Skip to main content

In Vitro Mutagenesis Studies of Melanocortin Receptor Coupling and Ligand Binding

  • Chapter
The Melanocortin Receptors

Part of the book series: The Receptors ((REC))

Abstract

The melanocyte stimulating hormone receptor (MSH-R); melanocortin 1 receptor (MC1-R) and the adrenocorticotropin hormone (ACTH) receptor (MC2-R) were the first melanocortin receptors cloned and characterized (1,2). Subsequently, three other melanocortin receptor subtypes have been cloned and designated the MC3-R, MC4-R, and MC5-R. The MC1-R has been clearly demonstrated to be involved in pigmentation and animal coat coloration (3,4). The efficacy of melanocortin peptides at the MC1-R can be summarized as 4-norleucine, 7-d-phenylalanine (NDP-MSH) > α-MSH > ACTH >γ-MSH. With the availability of the cloned melanocortin receptors, several questions can now be studied. In vitro investigations using these cloned receptors may include identifying critical ligand features resulting in receptor selectivity, ligand residues responsible for differing efficacies, and how these ligand residues interact with the receptor for recognition and activation. In lieu of X-ray crystal structures, three-dimensional (3D) homology receptor modeling has become a tool to attempt to identify noteworthy ligand and receptor features. Furthermore, knowledge of the molecular mechanism responsible for the initial intracellular signal transduction cascade would be potentially important for the design of antagonists. This chapter is designed to attempt to address these issues from the available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chhajlani, V. and Wikberg, J. E. S. (1992) Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett 309, 417–420.

    Article  CAS  Google Scholar 

  2. Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., and Cone, R. D. (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257, 1248–1251.

    Article  PubMed  CAS  Google Scholar 

  3. Cone, R. D., Lu, D., Kopula, S., Vage, D. I., Klungland, H., Boston, B., Chen, W., Orth, D. N., Pouton, C., and Kesterson, R. A. (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Progr. Norm. Res. 51, 287–318.

    CAS  Google Scholar 

  4. Robbins, L. S., Nadeau, J. H., Johnson, K. R., Kelly, M. A., Roselli—Rehfuss, L., Baack, E., Mountjoy, K. G., and Cone, R. D. (1993) Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72, 827–834.

    CAS  Google Scholar 

  5. Castrucci, A. M. L., Hadley, M. E., Sawyer, T. K., Wilkes, B. C., Al—Obeidi, F., Staples, D. J., DeVaux, A. E., Dym, O., Hintz, M. F., Riehm, J., Rao, K. R., and Hruby, V. J. (1989) a—Melanotropin: the minimal active sequence in the lizard skin bioassay. Gen. Comp. Endocrinol. 73, 157–163.

    Google Scholar 

  6. Haskell-Luevano, C., Shenderovich, M. D., Sharma, S. D., Nikiforovich, G. V., Hadley, M. E., and Hruby, V. J. (1995) Design, synthesis, biology and conformations of bicyclic a—melanotropin peptide analogues. J. Med. Chem. 38, 1736–1750.

    Article  PubMed  CAS  Google Scholar 

  7. Eberle, A. N. (1988)The Melanotropins: Chemistry, Physiology and Mechanisms of Action,Karger, Basel.

    Google Scholar 

  8. Hadley, M. E. (1989)The Melanotropic Peptides: Source, Synthesis, Chemistry, Secretion and Metabolism; Vols. I—III. CRC Press, Boca Raton, FL.

    Google Scholar 

  9. Hruby, V. J., Wilkes, B. C., Hadley, M. E., Al—Obeidi, F., Sawyer, T. K., Staples, D. J., DeVaux, A., Dym, O., Castrucci, A. M., Hintz, M. F., Riehm, J. P., and Rao, K. R. (1987) a—Melanotropin: the minimal active sequence in the frog skin bioassay. J. Med. Chem. 30, 2126–2130.

    Google Scholar 

  10. Hruby, V. J., Wilkes, B. C., Cody, W. L., Sawyer, T. K., and Hadley, M. E. (1984) Melanotropins: structural, conformational and biological considerations in the development of superpotent and superprolonged analogs. Pept. Protein Rev. 3, 1–64.

    CAS  Google Scholar 

  11. Medzihradszky, K. (1982) The bio—organic chemistry of a—melanotropin. Medicinal Res. Rev. 2, 247–270.

    Article  CAS  Google Scholar 

  12. Vaudry, H. and Eberle, A. N. (1993)The melanotropic peptides. Ann. N. Y. Acad. Sci. 680.

    Google Scholar 

  13. Haskell-Luevano, C., Hendrata, S., North, C., Sawyer, T. K., Hadley, M. E., Hruby, V. J., Dickinson, C., and Gantz, I. (1997) Discovery of prototype peptidomimetic agonists at the human Melanocortin receptors MC 1-R and MC4-R. J. Med. Chem. 40, 2133–2139.

    Article  PubMed  CAS  Google Scholar 

  14. Schiöth, H. B., Muceniece, R., Larsson, M., Mutulis, F., Szardenings, M., Prusis, P., Lindeberg, G., and Wikberg, J. E. S. (1997) Binding of cyclic and linear MSH core peptides to the melanocortin receptor subtypes. Eur. J. Pharm. 319, 369–373.

    Article  Google Scholar 

  15. Haskell-Luevano, C., Sawyer, T. K., Hendrata, S., North, C., Panahinia, L., Stum, M., Staples, D. J., Castrucci, A. M., Hadley, M. E., and Hruby, V. J. (1996) Truncation studies of a—melanotropin peptides identifies tripeptide analogues exhibiting prolonged agonist bioactivity. Peptides 17, 995–1002.

    PubMed  CAS  Google Scholar 

  16. Buffy, J., Thody, A. J., Bleehen, S. S., and Mac Neil, S. (1992) a—MSH stimulates protein kinase c activity in murine b16 melanoma. J. Endocrinol 133, 333–340.

    Google Scholar 

  17. Konda, Y., Gantz, I., DelValle, J., Shimoto, Y., Miwa, H., and Yamada, T. (1994) Interaction of dual signal trandsuction pathways activated by the melanocortin-3 receptor. J. Biol. Chem. 269, 13,162–13, 166.

    Google Scholar 

  18. Abdel-Malek, Z. A., Kreutzfeld, K. L., Marwan, M. M., Hadley, M. E., Hruby, V. J., and Wilkes, B. C. (1985) Prolonged stimulation of S91 melanoma tyrosinase by [Nle°, r—Phe’]—substituted a—Melanotropins. Cancer Res. 45, 4735–4740.

    PubMed  CAS  Google Scholar 

  19. Chen, W., Shields, T. S., Stork, P. J. S., and Cone, R. D. (1995) A colorimetric assay for measuring activation of Gs—and Gq—coupled signaling pathways. Anal. Biochem. 226, 349–354.

    Article  PubMed  CAS  Google Scholar 

  20. Hadley, M. E., Anderson, B., Heward, C. B., Sawyer, T. K., and Hruby, V. J. (1981) Calcium—dependent prolonged effects on melanophores of [4—norleucine, 7—ram Phenylalanine]—a—melanotropin. Science 213, 1025–1027.

    Article  PubMed  CAS  Google Scholar 

  21. Haskell-Luevano, C., Miwa, H., Dickinson, C., Hadley, M. E., Hruby, V. J., Yamada, T., and Gantz, I. (1996) Characterizations of the unusual dissociation properties of melanotropin peptides from the melanocortin receptor, hMC1-R. J. Med. Chem. 39, 432–435.

    Article  PubMed  CAS  Google Scholar 

  22. Prusis, P., Frändberg, P.—A., Muceniece, R., Kalvinsh, I., and Wikberg, J. E. S. (1995) A three dimensional model for the interaction of MSH with the melanocortin-1 receptor. Biochem. Biophys. Res. Commun. 210, 205–210.

    Article  PubMed  CAS  Google Scholar 

  23. Haskell-Luevano, C., Sawyer, T. K., Trumpp-Kallmeyer, S., Bikker, J., Humblet, C., Gantz, I., and Hruby, V. J. (1996) Three—dimensional molecular models of the hMC1-R melanocortin receptor: complexes with melanotropin peptide agonists. Drug Des. Discov. 14, 197–211.

    PubMed  CAS  Google Scholar 

  24. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990) Model for the strucuture of bacteriorhodopsin based on high—resolution electron cryo—microscopy. J. Mol. Biol. 213, 899–929.

    Article  PubMed  CAS  Google Scholar 

  25. Schertler, G. F. X., Villa, C., and Henderson, R. (1993) Projection structure of rhodopsin. Nature 362, 770–772.

    Article  PubMed  CAS  Google Scholar 

  26. Schertler, G. F. X. and Hargrave, P. A. (1995) Projection structure of frog rhodopsin in two crystal forms. Proc. Natl. Acad. Sci. U. S. A. 92, 11,578–11, 582.

    Google Scholar 

  27. Schertler, G. F. X., Hargrave, P. A., and Unger, V. M. (1996) Three dimentional structure of rhodopsin obtained by electron cryomicroscopy. Invest. Ophthalmol. Visual Sci. 37, S805.

    Google Scholar 

  28. Schertler, G. F. X., Unger, V. M.., and Hargrave, P. A. (1995) The Structure of rhodopsin obtained by cryo-electron microscopy to 7 A resolution. Biophys. J. 68, A. 21

    Google Scholar 

  29. Unger, V. M. and Schertler, G. F. X. (1995) Low resolution structure of bovine rhodopsin determined by electron cryo—microscopy. Biophys. J. 68, 1776–1786.

    Article  PubMed  CAS  Google Scholar 

  30. Davies, A., Schertler, G. F. X., Gowen, B. E., and Saibil, H. R. (1996) Projection structure of an inverterate rhodopsin. J. Struct. Biol. 117, 36–44.

    Article  PubMed  CAS  Google Scholar 

  31. Unger, V. M., Hargrave, P. A., and Schertler, G. F. X. (1995) Localization of the transmembrane helices in the three—dimentsonal structure of frog rhodopsin. Biophys. J. 68, A330.

    Article  Google Scholar 

  32. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M., and Henderson, R. (1996) Electron—crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421.

    Article  PubMed  CAS  Google Scholar 

  33. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., and Landau, E. M. (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681.

    Article  PubMed  CAS  Google Scholar 

  34. Unger, V. M., Hargrave, P. A., Baldwin, J. M., and Schertler, G. F. X. (1997) Arrangement of rhodopsin transmembrane a-helices. Nature 389, 203–206.

    Article  PubMed  CAS  Google Scholar 

  35. Kimura, Y., Vassylyev, D. G., Miyazawa, A., Kidera, A., Matusuhima, M., Mitsuoka, K., Murata, K., Hirai, T., and Fujiyoshi, Y. (1997) Surface of bacteriorhodopsin revealed by high-resoluation electron crystallography. Nature 389, 206–211.

    Article  PubMed  CAS  Google Scholar 

  36. Hutchins, C. (1994) Three-dimensional models of the D1 and D2 dopamine receptors. Endoc. J. 2, 7–23.

    CAS  Google Scholar 

  37. Hibert, M. F., Trumpp-Kallmeyer, S., Bruinvels, A., and Hoflack, J. (1991) Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. Mol. Pharmacol. 40, 8–15.

    PubMed  CAS  Google Scholar 

  38. Hoflack, J., Trumpp-Kallmeyer, S., and Hibert, M. (1994) Re-evaluation of bacteriorhodopsin as a model for G protein-coupled receptors. Trend Pharmacol. Sci. 15, 7–9.

    Article  CAS  Google Scholar 

  39. Trumpp-Kallmeyer, S., Hoflack, J., Bruinvels, A., and Hibert, M. (1992) Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. J. Med. Chem. 35, 3448–3462.

    Article  PubMed  CAS  Google Scholar 

  40. Marklund, L., Johansson Moller, M., Sandberg, K., and Anderson, L. (1996) A missense mutation in the gene for melanocyte-stimulating hormone receptor (MC 1-R) is associated with the chestnut coat color in horses. Mamm. Genome 7, 895–899.

    Article  PubMed  CAS  Google Scholar 

  41. Kungland, H., Vage, K. I., Gomez-Raya, L., Adelsteinsson, S., and Lien, S. (1995) The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mamm. Genome 6, 636–639.

    Article  Google Scholar 

  42. Vanetti, M., Schonrock, C., Meyerhof, W., and Hollt, V. (1994) Molecular cloning of a bovine MSH receptor which is highly expressed in the testis. FEBS Lett 348, 268–272.

    Article  PubMed  CAS  Google Scholar 

  43. Lu, D., Haskell-Luevano, C., Vage, D. I., and Cone, R. D. (1999) Functional variants of the MSH receptor (MC1-R), agouti, and their effects on mammalian pigmentation, in Humana Press, Totowa, N. J. pp. 231–259.

    Google Scholar 

  44. Vage, D. I., Lu, D., Klungland, H., Lien, S., Adalsteinsson, S., and Cone, R. D. (1997) A non-epistatic Interaction of agouti and extension in the fox, Vulpes Vulpes. Nat. Genet. 15, 311–315.

    Article  CAS  Google Scholar 

  45. Takeuchi, S., Suzuki, S., Hirose, S., Yabuuchi, M., Sato, C., Yamamoto, H., and Takahashi, S. (1996) Molecular cloning and sequence analysis of the chick melanocortin 1-receptor gene. Biochem. Biophys. Acta 1306, 122–126.

    Article  PubMed  Google Scholar 

  46. Baldwin, J. M. (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 12, 1693–1703.

    PubMed  CAS  Google Scholar 

  47. Mountjoy, K. G. (1994) The human melanocyte stimulating hormone receptor has evolved to become “super-sensitive” to melanocortin peptides. Mol. Cell. Endocrinol. 102, R7 - R11.

    Article  PubMed  CAS  Google Scholar 

  48. Valverde, P., Healy, E., Jackson, I., Rees, J. L., and Thody, A. J. (1995) Variants of the melanocyte-stimulating hormaone receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 11, 328–330.

    Article  PubMed  CAS  Google Scholar 

  49. Koppula, S. V., Robbins, L. S., Lu, D., Baack, E., White, C. R., Swanson, N. A., and Cone, R. D. (1997) Identification of common polymorphisms in the coding sequence of the human MSH receptor (MC1-R) with possible biological effects. Hum. Mut. 9, 30–36.

    Article  PubMed  CAS  Google Scholar 

  50. Lu, D., Vage, D. I., and Cone, R. D. (1999) A ligand—mimetic model for constitutive activation of the melanocortin-1 receptor. Mol. Endocrinol. 12, 592–604.

    Article  Google Scholar 

  51. Vage, D. I., Klungland, H., Lu, D., and Cone, R. D. (1999) Molecular and pharmacological characterization of dominant black coat color in sheep. Mamm. Genome 10, 39–43.

    Article  PubMed  CAS  Google Scholar 

  52. Probst, W. C., Snyder, L. A., Schuster, D. I., Brosius, J., and Sealfon, S. C. (1992) Sequence alignment of the G—protein coupled receptor superfamily. DNA Cell Biol. 11, 1–20.

    Article  PubMed  CAS  Google Scholar 

  53. Findlay, J. and Eliopoulos, E. (1990) Three—dimensional modelling of G protein—linked receptors. TiPS 11, 492–499.

    PubMed  CAS  Google Scholar 

  54. Savarese, T. M. and Fraser, C. M. (1992) In vitro mutagenesis and the search for structure—function relationships among G protein—coupled receptors. Biochem. J. 283, 1–19.

    PubMed  CAS  Google Scholar 

  55. Wess, J., Nanavati, S., Vogel, Z., and Maggio, R. (1993) Functional role of proline and tryptophan residues highly conserved among G—protein—coupled receptors studied by mutational analysis of the m3 muscarinic receptor. EMBOJ. 12, 331–338.

    CAS  Google Scholar 

  56. Hong, S., Ryu, K.—S., Oh, M.—S., Ji, I., and Ji, T. H. (1997) Roles of transmembrane prolines and proline—induced kinks of the lutropin/choriogonadotropin receptor. J. Biol. Chem. 272, 4166–4171.

    Article  PubMed  CAS  Google Scholar 

  57. Perlman, J. H., Colson, A.—O., Wang, W., Bence, K., Osman, R., and Greshengorn, M. C. (1997) Interactions between conserved residues in transmembrane helices 1, 2, and 7 of the thyrotropin—releasing hormone receptor. J. Biol. Chem. 272, 11,937–11, 942.

    Google Scholar 

  58. Hunyady, L., Bor, M., Baukal, A. J., Balla, T., and Catt, K. J. (1996) A conserved nplfy sequence contributes to agonist binding and signal trandsuction but is not an internalization signal for the type 1 angiotensin ii receptor. J. Biol. Chem. 270, 16,602–16, 609.

    Google Scholar 

  59. Strosberg, A. D., Camoin, L., Blin, N., and Maigret, B. (1993) In receptors coupled to GTP—binding proteins, ligand binding and G—protein activation is a multistep dynamic process. Drug Des. Discov. 9, 199–211.

    PubMed  CAS  Google Scholar 

  60. Berlose, J.—P., Convert, O., Brunissen, A., Chassaing, G., and La Vielle, S. (1994) Three—dimensional structure of the highly conserved seventh transmembrane domain of G—protein—coupled receptors. Eur. J. Biochem. 225, 827–843.

    Article  PubMed  CAS  Google Scholar 

  61. Frändberg, P.—A., Muceniece, R., Prusis, P., Wikberg, J., and Chhajlani, V. (1994) Evidence for alternate points of attachment for a—MSH and its stereoisomer [Nle4, D—Phe7]—a—MSH at the melanocortin-1 receptor. Biochem. Biophys. Res. Commun. 202, 1266–1271.

    Article  PubMed  Google Scholar 

  62. Ballesteros, J. A. and Weinstein, H. (1995) Integrated methods for the construction of three dimensional models and computational probing of structure—function relations in G—protein coupled receptors. Methods Neurosci. 25, 366–428.

    Article  CAS  Google Scholar 

  63. van Rhee, A. M. and Jacobson, K. A. (1996) Molecular architecture of G protein—coupled receptors. Drug Devel. Res. 37, 1–38.

    Article  Google Scholar 

  64. Haskell-Luevano, C., Miwa, H., Dickinson, C., Hruby, V. J., Yamada, T., and Gantz, I. (1994) Binding and cAMP studies of melanotropin peptides with the cloned human peripheral melanocortin receptor, hMC1-R. Biochem. Biophys. Res. Commun. 204, 1137–1142.

    Article  PubMed  CAS  Google Scholar 

  65. Sawyer, T. K., Castrucci, A. M., Staples, D. J., Affholter, J. A., DeVaux, A. E., Hruby, V. J., and Hadley, M. E. (1993) Structure—activity relationships of [Nle4, D—Phe’] a—MSH: discovery of a tripeptidyl agonist exhibiting sustained bioactivity Ann. N. Y. Acad. Sci. 680, 597–599.

    Article  PubMed  CAS  Google Scholar 

  66. Al-Obeidi, F., Hruby, V. J., Yaghoubi, N., Marwan, M. M., and Hadley, M. E. (1992) Synthesis and Biological activities of fatty acid conjugates of a cyclic lactam a—melanotropin. J. Med. Chem. 35, 118–123.

    Article  PubMed  CAS  Google Scholar 

  67. Sahm, U. G., Olivier, G. W. J., Branch, S. K., Moss, S. H., and Pouton, C. W. (1994) Influence of a—MSH terminal amino acids on binding affinity and biological activity in melanoma cells. Peptides 15, 441–446.

    Article  PubMed  CAS  Google Scholar 

  68. Sharma, S. D., Nikiforovich, G. V., Jiang, J., Castrucci, A. M., Hadley, M. E., and Hruby, V. J. (1992) A new class of positively charged melanotropin analogs: a new concept in peptide design. In Peptides, (Schneider, C. H. and Eberle, A. N., eds.) Escom, Leiden, pp. 95, 96.

    Google Scholar 

  69. Sharma, S. D., Nikiforovich, G. V., Jiang, J., Castrucci, A. M., Hadley, M. E., and Hruby, V. J. (1994) Cationized melanotropin analogues: structure—function relationships, in Peptides: Chemistry and Biology, ( Hodges, R. A. and Smith, J. A. eds.), ESCOM, Leiden, pp. 398–399.

    Google Scholar 

  70. Chaturvedi, D. N., Hruby, V. J., Castrucci, A. M., Kreutzfeld, K. L., and Hadley, M. E. (1985) Synthesis and biological evaluation of the superagonist [Nachlorotriazinylaminofluorescein—Ser’, Nle4, D—Phe’]—a—MSH. J. Pharm. Sci. 74, 237–240.

    Article  PubMed  CAS  Google Scholar 

  71. Chaturvedi, D. N., Knittel, J. J., Hruby, V. J., de L. Castrucci, A. M., and Hadley, M. E. (1984) Synthesis and biological actions of highly potent and prolonged acting biotin—labeled melanotropins. J. Med. Chem. 27, 1406–1410.

    CAS  Google Scholar 

  72. Castrucci, A. M. L., Hadley, M. E., Sawyer, T. K., and Hruby, V. J. (1984) Enzymological studies of melanotropins. Comp. Biochem. Physiol. 78B, 519–524.

    Article  CAS  Google Scholar 

  73. Sawyer, T. K., Sanfillippo, P. J., Hruby, V. J., Engel, M. H., Heward, C. B., Burnett, J. B., and Hadley, M. E. (1980) 4—Norleucine, 7—D—phenylalanine—a—melanocytestimulating hormone: a highly potent a—melanotropin with ultra long biological activity. Proc. Natl. Acad. Sci. U. S. A. 77, 5754–5758.

    Google Scholar 

  74. Al-Obeidi, F., Hadley, M. E., Pettitt, B. M., and Hruby, V. J. (1989) Design of a new Class of superpotent cyclic a—melanotropins based on quenched dynamic stimulations. J. Am. Chem. Soc. 111, 3413–3416.

    Article  CAS  Google Scholar 

  75. Al-Obeidi, F., Castrucci, A. M., Hadley, M. E., and Hruby, V. J. (1989) Potent and prolonged acting cyclic lactam analogues of a—melanotropin: design based on molecular dynamics. J. Med. Chem. 32, 2555–2561.

    Article  PubMed  CAS  Google Scholar 

  76. Mitchell, J. B. O., Nandi, C. L., McDonald, I. K., Thornton, J. M., and Price, S. L. (1994) Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding? J. Mol. Biol. 239, 315–331.

    Article  PubMed  CAS  Google Scholar 

  77. Levitt, M. and Perutz, M. (1988) Aromatic rings act as hydrogen bond acceptors. J. Mol. Biol. 201, 751–754.

    Article  PubMed  CAS  Google Scholar 

  78. Burley, S. K. and Petsko, G. A. (1986) Amino—aromatic interactions in proteins. FEBS Lett. 203, 139–143.

    Article  PubMed  CAS  Google Scholar 

  79. Burley, S. and Petsko, G. (1988) Weakly polar interactions in proteins. Adv. Protein Chem 39, 125–189.

    Article  PubMed  CAS  Google Scholar 

  80. Flocco, M. and Mowbray, S. (1994) Planar stacting interactions of arginine and aromatic side—charins in proteins. J. Mol. Biol. 235, 709–717.

    Article  PubMed  CAS  Google Scholar 

  81. Ajay and Murcko, M. A. (1995) Computational methods to predict binding free energy in ligand-receptor complexes. J. Med. Chem. 38, 4953–4967.

    Article  PubMed  CAS  Google Scholar 

  82. Cuatrecasas, P. and Hollenberg, M. D. (1976) Membrane receptors and hormone action. In Advances in Protein Chemistry ( Anfinsei, C. B., Edsall, J. T., and Richards, F. M., eds.) Academic Press, New York, pp. 251–451.

    Google Scholar 

  83. Yamamura, H. I., Enna, S. J., and Kuhar, M. J., Methods in Neurotransmitter Receptor Analysis, Raven Press: New York, (1990).

    Google Scholar 

  84. Williams, M., Glennon, R. A., and Timmermans, P. B. M. W. M. Receptor Pharmacology and Function; Marcel Dekker, New York, (1989).

    Google Scholar 

  85. Hulme, E. C. Receptor-Ligand Interactions: A Practical Approach; IRL Press: New York, (1992).

    Google Scholar 

  86. Ramachandran, G. N. and Sasisekharan, V. (1968) Conformation of polypeptides and proteins. Adv. Protein. Chem. 23, 283–437.

    Article  PubMed  CAS  Google Scholar 

  87. Pimentel, G. C. and McClellan (1960)The Hydrogen Bond. Freeman, London. pp. 282–288.

    Google Scholar 

  88. Schulz, G. E. and Schirmer, R. H. (1979)Principles of Protein Structure. Springer-Verlag, New York, pp. 20–28.

    Google Scholar 

  89. Schwartz, T. W., Gether, U., Schambye, H. T., and Hjorth, S. A. (1995) Molecular mechanism of action of non-peptide ligands for peptide receptors. Curr. Pharm. Des. 1, 325–342.

    CAS  Google Scholar 

  90. Chhajlani, V., Xu, X. L., Blauw, J., and Sudarshi, S. (1996) Identification of ligand binding residues in extracellular loops of the melanocortin 1 receptor. Biochem. Biophys. Res. Commun. 219, 521–525.

    Article  PubMed  CAS  Google Scholar 

  91. Schiöth, H. B., Muceniece, R., Szardenings, M., Prusis, P., Lindeberg, G., Sharma, S. D., Hruby, V. J., and Wikberg, J. E. (1997) Characterisation of D117A and H260A mutations in the melanocortin 1 receptor. Mol. Cell. Endocrinol. 126, 213–219.

    Article  PubMed  Google Scholar 

  92. Yang, Y.-K., Dickinson, C., Haskell-Luevano, C., and Gantz, I. (1997) Molecular basis for the interaction of [Nle4, D-Phe’] melanocyte stimulating hormone with the human moleanocortin-1 receptor (melanocyte a-MSH receptor). J. Biol. Chem. 272, 23000–23010.

    Article  PubMed  CAS  Google Scholar 

  93. Haskell-Luevano, C., Nikiforovich, G. V., Sharma, S.D., Yang, Y.-K., Dickinson, C., Hruby, V. J., and Gantz, I. (1997) Biological and conformational evaluation of stereochemical modifications using the template melanotropin peptide, Ac-Nlec[Asp-His-Phe-Arg-Trp-Ala-Lys]-NH2, on human melanocortin receptors. J. Med. Chem. 40, 1738–1748.

    Article  PubMed  CAS  Google Scholar 

  94. Haskell-Luevano, C., Boteju, L. W., Miwa, H., Dickinson, C., Gantz, I., Yamada, T., Hadley, M. E., and Hruby, V. J. (1995) Topographical modifications of melanotropin peptide analogues with (3-methyltryptophan isomers at position 9 leads to differential potencies and prolonged biological activities. J. Med. Chem. 38, 4720–4729.

    Article  PubMed  CAS  Google Scholar 

  95. Hruby, V. J., Lu, D., Sharma, S. D., Castrucci, A. M. L., Kesterson, R. A., AlObeidi, F. A., Hadley, M. E., and Cone, R. D. (1995) Cyclic lactam a-melanotropin analogues of Ac-Nle4-c[Asp5, D-Phe’, Lys101-a-MSH(4–10)-NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors. J. Med. Chem. 38, 3454–3461.

    Article  PubMed  CAS  Google Scholar 

  96. Huang, R.-R. C., Vicario, P. P., Strader, C. D., and Fong, T. M. (1995) Identification of residues involved in ligand binding to the neurokinin-2 receptor. Biochemistry 34, 10, 048–10, 055.

    Google Scholar 

  97. Chini, B., Mouillac, B., Ala, Y., Balestre, M.—N., Trumpp—Kallmeyer, S., Hoflack, J., Elands, J., Hibert, M., Manning, M., Jard, S., and Barberis, C. (1995) Tyr115 is the key residue for determining agonist selectivity in the v 1 a vasopressin receptor. EMBO J. 14, 2176–2182.

    CAS  Google Scholar 

  98. Kaupmann, K., Bruns, C., Raulf, F., Weber, H. P., Mattes, H., and Lübbert, H. (1995) two amino acids, located in transmembrane domains vi and vii, determine the selectivity of the peptide agonist sms 201–995 for the sstr2 somatostatin receptor. EMBO J. 14, 727–735.

    Google Scholar 

  99. Mouillac, B., Chini, B., Balestre, M.—N., Elands, J., Trumpp—Kallmeyer, S., Hoflack, J., Hibert, M., Jard, S., and Barberis, C. (1995) The binding site of neuropeptide vasopressin VIa receptor: evidence for a major localization within trans-membrane regions. J. Biol. Chem. 270, 25, 771–25, 777.

    Google Scholar 

  100. Lu, D. Doctoral Thesis, Oregon Health Science University, 1997.

    Google Scholar 

  101. Robinson, P. R., Cohen, G. B., Zhukovsky, E. A., and Oprian, D. D. (1992) Constitutively active mutants of rhodopsin. Neuron 9, 719–725.

    Article  PubMed  CAS  Google Scholar 

  102. Cohen, G. B., Oprian, D. D., and Robinsin, P. R. (1992) Mechanism of activation and inactivation of opsin: role of Glul 13 and Lys296. Biochemistry 31, 12, 592–12, 601.

    Google Scholar 

  103. Kenakin, T. (1996) Receptor conformation induction versus selection: all part of the same energy landscape. Trends Pharmacol. Sci. 17, 190–191.

    Article  CAS  Google Scholar 

  104. Kenakin, T. (1995) Agonist—receptor efficacy i: mechanisms of efficacy and receptor promiscuity. Trends Pharmacol. Sci. 16, 188–192.

    Article  PubMed  CAS  Google Scholar 

  105. Kenakin, T. (1995) Agonist—receptor efficacy ii: atonist trafficking of receptor signals. Trends Pharmacol. Sci. 16, 232–238.

    Article  PubMed  CAS  Google Scholar 

  106. Bond, R. A., Leff, P., Johnson, T. D., Milano, C. A., Rockman, H. A., McMinn, T. R., Apparsundaram, S., Hyek, M. F., Kenakin, T. P., Allen, L. F., and Lefkowitz, R. J. (1995) Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the b2—adrenoceptor. Nature 374, 272–276.

    Article  PubMed  CAS  Google Scholar 

  107. Elling, C. E., Nielsen, S. M., and Schwartz, T. W. (1995) conversion of antagonist—binding site to metal—ion site in the tachykinin NK-1 receptor. Nature 374, 74–77.

    Google Scholar 

  108. Thristrup, K., Elling, C. E., Hjorth, S. A., and Schwartz, T. W. (1996) Construction of a high affinity zinc switch in the x—opioid receptor. J. Biol. Chem. 271, 7875–7878.

    Article  Google Scholar 

  109. Cotecchia, S., Exum, S., Caron, M. G., and Lefkowitz, R. J. (1990) Regions of the al—adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc. Natl. Acad. Sci. U. S. A. 87, 2896–2900.

    Article  PubMed  CAS  Google Scholar 

  110. Ren, Q., Kurose, H., Lefkowitz, R. J., and Cotecchia, S. (1993) Constitutively active mutants of the a2—adrenergic receptor. J. Biol. Chem. 268, 16,483–16, 487.

    Google Scholar 

  111. Samama, P., Cotecchai, S., Costa, T., and Lefkowitz, R. J. (1993) A mutation—induced activated state of the (32—adrenergic receptor. extending the ternary complex model. J. Biol. Chem. 268, 4625–4636.

    PubMed  CAS  Google Scholar 

  112. Scheer, A., Fanelli, F., Costa, T., De Benedetti, P. G., and Cotecchia, S. (1996) Constitutively active mutants of the alpha 113—adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J. 15, 3566–3578.

    PubMed  CAS  Google Scholar 

  113. Oliveira, L., Paiva, A. C. M., Sander, C., and Vriend, G. (1994) A common step for signal transduction in G protein—coupled receptors. TiPS 15, 170–172.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haskell-Luevano, C. (2000). In Vitro Mutagenesis Studies of Melanocortin Receptor Coupling and Ligand Binding. In: Cone, R.D. (eds) The Melanocortin Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-031-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-031-5_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-082-3

  • Online ISBN: 978-1-59259-031-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics