Advertisement

Cloning of the Melanocortin Receptors

  • Kathleen G. Mountjoy
Chapter
Part of the The Receptors book series (REC)

Abstract

Melanocortin peptides (adrenocorticotropin [ACTH], α-, β-, and γ-melanocyte stimulating hormone [MSH], and fragments thereof) derived from proopiomelanocortin (POMC) have a diverse array of biologic activities, many of which have yet to be fully elucidated. POMC, produced most abundantly in the pituitary, is also produced in the brain, in the neurons of the arcuate nucleus of the hypothalamus, and the commis sural nucleus of the solitary tract of the brainstem; it has also been detected in several peripheral tissues including skin, pancreas, and testis. POMC is differentially processed in the different pituitary lobes, and the processing in the brain differs from that in the pituitary. In the corticotropic cells of the anterior lobe of the pituitary, the major end product is the 39 amino acid, ACTH[1–39]. In the melanotrophs of the intermediate lobe of the pituitary, ACTH[l–39] is the precursor of α-MSH (ACTH[ 1–13]) and corticotropinlike intermediate lobe peptide (CLIP) (ACTH[18–391). The major fraction of α-MSH produced by pituitary melanotrophs is acetylated at the amino terminus, while most of brain-derived α-MSH is desacetylated. α, β, γl, γ2, and γ3-MSH peptides are processed from different regions of the POMC precursor to yield peptides sharing a conserved core of seven amino acid residues. Adult humans lack an intermediate lobe of the pituitary and thus have very little α-MSH in the serum. ACTH[ 1–39] is the predominant circulating melanocortin peptide in man while α-MSH is the predominant circulating melanocortin in most other species. γ-MSH peptides have been reported to be present in human skin, are detectable in human adult blood and γ3-MSH is increased in the circulation in patients with cardiac arrest, in sheep blood in response to acute hemorrhagic stress, and is also increased toward the end of gestation. The primary roles of MSH and ACTH are the regulation of pigmentation and adrenal corticosteroid synthesis, respectively. While α-and β-MSH have melanotropic activity, γ-MSH peptides have little, if any, activity when tested in mouse and hamster melanoma cells. ACTH also stimulates proliferation of the adrenal cortex and is crucial for the normal development of this tissue. Numerous other activities for the melanocortin peptides have been demonstrated in the central and peripheral nervous systems, in the immune system, on lipolysis, on pituitary function, parturition, and neuromuscular function. Since the 1950s, a number of biologic responses have been seen on intracerebroventricular introduction of these peptides (1). For example, central administration of melanocortin peptides has been reported to have effects on autonomic controls such as thermoregulation, food intake, cardiovascular function, behavior, and neuroendocrine homeostasis. Retention of learned behaviors, and recovery from nerve damage has also been reported. In addition to their effects on brain, melanocortin peptides exert a neurotrophic action on damaged peripheral nerve tissue (2). ACTH and α-MSH also have antipyretic activity following peripheral or intracerebroventricular administration (3).

Keywords

Adrenal Cortex Polymerase Chain Reaction Fragment Intracellular Loop Melanocortin Receptor ACTH Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DeWied, D. and Jolies, J. (1982) Neuropeptides derived from pro-opiocortin: behavioral, physiological, and neurochemical effects. Physiol. Rev. 62, 977–1059.Google Scholar
  2. 2.
    Strand, F. L., Rose, K. J., Zuccarelli, L. A., Kume, J., Alves, S. E., Antonawich, F. J. and Garrett, L. Y. (1991) Neuropeptide hormones as neurotrophic factors. Physiol. Rev. 71, 1017–1046.PubMedGoogle Scholar
  3. 3.
    Catania, A. and Lipton, J. M. (1993) a-Melanocyte stimulating hormone in the modulation of host reactions. Endocri. Rev. 14, 564–576.Google Scholar
  4. 4.
    Buckley, D. I. and Ramachandran, J. (1981) Characterization of corticotropin receptors on adrenocortical cells. Proc. Natl. Acad. Sci. U. S. A. 78, 7431–7435.PubMedCrossRefGoogle Scholar
  5. 5.
    Gallo—Payet, N. and Escher, E. (1985) Adrenocorticotropin receptors in rat adrenal glomerulosa cell. Endocrinology. 117, 38–46.CrossRefGoogle Scholar
  6. 6.
    Gallo—Payet, N. and Payet, M. D. (1989) Excitation—secretion coupling: involvement of potassium channels in ACTH-stimulated rat adrenocortical cells. J. Endocrinol. 120, 409–421.CrossRefGoogle Scholar
  7. 7.
    Pawelek, J. (1976) Factors regulating growth and pigmentation of melanoma cells. J. Invest. Dermatol. 66, 201–209.PubMedCrossRefGoogle Scholar
  8. 8.
    Tatro, J. B., Atkins, M., Mier, J. W., Hardarson, S., Wolfe, H., Smith, T., Entwistle, M. C. and Reichlin, S. (1990) Melanotropin receptors demonstrated in situ in human melanoma. J. Clin. Invest. 85, 1825–1832.PubMedCrossRefGoogle Scholar
  9. 9.
    Tatro, J. B. and Reichlin, S. (1987) Specific receptors for a-melanocyte-stimulating hormone are widely distributed in tissues of rodents. Endocrinology. 121,1900–1907.Google Scholar
  10. 10.
    Hnatowich, M. R., Queen, G., Stein, D., and LaBella, F. S. (1989) ACTH receptors in nervous tissue. High affinity binding-sequestration of l’25IllPhe2,Nle41 ACTH 1–24 in homogenates and slices from rat brain. Can. J. Physiol. Pharmacol. 67, 568–576.PubMedCrossRefGoogle Scholar
  11. 11.
    Tatro, J. B. (1990) Melanotropin receptors in the brain are differentially distributed and recognize both corticotropin and a-melanocyte stimulating hormone. Brain Res. 536, 124–132.PubMedCrossRefGoogle Scholar
  12. 12.
    Libert, F., Parmentier, M., Lefort, A., Dinsart, C., Van Sande, J., Maenhaut, C., Simons, M. J., Dumont, J. E., and Vassart, G. (1989) Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science 244, 569–572.PubMedCrossRefGoogle Scholar
  13. 13.
    Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., and Cone, R. D. (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257, 543–546.CrossRefGoogle Scholar
  14. 14.
    Cone, R. D., Mountjoy, K. G., Robbins, L. S., Nadeau, J. H., Johnson, K. R., RoselliRehfuss, L., Mortrud, M. T., and Robinson, K. R. (1993) Cloning and functional characterization of a family of receptors for the melanotropic peptides. Ann. N. Y. Acad. Sci. 680, 342–363.PubMedCrossRefGoogle Scholar
  15. 15.
    Chhajlani, V. and Wikberg, E. S. (1992) Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett. 309, 417–420.PubMedCrossRefGoogle Scholar
  16. 16.
    Gantz, I., Konda, K., Tashiro, T., Shimoto, Y., Miwa, H., Munzert, G., Watson, S. J., DelValle, J., and Yamada, T. (1993) Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 265, 8246–8250.Google Scholar
  17. 17.
    Cone, R. D. and K. G. Mountjoy. (1993) Molecular genetics of the ACTH and melanocyte-stimulating hormone receptors. Trends Endocrinol. Metab. 4, 242–247.PubMedCrossRefGoogle Scholar
  18. 18.
    Probst, W. C., Snyder, L. A., Schuster, D. I., Brosius, J., and Sealfon, S. C. (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 11, 1–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Star, R. A., Rajora, N., Huang, J., Stock, R. C., Catania, A., and Lipton, J. M. (1995) Evidence of autocrine modulation of macrophage nitric oxide synthase by a-melanocyte-stimulating hormone. Proc. Natl. Acad. Sci U. S. A. 92, 8016–8020.Google Scholar
  20. 20.
    Xia, Y., Wikberg, J. E. S., and Chhajlani, V. (1995) Expression of melanocortin 1 receptor in periaqueductal gray matter. Neuroreport 6, 2193–2196.PubMedCrossRefGoogle Scholar
  21. 21.
    Mountjoy, K. G. (1994) The human melanocyte stimulating hormone receptor has evolved to become “super-sensitive” to melanocortin peptides. Mol. Cell Endocrinol. 102, R7 - R11.PubMedCrossRefGoogle Scholar
  22. 22.
    Robbins, L. S., Nadeau, J. H., Johnson, K. R., Kelly, M. A., Roselli-Rehfuss, L., Bacck, E., Mountjoy, K. G., and Cone, R. D. (1993) Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72 827–834.Google Scholar
  23. 23.
    Gantz, I., Tashiro, T., Barcroft, C., Konda, Y., Shimoto, Y., Miwa, H., and J. M. Trent, H. (1994) Mapping of the gene encoding the melanocortin-1 (a-melanocyte stimulating hormone) receptor (MC 1-R) to human chromosome 16g24.3 by fluorescence in situ hybridization. Genomics 19, 394–395.Google Scholar
  24. 24.
    Magenis, R. E., Smith, L., Nadeau, J. H., Johnson, K. R., Mountjoy, K. G., and Cone, R. D. (1994) Mapping of the ACTH, MSH, and neural (MC3 and MC4) melanocortin receptors in the mouse and man. Mamm. Genome 5, 503–508.Google Scholar
  25. 25.
    Copeland, N. G., Jenkins, N. A., Gilbert, D. J., Eppig, J. T., Maltais, L. C., Miller, J. C., Dietrich, W. F., Weaver, A., Lincoln, S. E., Steen, R. G., Stein, L. D., Nadeau, J. H., and Lander, E. S. (1993) A genetic map of the mouse: current applications and future prospects. Science 262, 57–66.Google Scholar
  26. 26.
    Nadeau, J. H., Davisson, M. T., Doolitlle, D. P., Grant, P., Hillyard, A. P., Kosowsky, M. R., and Roderick, T. H. (1992) Comparative map for mice and humans. Mamm. Genome 3, 480–536.PubMedCrossRefGoogle Scholar
  27. 27.
    Cammas, F. M., Kapas, S., Barker, S., and Clark, A. J. L. (1995) Cloning, characterization and expression of a functional mouse ACTH receptor. Biochem. Biophys. Res. Commun. 211, 912–918.CrossRefGoogle Scholar
  28. 28.
    Raikhinstein, M., Zohar, M. and Hanukoglu, I. (1994) eDNA cloning and sequence analysis of the bovine adrenocorticotropic hormone (ACTH) receptor. Biochim. Biophys. Acta. 1220, 329–332.Google Scholar
  29. 29.
    Naville, D., Barjhous, L., Jaillard, C., Lebrethon, M. C., Saez, J. M., and Begeot M. (1994) Characterization of the transcription start site of the ACTH receptor gene: presence of an intronic sequence in the 5’-flanking region. Mol. Cell Endocrinol. 106, 131–135.PubMedCrossRefGoogle Scholar
  30. 30.
    Naville, D., Jaillard, C., Barjhoux, L., Durand, P., and Begeot, M. (1997) Genomic structure and promoter characterization of the human ACTH receptor gene. Biochemi. Biophys. Res. Communi. 230, 7–12.CrossRefGoogle Scholar
  31. 31.
    Shimizu, C., Kubo, M., Saeki, T., Matsumura, T., Ishizuka, T., Kijima, H., Kakinuma, M., and Koike, T. (1997) Genomic organization of the mouse adrenocorticotropin receptor. Gene 188, 17–21.Google Scholar
  32. 32.
    Clark, A. J. L., Cammas, F. M., and Kapas, S. (1996) Expression of the mouse ACTH receptor gene and characterisation of its promoter. Endocr. Res. 22, 333–335.PubMedGoogle Scholar
  33. 33.
    Slominski, A. J., Ermak, G., and Mihm, M. (1996) ACTH receptor, CYP11A1, CYP17 and CYP21A2 genes are expressed in skin. J. Clin. Endocrinol. and Metab. 81, 2746–2749.Google Scholar
  34. 34.
    Boston, B. A. and Cone, R. D. (1996) Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3–L1 cell line. Endocrinology 137, 2043–2050.PubMedCrossRefGoogle Scholar
  35. 35.
    Mountjoy, K. G., Bird, I. M., Rainey, W. E., and Cone, R. D. (1994) ACTH induces up-regulation of ACTH receptor mRNA in mouse and human adrenocortical cell lines. Mol. Cell Endocrinol. 99, R17 - R20.PubMedCrossRefGoogle Scholar
  36. 36.
    Yang, Y.-K., 011mann, M. M., Wilson, B. D., Dickinson, C., Yamada, T., Barsh, G. S., and Gantz, I. (1997) Effects of recombinant agouti-signalling protein on melanocortin action. Mol. Endocrinol. 11, 274–280.Google Scholar
  37. 37.
    Kapas, S., Cammas, F.M., Hinson, J. P., and Clark, A. J. L. (1996) Agonist and receptor binding properties of adrenocorticotropin peptides using the cloned mouse adrenocorticotropin receptor expressed in a stably transfected HeLa cell line. Endocrinology 137, 3291–3294.Google Scholar
  38. 38.
    Gantz, I. Tashiro, T., Barcroft, C., Konda, Y., Shimoto, Y., Miwa, H., Glover, T., Munzert, G., and Yamada, T. (1993) Localization of the genes encoding the melanocortin- 2 (adrenocorticotropic hormone) and melanocortin-3 receptors to chromosome 18p11.2 and 20g13.2-g13.3 by fluorescence in situ hubridization. Genomics 18 166–167.Google Scholar
  39. 39.
    Vamvakppoulos, N. C., Rojas, K., Overhauser, J., Durkin, A. S., Nierman, W. C., and Chrousos, G. P. (1993) Mapping the human melanocortin 2 receptor (adrenocorticotrophic hormone receptor; ACTHR) gene (MC2-R) to the small arm of chromosome 18 (18p11.21-pter). Genomics 18, 454–455.CrossRefGoogle Scholar
  40. 40.
    Desarnaud, F., Labbe, O., Eggerickx, D., Vassart, G., and Parmentier, M. (1994) Molecular cloning, functional expression and pharmacological characterization of a mouse melanocortin receptor gene. Biochem. J. 299, 367–373.PubMedGoogle Scholar
  41. 41.
    Roselli—Rehfuss, L., Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., Low, M., Tatro, J. B., Entwistle, M. L., Simerly, R., and Cone, R. D. (1993) Identification of a receptor for y melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl. Acad. Sci. U. S. A. 90, 8856–8860.CrossRefGoogle Scholar
  42. 42.
    Schioth, H. B., Muceniece, R., Wikberg, J. E. S., and Szardenings, M. (1996) Alternative translation initiation codon for the human melanocortin MC3 receptor does not affect the ligand binding. Eur. J. Pharmacol. 314, 381–384.PubMedCrossRefGoogle Scholar
  43. 43.
    Bell, G. I., Xiang, K., Newman, M. V., Wu, S., Wright, L. G., Fajans, S. S., Spielman, R. S., and Cox, N. J. (1991) Gene for non—insulin—dependent diabetes mellitus (maturity—onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q. Proc. Natl. Acad. Sci. U. S. A. 88, 1484–1488.PubMedCrossRefGoogle Scholar
  44. 44.
    Yamada, Y., Xiang, K., Bell, G. I., Seino, S., and Nishi, M. (1992) Dinucleotide repeat polymorphism in a gene on chromosome 20 encoding a G-protein coupled receptor (D20S32e). Nucleic Acids Res. 19, 2519.CrossRefGoogle Scholar
  45. 45.
    Mountjoy, K. G., Mortrud, M. T., Low, M. J., Simerly, R. B., and Cone, R. D. (1994) Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8, 1298–1308.PubMedCrossRefGoogle Scholar
  46. 46.
    Gantz, I. Miwa, H., Konda, Y., Shimoto, Y., Tashiro, T., Watson, S. J., DelValle, J., and Yamada, T. (1993) Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268 15,174–15,179.Google Scholar
  47. 47.
    Alvaro, J. D., Tatro, J. B., Quillan, J. M., Fogliano, M., Eisenhard, M., Lerner, M. R., Nestler, E. J., and Duman, R. S. (1996) Morphine down—regulates melanocortin4 receptor expression in brain regions that mediate opiate addiction. Mol. Pharmacol. 50, 583–591.PubMedGoogle Scholar
  48. 48.
    Schioth, H. B., Muceniece, R., and Wikberg, J. E. S. (1996) Characterisation of the melanocortin 4 receptor by radioligand binding. Pharmacol. Toxicol. 79, 161–165.PubMedCrossRefGoogle Scholar
  49. 49.
    Chhajlani, V., Muceniece, R., and Wikberg, J. E. S. (1993) Molecular cloning of a novel human melanocortin receptor. Biochem. Biophys. Res. Commun. 195, 866–873.PubMedCrossRefGoogle Scholar
  50. 50.
    Barrett, P., MacDonald, A., Helliwell, R., Davidson, G., and Morgan, P. (1994) Cloning and expression of a new member of the melanocyte-stimulating hormone receptor family. J. Mol. Endocrinol. 12, 203–213.PubMedCrossRefGoogle Scholar
  51. 51.
    Labbe, O., Desarnaud, F., Eggerickx, D., Vassart, G., and Parmentier, M. (1994) Molecular cloning of a mouse melanocortin 5 receptor gene widely expressed in peripheral tissues. Biochemistry 33, 4543–4549.PubMedCrossRefGoogle Scholar
  52. 52.
    Griffon, N., Mignon, V., Facchinetti, P., Diaz, J., Schwartz, J.-C., and Sokoloff, P. (1994) Molecular cloning and characterisation of the rat fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 200, 1007–1014.Google Scholar
  53. 53.
    Gantz, I., Shimoto, Y., Konda, Y., Miwa, H., Dickson, C. J., and Yamada, T. (1994) Molecular cloning, expression, and characterization of a fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 200, 1214–1220.PubMedCrossRefGoogle Scholar
  54. 54.
    Chowdhary, B. P., Gustaysson, I., Wikberg, J. E. S., and Chhajlani, V. (1995) Localization of the human melanocortin-5 receptor gene (MC5-R) to chromosome band 18p11.2 by fluorescence in situ hybridization. Cytogenet. Cell Genet. 68, 79–81.PubMedCrossRefGoogle Scholar
  55. 55.
    Gilchrist, D. P. D., Darlington, C. L., and Smith, P. F. (1994) Org 2766 treatment prevents disruption of vestibular compensation by an NMDA receptor antagonist. Eur. J. Pharmacol. 252, RI—R2.Google Scholar
  56. 56.
    Spruijt, B., Losephy, M., Van Rijzingen, I., and Maaswinkel, H. (1994) The ACTH(4–9) analog Org 2766 modulates the behavioural changes induced by NMDA and NMDA receptor antagonist AP5. J. Neurosci. 14, 3225–3230.Google Scholar
  57. 57.
    Li, S.—J., Varga, K., Archer, P., Hruby, V. J., Sharma, S. D., Kesterson, R. A., Cone, R. D., and Kunos, G. (1996) Melanocortin antagonists define two distinct pathways of cardiovascular control by a-and y-melanocyte-stimulating hormones. J. Neurosci. 16, 5182–5188.PubMedGoogle Scholar
  58. 58.
    Van Bergen, P., Kleijne, J. A., De Wildt, D. J., and Versteeg, D. H. G. (1997) Different cardiovascular profiles of three melanocortins in conscious rats; evidence for antagonism between y2-MSH and ACTH-(1–24). Br. J. Pharmacol. 120, 1561— 1567.Google Scholar
  59. 59.
    Huang, Q.-H., Entwistle, M. L., Alvaro, J. D., Duman, R. S., Hruby, V. J., and Tatro, J. B. (1997) Antipyretic role of endogenous melanocortins mediated by central melanocortin receptors during endotoxin-induced fever. J. Neurosci. 17, 3343–3351.PubMedGoogle Scholar
  60. 60.
    Shutter, J. R., Graham, M., Kinsey, A. C., Scully, S., Luthy, R., and Stark, K. L. (1997) Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev. 11, 593–602.PubMedCrossRefGoogle Scholar
  61. 61.
    Clark, A. J. L. and Weber, A. (1994) Molecular insights into inherited ACTH resistance syndromes. Trends Endocrinol Metab. 5, 209–214.PubMedCrossRefGoogle Scholar
  62. 62.
    Mountjoy, K. G. and Wild, J. M. (1998) Melanocortin-4 receptor mRNA expression in the developing autonomic and central nervous systems. Developmental Brain Research 107, 309–314.PubMedCrossRefGoogle Scholar
  63. 63.
    Chen, W., Kelly, M. A., Opitz-Araya, X., Thomas, R. E., Low, M. J., and Cone, R. D. (1997) Exocrine gland dysfunction in the MC5-R-deficient mice: Evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell 91, 789–798.PubMedCrossRefGoogle Scholar
  64. 64.
    Cone, R. D., Lu, D., Koppula, S., Inge Vage, D., Klungland, H., Boston, B., Chen, W., Orth, D., Pouton, C., and Kesterson, R. A. (1996) The melanocortin receptors: Agonists, antagonists, and the hormonal control of pigmentation. Recent Progress Hormone Research 51, 287–318.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Kathleen G. Mountjoy

There are no affiliations available

Personalised recommendations