat. Methods Med. Res. 2, 199–223.

    Article  PubMed  CAS  Google Scholar 

  9. Seeman, E., Hopper, J., Bach, L., Cooper, M., McKay, J., and Jerums, G. (1989) Reduced bone mass in the daughters of women with osteoporosis. N. Engl. J. Med. 320, 554–558.

    Article  PubMed  CAS  Google Scholar 

  10. Gilsanz, V., Loro, M. L., Roe, T. F., Sayre, J., Gilsanz, R., and Schulz, E. E. (1995) Gender differences in vertebral size in adults: biomechanical implications. J. Clin. Invest. 95, 2332–2337.

    Article  PubMed  CAS  Google Scholar 

  11. Vega, E., Ghiringhelli, G., Mautalen, C., Valzacchi, G. Rey, Scaglia, H., and Zylberstein, C. (1998) Bone mineral density and bone size in men with primary osteoporosis and vertebral fractures. Calcif. Tissue Int. 62, 465–469.

    Article  PubMed  CAS  Google Scholar 

  12. Duan, Y. and Seeman, E. The differing contributions of bone mass and size to the deficit in volumetric bone density in men and women with spinal or hip fractures (submitted).

    Google Scholar 

  13. Kelly, P. J., Twomey, L., Sambrook, P. N., and Eisman, J. A. (1990) Sex differences in peak adult bone mineral density. J. Bone Miner. Res. 5, 1169–1175.

    Article  PubMed  CAS  Google Scholar 

  14. Aaron, J. E., Makins, N. B., and Sagreiy, K. (1987) The microanatomy of trabecular bone loss in normal aging men and women. Clin. Orthop. 215, 260–271.

    PubMed  Google Scholar 

  15. Zamberlan, N., Radetti, G., Paganini, C., Gatti, D., Rossini, M., Braga, V., and Adami, S. (1996) Evaluation of cortical thickness and bone density by roentgen microdensitometry in growing males and females. Eur. J. Pediatr. 155, 377–382.

    Article  PubMed  CAS  Google Scholar 

  16. Butz, S., Wuster, C., Scheidt-Nave, C., Gotz, M., and Ziegler, R. (1994) Forearm BMD as measured by peripheral quantitative computed tomography (pQCT) in a German reference population. Osteoporosis Int. 4, 179–184.

    Article  CAS  Google Scholar 

  17. Zanchetta, J. R., Plotkin, H., and Alvarez Filgueira, M. L. (1995) Bone mass in children: normative values for the 2–20-year-old population. Bone 16 (Suppl), 393–399S.

    Google Scholar 

  18. Garn, S. M., Nagy, J. M., and Sandusky, S. T. (1972) Differential sexual dimorphism in bone diameters of subjects of European and African ancestry. Am. J. Phys. Anthrop. 37, 127–130.

    Article  PubMed  CAS  Google Scholar 

  19. Rupich, R. C., Specker, B. L., Lieuw-A-Fa, M., and Ho, M. (1996) Gender and race differences in bone mass during infancy. Calcif. Tissue Int. 58, 395–397.

    PubMed  CAS  Google Scholar 

  20. Preece, M. A. (1981)The development of skeletal sex differences at adolescence, in: Human Adaptation, vol. 2 (Russo, P. and Gass, G., eds.), Department of Biological Sciences Conference, Cumberland College of Health Sciences, Sydney, Australia, pp. 1–13.

    Google Scholar 

  21. Preece, M. A., Pan, H., and Ratcliffe, S. G. (1992) Auxological aspects of male and female puberty. Acta. Paediatr. 383, 11–13.

    CAS  Google Scholar 

  22. Zhang, X. Z., Kalu, D. N., Erbas, B., Hopper, J. L., and Seeman, E. (1999) The effect of gonadectomy on bone Size, mass and volumetric density in growing rats may be gender-, site-, and growth hormone-dependent. J. Bone Miner. Res. 14, 802–809.

    Article  PubMed  CAS  Google Scholar 

  23. Kleerekoper, M., Nelson, D. A., Peterson, E. L., Flynn, M. J., Pawluszka, A. S., Jacobsen, G., and Wilson, P. (1994) Reference data for bone mass, calciotropic hormones, and biochemical markers of bone remodeling in older (55–75) postmenopausal white and black women. J. Bone Miner. Res. 9, 1267–1276.

    Article  PubMed  CAS  Google Scholar 

  24. Davis, J. W., Novotny, R., Ross, P. D., and Wasnich, R. D. (1994) The peak bone mass of Hawaiian, Filipino, Japanese, and white women living in Hawaii. Calcif. Tissue Int. 55, 249–252.

    Article  PubMed  CAS  Google Scholar 

  25. Bell, N. H., Gordon, L., Stevens, J., and Shary, J. R. (1995) Demonstration that bone mineral density of the lumbar spine, trochanter, and femoral neck is higher in black than in white young men. Calcif. Tissue Int. 56, 11–13.

    Article  PubMed  CAS  Google Scholar 

  26. Wright, N. M., Papadea, N., Willi, S., Veldhuis, J. D., Pandey, J. P., Key, L. L., and Bell, N. H. (1996) Demonstration of a lack of racial difference in secretion of growth hormone despite a racial difference in bone mineral density in premenopausal women: a clinical research center study. J. Clin. Endocrinol. Metab. 81, 1023–1026.

    Article  PubMed  CAS  Google Scholar 

  27. Ettinger, B., Sidney, S., Cummings, S. R., Libanati, C., Bikle, D. D., Tekawa, I. S., Tolan, K., and Steiger, P. (1997) Racial differences in bone density between young adult black and white subjects persist after adjustment for anthropometric, lifestyle, and biochemical differences. J. Clin. Endocrinol. Metab. 82, 429–434.

    Article  PubMed  CAS  Google Scholar 

  28. Daniels, E. D., Pettifor, J. M., Schnitzler, C. M., Moodley, G. P., and Zachen, D. (1997) Differences in mineral homeostasis, volumetric bone mass and femoral neck axis length in black and white South African women. Osteoporosis Int. 7, 105–112.

    Article  CAS  Google Scholar 

  29. Nelson, D. A., Jacobsen, G., Barondess, D. A., and Parfitt, A. M. (1995) Ethnic differences in regional bone density, hip axis length, and lifestyle variables among healthy black and white men. J. Bone Miner. Res. 10, 782–787.

    Article  PubMed  CAS  Google Scholar 

  30. Ross, P. D., He, Y.-F, Yates, A. J., Couland, C., Ravn, P., McClung, M., Thompson, D., Wasnich, R. D., for the EPIC Study Group. (1996) Body size accounts for most differences in bone density between Asian and Caucasian women. Calcif. Tissue Int. 59, 339–343.

    Article  Google Scholar 

  31. Hamill, P. V. V., Johnston, F. E., and Lemeshow, S. (1973) Body weight, stature and sitting height: white and Negro youths 12–17 years. DHEW Publications No. (HRA) 74–1608. Vital and Health Statistics, Series 11, No. 126. ( US Department of Health, Education and Welfare, Rockville, MD ).

    Google Scholar 

  32. Malina, R. M. and Brown, K. H. (1987) Relative lower extremity length in Mexican American and in American black and white youth. Am. J. Phys. Anthropol. 72, 89–94.

    Article  PubMed  CAS  Google Scholar 

  33. Tanner, J. M., Hayashi, T., Preece, M. A., and Cameron, N. (1982) Increase in length of leg relative to trunk in Japanese children and adults from 1957 to 1977: comparison with British and with Japanese Americans. Ann. Human Biol. 9 (5), 411–423.

    Article  CAS  Google Scholar 

  34. Cameron, N., Tanner, J. M., and Whitehouse, R. H. (1982) A longitudinal analysis of the growth of limb segments in adolescence. Ann. Human Biol. 9, 211–220.

    Article  CAS  Google Scholar 

  35. Garn, S. M., Sandusky, S. T., Nagy, J. M., and McCann, M. B. (1972) Advanced skeletal development in low-income negro children. J. Paediatr. 80, 965–969.

    Article  CAS  Google Scholar 

  36. Bakwin, H. (1964) Secular increase in height: Is the end in sight?Lancet 2, 1195–1196.

    CAS  Google Scholar 

  37. Meredith, H. V. (1978) Secular change in sitting height and lower limb height of children, youths, and young adults of Afro-black, European, and Japanese ancestry. Growth 42, 37–41.

    PubMed  CAS  Google Scholar 

  38. Tanner, J. M., Hayashi, T., Preece, M. A., and Cameron, N. (1982) Increase in length of leg relative to trunk in Japanese children and adults from 1957 to 1977: comparison with British and with Japanese Americans. Ann. Human Biol. 9 (5), 411–423.

    Article  CAS  Google Scholar 

  39. Han, Z.-H., Palnitkar, S., Rao, D. S., Nelso, D., and Parfitt, A. M. (1996) Effect of ethnicity and age or menopause on the structure and geometry of iliac bone. J. Bone Miner. Res. 11, 1967–1975.

    Article  PubMed  CAS  Google Scholar 

  40. Schnitzler, C. M., Pettifor, J. M., Mesquita, J. M., Bird, M. D. T., Schnaid, E., and Smith, A. E. (1990) Histomorphometry of iliac creast bone in 346 normal black and white South African adults. Bone Miner. 10, 183–199.

    Article  PubMed  CAS  Google Scholar 

  41. Weinstein, R. S. and Bell, N. H. (1988) Diminished rates of bone formation in normal black adults. N. Engl. J. Med. 319, 1698–1701.

    Article  PubMed  CAS  Google Scholar 

  42. Parisien, M., Cosman, F., Morgan, D., Schnitzer, M., Liang, X., Nieves, J., Forese, L., Luckey, M., Meier, D., Shen, V., Lindsay, R., and Dempster, D. W. (1997) Histomorphometric assessment of bone mass, structure, and remodeling: a comparison between healthy black and white premenopausal women. J. Bone Miner. Res. 12, 948–957.

    Article  PubMed  CAS  Google Scholar 

  43. Meunier and Boivin. (1997) Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone 21, 373–377.

    Article  Google Scholar 

  44. Harris, S.S., Eccleshall, T. R., Gross, C., Dawson-Hughes, B., and Feldman, D. (1997) The vitamin D receptor start codon polymorphism (FokI) and bone mineral density in premenopausal American black and white women. J. Bone Miner. Res. 12, 1043–1048.

    Article  PubMed  CAS  Google Scholar 

  45. Rosen, C. J., Dimai, H. P., Vereault, D., Donahue, L. R., Beamer, W. G., Farley, J., Linkhart, S., Linkhart, T., Mohan, S., and Baylink, D. J. (1997) Circulating and skeletal insulin-like growth factor-I (IGF-I) concentrations in two inbred strains of mice with different bone mineral densities. Bone 21, 217–223.

    Article  PubMed  CAS  Google Scholar 

  46. Flicker, L., Faulkner, K. G., Hopper, J. L., Green, R. M., Kaymakci, B., Nowson, C. A., Young, D., and Wark, J. D. (1996) Determinants of hip axis length in women aged 10–89 years: a twin study. Bone 18, 41–45.

    Article  PubMed  CAS  Google Scholar 

  47. Slemenda, C. W., Turner, C. H., Peacock, M., Christian, J. C., Sorbel, J., Hui, S. L., and Johnston, C. C. (1996) The genetics of proximal femur geometry, distribution of bone mass and bone mineral density. Osteoporosis Int. 6, 178–182.

    Article  CAS  Google Scholar 

  48. Arden, N. K., Baker, J., Hogg, C., Baan, K., and Spector, T. D. (1996) The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J. Bone Miner. Res. 11, 530–534.

    Article  PubMed  CAS  Google Scholar 

  49. Faulkner, K. G., Cummings, S. R., Black, D., Palermo, L., Gluer, C. C., and Genant, H. K. (1993) Simple measurement of femoral geometry predicts hip fracture in the study of osteoporotic fractures. J. Bone Miner. Res. 8, 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  50. Boonen, S., Koutri, R., Dequeker, J., Aerssens, J., Lowet, G., Nijs, J., Verbeke, G., Lesaffre, E., and Geusens, P. (1995) Measurement of femoral geometry in type I and type II osteoporosis: differences in hip axis length consistent with heterogeneity in the pathogenesis of osteoporotic fractures. J. Bone Miner. Res. 10, 1908–1912.

    Article  PubMed  CAS  Google Scholar 

  51. Cummings, S. R., Cauley, J. A., Palermo, L., Ross, P. D., Wasnich, R. D., Black, D., and Faulkner, K. G. (1994) Racial differences in hip axis lengths might explain racial differences in rates of hip fracture. Osteoporosis Int. 4, 226–229.

    Article  CAS  Google Scholar 

  52. Mikhail, M. B., Vaswani, A. N., and Aloia, J. F. (1996) Racial differences in femoral dimensions and their relationship to hip fractures Osteoporosis Int. 6, 22–24.

    Article  CAS  Google Scholar 

  53. Nakamura, T., Turner, C. H., Yoshikawa, T., Slemenda, C. W., Peacock, M., Burr, D. B., Mizuno, Y., Orimo, H., Ouchi, Y., and Johnston, C. C., Jr. (1994) Do varia- tions in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J. Bone Miner. Res. 9, 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  54. Chin, K., Evans, M. C., Cornish, J., Cundy, T., and Reid, I. R. (1997) Differences in hip axis and femoral neck length in premenopausal women of Polynesian, Asian and European origin. Osteoporosis Int. 7, 344–347.

    Article  CAS  Google Scholar 

  55. Reid, I. R., Chin, K., Evans, M. C., and Jones, J. G. (1994) Relation between increase in length of hip axis in older women between 1950s and 1990s and increase in age specific rates of hip fracture. Br. Med. J. 309, 508–509.

    Article  CAS  Google Scholar 

  56. Ravn, P., Hetland, M. L., Overgaard, K., and Christiansen, C. (1994) Premenopausal and postmenopausal changes in bone mineral density of the proximal femur measured by dual-energy X-ray absorptiometry. J. Bone Miner. Res. 9, 1975–1980.

    Article  PubMed  CAS  Google Scholar 

  57. Tsai, K. S., Cheng, W. C., Sanchez, T. V., Chen, C. K., Chieng, P. U., and Yang, R. S. (1997) Bone densitometry of proximal femur in Chinese subjects: gender differences in bone mass and bone areas. Bone 20, 365–369.

    Article  PubMed  CAS  Google Scholar 

  58. Kuiper, J. W., van Kuijk, C., Grashuis, J. L., Ederveen, A. G. H., and Schotte, H. E. (1996) Accuracy and the influence of marrow fat on quantitative CT and dual-energy Xrayabsorptiometry measurements of the femoral neck in vitro. Osteoporosis Int. 6, 25–30.

    Article  CAS  Google Scholar 

  59. Looker, A. C., Wahner, H. W., Dunn, W. L., Calvo, M. S., Harris, T. B., Heyse, S. P., Johnston, C. C., Jr., and Lindsay, R. L. (1995) Proximal femur bone mineral levels of US adults. Osteoporosis Int. 5, 389–409.

    Article  CAS  Google Scholar 

  60. Ruff, C. B. and Hayes, W. C. (1988) Sex differences in age—related remodeling of the femur and tibia. J. Orthop. Res. 6, 886–896.

    Article  PubMed  CAS  Google Scholar 

  61. Heaney, R. P., Barger-Lux, M. J., Davies, K. M., Ryan, R. A., Johnson, M. L., and Gong, G. (1997) Bone dimensional change with age: interactions of genetic, hormonal, and body size variables. Osteoporosis Int. 7, 426–431.

    Article  CAS  Google Scholar 

  62. Ensrud, K. E., Palermo, L., Black, D. M., Cauley, J., Jergas, M., Orwoll, E. S., Nevitt, M. C., Fox, K. M., and Cummings, S. R. (1995) Hip and calcaneal bone loss increase with advancing age: longitudinal results from the study of osteoporotic fractures. J. Bone Miner. Res. 10, 1778–1787.

    Article  PubMed  CAS  Google Scholar 

  63. Greenspan, S. L., Maitland, L. A., Myers, E. R., Krasnow, M. B., and Kido, T. H. (1994) Femoral bone loss progresses with age: a longitudinal study in women over age 65. J. Bone Miner. Res. 9, 1959–1965.

    Article  PubMed  CAS  Google Scholar 

  64. Jilka, R. L., Weinstein, R. S., Takahashi, K., Parfitt, A. M., and Manolagas, S. C. (1996) Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J. Clin. Invest. 97, 1732–1740.

    Article  PubMed  CAS  Google Scholar 

  65. Bergman, R. J., Gazit, D., Kahn, A. J., Gruber, H., McDougall, S., and Hahn, T. J. (1996) Age-related changes in osteogenic stem cells in mice. J. Bone Miner. Res. 11, 568–577.

    Article  PubMed  CAS  Google Scholar 

  66. Eisman,J. A. (1995) Vitamin D receptor gene alleles and osteoporosis: an affirmative view. J. Bone Miner. Res. 10, 1289–1293.

    Google Scholar 

  67. Peacock, M. (1995) Vitamin D receptor gene alleles and osteoporosis: a contrasting view. J. Bone Miner. Res. 10, 1294–1297.

    Article  PubMed  CAS  Google Scholar 

  68. Hopper, J. L., Green, R. M., Nowsen, C. A., Young, D., Sherwin, J., Kaymacki, B., Larkins, R. G., and Wark, J. D. (1998) Genetic, common environment and individual specific components of variance for age-and lean-mass adjusted bone mineral density in 10 to 26 year old females: a twin study. Am. J. Epidemiol. 147, 17–29.

    Article  PubMed  CAS  Google Scholar 

  69. Flicker, L., Hopper, J. L., Rodgers, L., Kaymakci, B., Green, R. M., and Wark, J. D. (1995) Bone density determinants in elderly women: a twin study. J. Bone Miner. Res. 10, 1607–1613.

    Article  PubMed  CAS  Google Scholar 

  70. Seeman, E., Hopper, J. L., Young, N. R., Formica, C., Goss, P., and Tsalamandris, C. (1996) Do genetic factors contribute to associations between muscle strength, fat-free mass and bone density? A twin study. Am. J. Physiol. 270 (33), E320 — E327.

    Google Scholar 

  71. Hopper, J. L. and Seeman, E. (1994) Bone density in twins discordant for tobacco use. N. Engl. J. Med. 330, 387–392.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seeman, E. (2000). Genetic and Environmental Determinants of Variance in Bone Size, Mass, and Volumetric Density of the Proximal Femur. In: Econs, M.J. (eds) The Genetics of Osteoporosis and Metabolic Bone Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-033-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-033-9_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-142-4

  • Online ISBN: 978-1-59259-033-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics