Melanocortin Receptor Expression and Function in the Nervous System

  • Jeffrey B. Tatro
Part of the The Receptors book series (REC)


By the late 1970s, a range of evidence indicated that melanocortins could affect behavioral and visceral functions, neuroendocrine circuits, and the neurochemistry of the brain (1,2) in addition to well-characterized roles in pigmentation and adrenocortical steroidogenesis. The discovery of releasable neurosecretory pools of α-MSH in brain tissue (3), and the discovery of an intrinsic POMC (proopiomelanocortin) and melanocortin-containing neuron system in the brain (4,5), began to point to a potential role of endogenous central nervous system (CNS) melanocortins in regulating many of these functions. The facts that similar melanocortinergic systems exist in the brains of lower vertebrate species as primitive as the lungfish (6), and in mammals are predominantly distributed in the phylogenetically ancient visceral neuraxis, suggests that the melanocortin system may subserve highly conserved roles. As discussed below and in Chapters 4 and 13, a fairly extensive literature now supports a fundamental role of melanocortins in diverse CNS functions. Nevertheless, the identification of CNS-associated melanocortin receptors is a fairly recent development. Following the demonstration of MCR in the CNS in 1990 (7), the cloning of a family of MCR-encoding genes (see Chapter 7) paved the way for the recent explosive growth in interest in the physiological roles of melanocortins in the nervous system, and the molecular bases of melanocortin actions.


Vasoactive Intestinal Polypeptide POMC Neuron Circumventricular Organ Melanocyte Stimulate Hormone Dorsal Vagal Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeWied, D. and Jolies, J. (1982) Neuropeptides derived from pro—opiocortin: behavioral, physiological and neurochemical effects. Physiol. Rev. 62, 976–1059.Google Scholar
  2. 2.
    Dunn, A. J. (1984) Effects of ACTH, ß—lipotropin, and related peptides on the central nervous system, in: Peptides, Hormones, and Behavior ( Nemeroff, C. B. and Dunn, A. J., eds.), Spectrum, New York, pp. 273–347CrossRefGoogle Scholar
  3. 3.
    Warberg, J., Oliver, C., Eskay, R. L., Parker, C. R. J., Barnea, A., and Porter, J. C. (1977) Release of a—MSH from a synaptosome—enriched fraction prepaed from rat hypothalamic tissue. Front. Horm. Res. 4, 167–169.PubMedGoogle Scholar
  4. 4.
    O’Donohue, T. L. and Dorsa, D. M. (1982) The opiomelanotropinergic neuronal and endocrine systems. Peptides 3, 353–395.PubMedCrossRefGoogle Scholar
  5. 5.
    Gee, C. E., Chen, C.—L. C., Roberts, J. L., Thompson, R., and Watson, S. J. (1983) Identification of proopiomelanocortin neurones in rat hypothalamus by in situ hybridization. Nature 306, 374–376.PubMedCrossRefGoogle Scholar
  6. 6.
    Vallarino, M., Tranchand Bunel, D., and Vaudry, H. (1993) Location and identification of a—melanocyte—stimulating hormone in the brain of the lungfish, Protopterus annectens. Ann. N. Y. Acad. Sci. 680, 634–637.CrossRefGoogle Scholar
  7. 7.
    Tatro, J. B. (1990) Melanotropin receptors in the brain are differentially distributed and recognize both corticotropin and a—melanocyte stimulating hormone. Brain Res. 536, 124–132.PubMedCrossRefGoogle Scholar
  8. 7a.
    Oilman, M. M., Wilson, B. D., Yang, Y.-K., Kerns, J. A., Chen, Y., Gantz, I., and Barsh, G. S. (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138.CrossRefGoogle Scholar
  9. 7b.
    Broberger, C., Johansen, J., Johansson, C., Schalling, M., and Hökfelt, T. (1998) The neuropeptide Y/agouti related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc. Natl. Acad. Sci. USA 95, 15043–15048.PubMedCrossRefGoogle Scholar
  10. 7c.
    Yang, Y. K., Thompson, D. A., Dickinson, C. J., Wilken, J., Barsh, G. S., Kent, S. B., and Gantz, I. (1999) Characterization of Agouti-related protein binding to melanocortin receptors. Molecular Endocrinology 13, 148–155.PubMedCrossRefGoogle Scholar
  11. 7d.
    Pilcher, W. H. and Joseph, S. A. (1986) Differential sensitivity of hypothalamic and medullary opiocortin and tyrosine hydroxylase neurons to the neurotoxic effects of monosodium glutamate (MSG). Peptides 7, 783–789.PubMedCrossRefGoogle Scholar
  12. 8.
    Emeson, R. B. and Eipper, B. A. (1986) Characterization of pro-ACTH/endorphin-derived peptides in rat hypothalamus. J. Neurosci. 6, 837–849.PubMedGoogle Scholar
  13. 9.
    Mezey, E., Kiss, J. Z., Mueller, G. P., Eskay, R., O’ Donohue, T. L., and Palkovits, M. (1985) Distribution of the pro-opiomelanocortin derived peptides, adrenocorticotropic hormone, alpha-melanocyte-stimulating hormone and beta-endorphin (ACTH, a-MSH, VEND) in the rat hypothalamus. Brain Res. 328, 341–347.PubMedCrossRefGoogle Scholar
  14. 10.
    Millington, W. R., Mueller, G. P., and O’Donohue, T. L. (1984) Regional heterogeneity in the ratio of a-MSH:(3-endorphin in the rat brain. Peptides 5, 841–843.PubMedCrossRefGoogle Scholar
  15. 11.
    Nilaver, G., Zimmerman, E. A., Defendini, R., Liotta, A. S., Krieger, D. T., and Brownstein, M. J. (1979) Adrenocorticotropin and ß-lipotropin in the hypothalamus. J. Cell Biol. 81, 50–58.PubMedCrossRefGoogle Scholar
  16. 12.
    Tsou, K., Khachaturian, H., Akil, H., and Watson, S. J. (1986) Immunocytochemical localization of pro-opiomelanocortin-derived peptides in the adult rat spinal cord. Brain Res. 378, 28–35.PubMedCrossRefGoogle Scholar
  17. 12a.
    Huang, Q.-H., Hruby, V. J., and Tatro, J. B. (1998) Systemic a-MSH suppresses LPS fever via central melanocortin receptors independently of its suppression of corticosterone and IL-6 release. Am. J. Physiol. 275, R524 - R530.PubMedGoogle Scholar
  18. 12b.
    Wilson, B. D., Bagnol, D., Kaelin, C. B., Ollman, M. M., Gantz, I., Watson, S. J., and Barsh, G. S. (1999) Physiological and anatomical circuitry between Agouti-related protein and leptin signaling. Endocrinology 140, 2387–2397.PubMedCrossRefGoogle Scholar
  19. 12c.
    Haskell-Luevano, C., Chen, P., Li, C., Chang, K., Smith, M. S., Cameron, J. L., and Cone, R. D. (1999) Characterization of the neuroanatomical distribution of agouti-related protein immunoreactivity in the rhesus monkey and the rat. Endocrinology 140, 1408–1415.PubMedCrossRefGoogle Scholar
  20. 12d.
    Bagnol, D., Lu, X.-Y., Kaelin, C. B., Day, H. W., Ollman, O., Gantz, I., Akil, H., Barsh, G. S., and Watson, S. J. (1999) Anatomy of an endogenous antagonist: Relationship between agouti-related protein and proopiomelanocortin in brain. J. Neurosci.19, RC26.Google Scholar
  21. 13.
    Cannon, J. G., Tatro, J. B., Reichlin, S. R., and Dinarello, C. A. (1986) a-Melanocyte stimulating hormone inhibits immunostimulatory and inflammatory actions of interleukin-1. J. Immunol. 137, 2232–2236.Google Scholar
  22. 14.
    Lipton, J. M., Glyn, J. R., and Zimmer, J. A. (1981) ACTH and alpha-melanotropin in central temperature control. Fed. Proc. 40, 2760–2764.PubMedGoogle Scholar
  23. a. Tatro J. B. Endogenous antipyretics. Clin. Infect. Dis. (in press).Google Scholar
  24. 15.
    Catania, A. and Lipton, J. M. (1993) a-Melanocyte stimulating hormone in the modulation of host reactions. Endocr. Rev. 14, 564–576.Google Scholar
  25. 16.
    Tatro, J. B. and Entwistle, M. L. (1994) Distribution of melanocortin receptors in the lower brainstem of the rat. Ann. N.Y. Acad. Sci. 739, 311–314.PubMedCrossRefGoogle Scholar
  26. 17.
    Tatro, J. B. (1993) Melanotropin receptors of the brain. Methods Neurosci. 11, 87–104.Google Scholar
  27. 18.
    Tatro, J. B. and Entwistle, M. L. (1994) Heterogeneity of brain melanocortin receptors suggested by differential ligand binding in situ. Brain Res. 635, 148–158.CrossRefGoogle Scholar
  28. 19.
    Sawyer, T. K., Sanfilippo, P. J., Hruby, V. J., Engel, M. H., Heward, C. B., Burnett, J. B., and Hadley, M. E. (1980) [N1e4,n-Phe’]a-melanocyte stimulating hormone: A highly potent a-melanotropin with ultralong biological activity. Proc. Natl. Acad. Sci. U. S. A. 77, 5754–5758.Google Scholar
  29. 20.
    Tatro, J. B. and Reichlin, S. (1987) Specific receptors for a-melanocyte-stimulating hormone are widely distributed in tissues of rodents. Endocrinology 121, 1900–1907.PubMedCrossRefGoogle Scholar
  30. 21.
    Tatro, J. B., Atkins, M., Mier, J. W., Hardarson, S., Wolfe, H., Smith, T., Entwistle, M. L., and Reichlin, S. (1990) Melanotropin receptors demonstrated in situ in human melanoma. J. Clin. Invest. 85, 1825–1832.PubMedCrossRefGoogle Scholar
  31. 22.
    Tatro, J. B., Entwistle, M. L., Lester, B. R., and Reichlin, S. (1990) Melanotropin receptors of murine melanoma characterized in cultured cells and demonstrated in experimental tumors in situ. Cancer Res. 50, 1237–1242.Google Scholar
  32. 23.
    Entwistle, M. L., Hann, L. E., Sullivan, D. A., and Tatro, J. B. (1990) Characterization of functional melanotropin receptors in lacrimal glands of the rat. Peptides 11, 477–483.PubMedCrossRefGoogle Scholar
  33. 24.
    Chhajlani, V. and Wikberg, J. E. S. (1992) Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett. 309, 417–420.PubMedCrossRefGoogle Scholar
  34. 25.
    Chhajlani, V., Muceniece, R., and Wikberg, J. E. S. (1993) Molecular cloning of a novel human melanocortin receptor. Biochem. Biophys. Res. Commun. 195, 866–873.PubMedCrossRefGoogle Scholar
  35. 26.
    Roselli-Rehfuss, L., Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., Low, M. J., Tatro, J. B., Entwistle, M. L., Simerly, R. B., and Cone, R. D. (1993) Identification of a receptor for POMC peptides in the medial basal hypothalamus and limbic system. Proc. Natl. Acad. Sci. U. S. A. 90, 8856–8860.PubMedCrossRefGoogle Scholar
  36. 27.
    Desarnaud, F., Labbé, O., Eggerickx, D., Vassar, G., and Parmentier, M. (1994) Molecular cloning, functional expression and pharmacological characterization of a mouse melanocortin receptor gene. Biochem. J. 299, 367–373.PubMedGoogle Scholar
  37. 28.
    Labbé, O., Desarnaud, F., Eggerickx, D., Vassart, G., and Parmentier, M. (1994) Molecular cloning of mouse melanocortin 5 receptor gene widely expressed in peripheral tissues. Biochemistry 33, 4543–4549.PubMedCrossRefGoogle Scholar
  38. 29.
    Eberle, A. N. (1993) Peptides containing multiple photolabels: a new tool for the analysis of ligand-receptor interactions. J. Recept. Res. 13, 27–37.PubMedGoogle Scholar
  39. 30.
    Bagutti, C. and Eberle, A. N. (1993) Synthesis and biological properties of a biotinylated derivative of ACTH1–17 for MSH receptor studies. J. Recept. Res. 13, 27–37.Google Scholar
  40. 31.
    Hadley, M. E., Hruby, V. J., Jiang, J., Sharma, S.D., Fink, J. L., Haskell-Leuvano, C., Bentley, D. L., Al-Obeidi, F., and Sawyer T. K. (1996) Melanocortin receptors: identification and characterization by melanotropic peptide agonists and antagonists. Pigment Cell Res. 9, 213–234.PubMedCrossRefGoogle Scholar
  41. 32.
    Erskine-Grout, M.-E., Olivier, G. W. J., Lucas, P., Sahm, U. G., Branch, S. K., Moss, S. H., Notarianni, L. J., and Pouton, C. W. (1996) Melanocortin probes for the melanoma MC1 receptor: synthesis, receptor binding and biological activity. Melanoma Res. 6, 89–94.PubMedCrossRefGoogle Scholar
  42. 33.
    Van Houten, M., Khan, M. N., Walsh, R. J., Baquiran, G. B., Renaud, L. P., Bourque, C., Sgro, S., Gauthier, S., Chretien, M., and Posner, B. I. (1985) NHz terminal specificity and axonal localization of adrenocorticotropin binding sites in rat median eminince. Proc. Natl. Acad. Sci. U. S. A. 82, 1271–1275.PubMedCrossRefGoogle Scholar
  43. 34.
    Tatro, J. B. (1993) Brain receptors for central and peripheral melanotropins. Ann. N. Y. Acad. Sci. 680, 621–625.PubMedCrossRefGoogle Scholar
  44. 35.
    Herkenham, M. and Pert, C. B. (1982) Light microscopic localization of brain opiate receptors: a general autoradiographic method which preserves tissue quality. J. Neurosci. 28, 1129–1149.Google Scholar
  45. 36.
    Alvaro, J. D., Tatro, J. B., Quillan, J. M., Fogliano, M., Eisenhard, M., Lerner, M. R., Nestler, E. J., and Duman, R. S. (1996) Morphine down—regulates melanocortin-4 receptor expression in brain regions that mediate opiate addiction. Mol. Pharmacol. 50, 583–591.PubMedGoogle Scholar
  46. 37.
    Lichtensteiger, W., Hanimann, B., Siegrist, W., and Eberle, A. N. (1996) Region—and stage—specific patterns of melanocortin receptor ontogeny in rat central nervous system, cranial nerve ganglia and sympathetic ganglia. Dey. Brain Res. 91, 93–110.CrossRefGoogle Scholar
  47. 38.
    Pranzatelli M. R. (1994) On the molecular mechanism of adrenocorticotrophic hormone in the CNS: neurotransmitters and receptors. Exper. Neurol. 125, 142–161.CrossRefGoogle Scholar
  48. 39.
    Li, Z., Queen, G., and LaBella, F. S. (1990) Adrenocorticotropin, vasoactive intestinal polypeptide, growth hormone—releasing factor, and dynorphin compete for common receptors in brain and adrenal. Endocrinology 126, 1327–1333.PubMedCrossRefGoogle Scholar
  49. 40.
    Mousli, M., Bueb, J.-L., Bronner, C., Rouot, B., and Landry, Y. (1990) G protein activation: a receptor—independent mode of action for cationic amphiphilic neuropeptides and venom peptides. Trends Pharm. Sci. 11, 358–362.PubMedCrossRefGoogle Scholar
  50. 41.
    Solca, F., Siegrist, W., Drodz, R., Girard, J., and Eberle, A. N. (1989) The receptor for a—melanotropin of mouse and human melanoma cells: Application of a potent photoaffinity label. J. Biol. Chem. 264, 14277–14281.PubMedGoogle Scholar
  51. 42.
    Dyer, J. K., Ahmed, A. R. H., Oliver, G. W. J., Poulton, C. W., and Haynes, L. W. (1993) Solubilization partial characterization of the a—MSH receptor on primary rat Schwann cells. FEBS Lett 336, 103–106.PubMedCrossRefGoogle Scholar
  52. 43.
    Solca, F. F., Chluba—de Tapia, J., Iwata, K., and Eberle, A. N. (1993) B16—G4F mouse melanoma cells: an MSH receptor—deficient cell clone. FEBS Lett. 322, 177–180.Google Scholar
  53. 44.
    Wong, G. and Pawelek, J. (1973) Control of phenotypic expression of cultured melanoma cells by melanocyte stimulating hormones. Nature New Biol. 241, 213–216.PubMedCrossRefGoogle Scholar
  54. 45.
    Huang, Q.—H., Entwistle, M. L., Alvaro, J. D., Duman, R. S., Hruby, V. J., and Tatro, J. B. (1997) Antipyretic role of endogenous melanocortins mediated by central melanocortin receptors during endotoxin—induced fever. J. Neurosci. 17, 3343–3351.PubMedGoogle Scholar
  55. 46.
    Adan, R. A. H., van der Kraan, M., Doorngos, R. P., Bar, P. R., Burbach, J. P. H., and Gispen, W. H. (1996) Melanocortin receptors mediate a—MSH—induced stimulation of neurite outgrowth in Neuro 2A cells. Mol. Brain Res. 36, 37–44.PubMedCrossRefGoogle Scholar
  56. 47.
    Cholewinski, A. J. and Wilkin G. P. (1988) Astrocytes from forebrain, cerebellum, and spinal cord differ in their responses to vasoactive intestinal peptide. J. Neurochem. 51, 1626–1633.PubMedCrossRefGoogle Scholar
  57. 48.
    Van Calker, D., Loffler, F., and Hamprecht, B. (1983) Corticotropin peptides and melanotropins elevate the level of adenosine 3’:5’-cyclic monophosphate in cultured murine brain cells. J Neurochem. 40, 418–427.PubMedCrossRefGoogle Scholar
  58. 49.
    Zohar, M. and Salomon, Y. (1992) Melanocortins stimulate proliferation and induce morphological changes in cultured rat astrocytes by distinct transducing mechanisms. Brain Res. 576, 49–58.PubMedCrossRefGoogle Scholar
  59. 50.
    Riedy, M. C., Timm, E. A. J., and Stewart, C. C. (1995) Quantitative RT-PCR for measuring gene expression. BioTechniques 18, 70–76.PubMedGoogle Scholar
  60. 51.
    Emson, P. C. (1993) In-situ hybridization as a methodological tool for the neuroscientist. Trends Neurosci. 16, 9–16.PubMedCrossRefGoogle Scholar
  61. 52.
    Griffon, N., Mignon, V., Facchinetti, P., Diaz, J., Schwartz, J., and Sokoloff, P. (1994) Molecular cloning and characterization of the rat fifth melancortin receptor. Biochem. Biophys. Res. Commun. 200, 1007–1014.PubMedCrossRefGoogle Scholar
  62. 53.
    Vilaró, M. T., Palacios, J. M., and Mengod, G. (1995) Neurotransmitter receptor histochemistry: the contribution of in situ hybridization. Life Sci. 57, 1141–1154.PubMedCrossRefGoogle Scholar
  63. 54.
    Désy, L. and Pelletier, G. (1978) Immunohistochemical localization of alphamelanocyte stimulating hormone (a-MSH) in the human hypothalamus. Brain Res. 154, 377–381.PubMedCrossRefGoogle Scholar
  64. 55.
    Pilcher, W. H., Joseph, S. A., and McDonald, J. V. (1988) Immunocytochemical localization of pro-opiomelanocortin neurons in human brain areas subserving stimulation analgesia. J. Neurosurg. 68, 621–629.PubMedCrossRefGoogle Scholar
  65. 56.
    Ibuki, T., Okamura, H., Miyazaki, M., Yanaihara, N., Zimmerman, E. A., and Ibata, Y. (1989) Comparative distribution of three opioid systems in the lower brainstem of the monkey (Macaca fuscata). J. Comp. Neurol. 279, 445–456.PubMedCrossRefGoogle Scholar
  66. 56a.
    Elias, C. F., Saper, C. B., Maratos-Flier, E., Tritos, N. A., Lee, C., Kelly, J., Tatro, J. B., Hoffman, G. E., Ollman, M. M., Barsh, G. S., Sakurai, T., Yanagisawa, M., and Elmquist, J. K. (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J. Comparative Neurol. 402, 442–459.CrossRefGoogle Scholar
  67. 56b.
    Mihaly, E., Fekete, C., Liposits, Z., Stopa, E. G., and Lechan, R. M. (1999) Hypophysiotrophic thyrotropin-releasing hormone-synthesizing neurons of the human hypothalamus are innervated by axons containing neuropeptide Y and agouti-related protein. Soc. Neurosci. Abstr. 25, 1690.Google Scholar
  68. 57.
    Gantz, I., Kondaf, Y., Tashiro, T., Shimoto, Y., Miwa, H., Munzert, G., Watson, S. J., DelValle, J., and Yamada, T. (1993) Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268, 8248–8250.Google Scholar
  69. 58.
    Gantz, I., Miwa, H., Konda, Y., Shimoto, Y., Tashiro, T., Watson, S. J., DelValle, J., and Yamada. T. (1993) Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268, 15174–15179.PubMedGoogle Scholar
  70. 59.
    O’Donohue, T. L., Miller, R. L., and Jacobowitz, D. M. (1979) Identification, characterization and stereotaxic mapping of intraneuronal a-melanocyte stimulating hormone-like immunoreactive peptides in discrete regions of the rat brain. Brain Res. 176, 101–123.PubMedCrossRefGoogle Scholar
  71. 60.
    Palkovits, M., Mezey, E., and Eskay, R. L. (1987) Pro-opiomelanocortin-derived peptides (ACTH/ß-endorphin/alpha-MSH) in brainstem baroreceptor areas of the rat. Brain Res. 436, 323–328.PubMedCrossRefGoogle Scholar
  72. 61.
    Bronstein, D. M., Schafer, M. K. H., Watson, S. J., and Akil, H. (1992) Evidence that (3-endorphin is synthesized in cells in the nucleus tractus solitarius: detection of POMC mRNA. Brain Res. 587, 269–275.PubMedCrossRefGoogle Scholar
  73. 62.
    Joseph, S. A. (1980) Immunoreactive adrenocorticotropin in rat brain: a neuroanatomical study using antiserum generated against synthetic ACTH1_39. Am. J. Anat. 158, 533–548.PubMedCrossRefGoogle Scholar
  74. 63.
    Romagnano, M. A. and Joseph, S. A. (1983) Immunocytohemical localization of ACTH 1–39 in the brainstem of the rat. Brain Res. 276, 1–16.PubMedCrossRefGoogle Scholar
  75. 64.
    Yamazoe, M., Shiosaka, S., Yagura, A., Kawai, Y., Shibasaki, T., Ling, N., and Tohyama, M. (1984) The distribution of a-melanocyte stimulating hormone (aMSH) in the central nervous system of the rat: An immunohistochemical study. II. Lower brain stem. Peptides 5, 721–727.PubMedCrossRefGoogle Scholar
  76. 65.
    Tatro, J. B. and Entwistle, M. L. (1997) Distribution of melanocortin receptors in the rat spinal cord. Soc. Neurosci. Abstr. 23, 1492.Google Scholar
  77. 66.
    Klemcke, H. G. and Pond, W. G. (1990) Porcine adrenal adrenocorticotropic hormone receptors: characterization, changes during neonatal development, and response to a stressor. Endocrinology 128, 2476–2488.CrossRefGoogle Scholar
  78. 67.
    Mountjoy, K. G., Mortrud, M. T., Low, M. J., Simerly, R. B., and Cone, R. D. (1994) Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8, 1298–1308.PubMedCrossRefGoogle Scholar
  79. 68.
    Lichtensteiger, W. and Monnet, F. (1979) Differential response of dopamine neurons to a-melanotropin and analogues in relation to their behavioral potency. Life Sci. 25, 2079–2087.PubMedCrossRefGoogle Scholar
  80. 69.
    Schiöth, H. B., Muceniece, R., Wikberg, J. E. S., and Chhajlani, V. (1995) Characterisation of melanocortin receptor subtypes by radioligand binding analysis. Eur. J. Pharmacol. 288, 311–317.PubMedCrossRefGoogle Scholar
  81. 70.
    Schiöth, H. B., Muceniece, R., and Wikberg, J. E. S. (1996) Characterisation of the melanocortin 4 receptor by radioligand binding. Pharmacol. Toxicol. 79, 161–165.PubMedCrossRefGoogle Scholar
  82. 71.
    Mountjoy, K. G. and Wild, J. M. (1998) Melanocortin-4 receptor mRNA expression in the developing autonomic and central nervous systems. Brain Res. Del/. Brain Res. 107, 309–314.CrossRefGoogle Scholar
  83. 72.
    Chen, W., Kelly, M. A., Opitz-Araya, X., Thomas, R. E., Low, M. J., and Cone, R. D. (1997) Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell 91, 789–798.PubMedCrossRefGoogle Scholar
  84. 73.
    Van der Kraan, M., Adan, R. A. H., Entwistle, M. E., Gispen, W. H., Burbach, J. P. H., and Tatro, J. B. (1998) Expression of melanocortin 5 receptor in secretory epithelia supports a functional role in exocrine and endocrine glands. Endocrinology 139, 2348–2355.PubMedCrossRefGoogle Scholar
  85. 74.
    Fathi, Z., Iben, L. G., and Parker, E. M. (1995) Cloning, expression, and tissue distribution of a fifth melanocortin receptor subtype. Neurochem. Res. 20, 107–113.PubMedCrossRefGoogle Scholar
  86. 75.
    Cone, R. D., Mountjoy, K. G., Robbins, L. S., Nadeau, J. H., Johnson, K. R., Roselli-Rehfuss, L., and Mortrud, M. T. (1993) Cloning and functional characterization of a family of receptors for the melanotropic peptides. Ann. N. Y. Acad. Sci. 680, 342–363.PubMedCrossRefGoogle Scholar
  87. 76.
    Xia, Y., Wikberg, J. E. S., and Chhajlani, V. (1995) Expression of melanocortin 1 receptor in periaqueductal gray matter. NeuroReport 6, 2193–2196.PubMedCrossRefGoogle Scholar
  88. 77.
    Rajora, N., Boccoli, G., Burns, D., Sharma, S., Catania, A. P., and Lipton, J. M. (1997) A-MSH modulates local and circulating tumor necrosis factor-a in experimental brain inflammation. J. Neurosci. 17, 2181–2186.PubMedGoogle Scholar
  89. 78.
    Li, S.-J., Varga, K., Archer, P., Hruby, V. J., Sharma, S. D., Kesterson, R. A., Cone, R. D., and Kunos, G. (1996) Melanocortin antagonists define two distinct pathways of cardiovascular control by a-and y-melanocyte-stimulating hormones. J. Neurosci. 16, 5182–5188.PubMedGoogle Scholar
  90. 79.
    Seeley, R. J., Yagaloff, K. A., Fisher, S. L., Burn, P., Thiele, T. E., van Dijk, G., Baskin, D. G., and Schwartz, M. W. (1997) Melanocortin receptors in leptin effects. Nature 390, 349.PubMedCrossRefGoogle Scholar
  91. 80.
    Huszar, D., Lynch, C. A., Fairchild-Huntress, V., Dunmore, J. H., Fang, Q., Berkemeier, L. R., Gu, W., Kesterson, R. A., Boston, B. A., Cone, R. D., Smith, F. J., Campfield, L. A., Burn, P., and Lee, F. (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141.PubMedCrossRefGoogle Scholar
  92. 81.
    Yen, T. T., Gill, A. M., Frigeri, L. G., Barsh, G. S., and Wolff, G. L. (1994) Obesity, diabetes, and neoplasia in yellow AvY1- mice: ectopic expression of the agouti gene. FASEB J. 8, 479–488.PubMedGoogle Scholar
  93. 82.
    Oilman, M. M., Wilson, B. D., Yang, Y.-K., Kerns, J. A., Chen, Y., Gantz, I., and Barsh, G. S. (1998) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138.CrossRefGoogle Scholar
  94. 83.
    Shiosaka, S., Shibasaki, T., and Tohyama, M. (1984) Bilateral a-melanocyte stimulating hormonergic fiber system from zona incerta to cerebral cortex: combined retrograde axonal transport and immunohistochemical study. Brain Res 309, 350–353.PubMedCrossRefGoogle Scholar
  95. 84.
    Kohler, C. and Swanson, L. W. (1984) Acetylcholinesterase-containing cells in the lateral hypothalamic area are immunoreactive for a-melanocyte stimulating hormone and have cortical projections in te rat. Neurosci. Lett 49, 39–43.PubMedCrossRefGoogle Scholar
  96. 85.
    Watson, S. J. and Akil, H. (1980) a-MSH in rat brain: occurrence within and outside of [3-endorphin neurons. Brain Res. 182, 217–223.Google Scholar
  97. 86.
    Khachaturian, H., Akil, H., Brownstein, M. J., Olney, J. W., Voigt, K. H., and Watson, S. J. (1986) Further characterization of the extra-arcuate alpha-melanocyte stimulating hormone-like material in hypothalamus: biochemical and anatomical studies. Neuropeptides 7, 291–313.PubMedCrossRefGoogle Scholar
  98. 87.
    Nahon, J. L., Presse, F., Bittencourt, J. C., Sawchenko, P. E., and Vale W. (1990) The rat melanin-concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus. Endocrinology 125, 2056–2065.CrossRefGoogle Scholar
  99. 88.
    Oldfield, B. J. and McKinley, M. J. (1995) Circumventricular organs. in The Rat Nervous System, 2nd ed. ( Paxinos, G., ed.), Academic Press, New York, pp. 391–403.Google Scholar
  100. 90.
    Wilson, J. F. (1988) Low permeability of the blood-brain barrier to nanomolar concentrations of immunoreactive alpha-melanotropin. Psychopharmacology (Berl) 96, 262–266.CrossRefGoogle Scholar
  101. 91.
    Banks, W. A. and Kastin, A. J. (1995) Permeability of the blood-brain barrier to melanocortins. Peptides 16, 1157–1161.PubMedCrossRefGoogle Scholar
  102. 92.
    Tatro, J. B. (1996) Receptor biology of the melanocortins, a family of neuroimmunomodulatory peptides. Neuroimmunomodulation 3, 259–284.PubMedCrossRefGoogle Scholar
  103. 93.
    Jolles, J., Wiegant, V. M., and Gispen, W. H. (1978) Inhibition of behavioral effect of ACTH (1–24) and opioids by repeated administration. Neurosci. Lett 9, 261–266.PubMedCrossRefGoogle Scholar
  104. 94.
    Xia, Y., and Wikberg, J. E. S. (1997) Postnatal expression of melanocortin-3 receptor in rat diencephalon and mesencephalon. Neuropharmacology 36, 217–224.PubMedCrossRefGoogle Scholar
  105. 95.
    Khatchaturian, H., Lewis, M. E., Alessi, N. E., and Watson, S. J. (1985) Time of origin of opioid—containing neurons in the rat hypothalamus. J. Comp. Neurol. 236, 538–546.CrossRefGoogle Scholar
  106. 96.
    Kawai, Y., Shibasaki, T., Ling, N., and Tohyama, M. (1986) Ontogeny of y—melanocyte stimulating hormone in the brain and hypohysis of the rat: an immunohistochemical analysis. Dey. Brain Res. 28, 177–193.CrossRefGoogle Scholar
  107. 97.
    Alvaro, J. D., Tatro, J. B., and Duman, R. S. (1997) Melanocortins and opiate addiction. Life Sci. 61, 1–9.PubMedCrossRefGoogle Scholar
  108. 98.
    Alvaro, J. D., Entwistle, M. L., Tatro, J. B., and Duman, R. S. (1996) Chronic cocaine administration increases melanocortin 4—receptor mRNA expression in rat striatum. Soc. Neurosci. Abstr. 22, 80.Google Scholar
  109. 99.
    Strand, F. L., Zuccarelli, L. A., Williams, K. A., Lee, S. J., Lee, T. S., Antonawich, F. J., and Alves, S. E. (1993) Melanotropins as growth factors. Ann. N. Y. Acad. Sci. 680, 29–50.PubMedCrossRefGoogle Scholar
  110. 100.
    Hol, E. M., Gispen, W. H., and Bär, P. R. (1995) ACTH—related peptides: receptors and signal transduction systems involved in their neurotrophic and neuroprotective actions. Peptides 16, 979–993.PubMedCrossRefGoogle Scholar
  111. 101.
    Mountjoy, K. G., Guan, J., Elia, C. J., Sirimanne, E. S., and Williams, C. E. (1999) Melanocortin-4 receptor messenger RNA expression is up-regulated in the non-damaged striatum following unilateral hypoxic-ischaemic brain injury. Neuroscience 89, 183–190.PubMedCrossRefGoogle Scholar
  112. 101a.
    Van der Kraan, M., Tatro, J. B., Entwistle, M. L., Brakkee, J. H., Burbach, J. P. H., Adan, R. A. H., and Gispen, W. H. (1999) Expression of melanocortin 4 receptors and pro-opiomelanocortin in the rat spinal cord in relation to neurotrophic effects of melanocortins. Mol. Brain Res. 63, 276–286.Google Scholar
  113. 102.
    Kiss, J. Z. and Williams, T. H. (1983) ACTH—immunoreactive boutons form synaptic contacts in the hypothalamic arcuate nucleus of rat: evidence for local opiocortin connections. Brain Res. 263, 142–146.PubMedCrossRefGoogle Scholar
  114. 103.
    Lu, D., Willard, D., Patel, I. R., Kadwell, S., Overton, L., Kost, T., Luther, M., Chen, W., Woychik, R. P., Wilkison, W. O., and Cone, R. D. (1994) Agouti protein is an antagonist of the melanocyte—stimulating—hormone receptor. Nature 371, 799.PubMedCrossRefGoogle Scholar
  115. 104.
    Shutter, J. R., Graham, M., Kinsey, A. C., Scully, S., Luthy, R., and Stark, K. L. (1997) Hypothalamic expression of ART, a novel gene related to agouti, is up—regulated in obese and diabetic mutant mice. Genes Dey. 11, 593–602.CrossRefGoogle Scholar
  116. 104a.
    Cowley, M. A., Pronchuk, N., Fan, W., Dinulescu, D. M., Colmers, W. F., and Cone, R. D. (1999) Integration of NPY, AgRP, and melanocortin signals in the hypothalmic paraventricular nucleus: Evidence of a cellular basis for the adipostat. Neuron 24, 155–163.PubMedCrossRefGoogle Scholar
  117. 104b.
    Satoh, N., Ogawa, Y., Katsuura, G., Numata, Y., Masuzaki, H., Yoshimasa, Y., and Nakao, K. (1998) Satiety effect and sympathetic activation of leptin are mediated by hypothalamic melanocortin system. Neurosci. Lett. 249, 107–110.PubMedCrossRefGoogle Scholar
  118. 104c.
    Patterson, T. A., Hedde, J. R., She, L., Newsome, W. P., and Cornelius, P. (1999) Chronic infusion of a melanocortin agonist causes weight loss due to decreased food intake and increased metabolic rate. Soc. Neurosci. Abstr. 25, 618.Google Scholar
  119. 104d.
    Elmquist, J. K., Elias, C. F., and Saper, C. B. (1999) From lesions to leptin: Hypothalamic control of food intake and body weight. Neuron 22, 221–232.PubMedCrossRefGoogle Scholar
  120. 104e.
    Elias, C. F., Lee, C., Kelly, J., Aschkenasi, C., Ahima, R. S., Couceyro, P. R., Kuhar, M. J., Saper, C. B., and Elmquist, J. K. (1998) Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21, 1375–1385.PubMedCrossRefGoogle Scholar
  121. 104f.
    Legradi, G. and Lechan, R. M. (1999) Agouti-related protein containing nerve terminals innervate thyrotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinol. 140, 3643–3652.CrossRefGoogle Scholar
  122. 105.
    Abou—Mohamed, G., Papapetropoulos, A., Ulrich, D., Catravas, J. D., Tuttle, R. R., and Caldwell, R. W. (1995) HP-228, a novel synthetic peptide, inhibits the induction of nitric oxide synthase in vivo but not in vitro. J. Pharmacol. Exp. Ther. 275, 584–591.Google Scholar
  123. 106.
    Corcos, I., Thompson, E. E., Omholt, P., Lee, M. D., McPherson, S., McDowell, R., Houghten, R., and Girten, B. (1997) HP-228 is a potent agonist of melanocortin receptor 4, and significantly attenuates obesity and diabetes in Zucker fatty rats. Soc. Neurosci. Abstr. 23, 673.Google Scholar
  124. 107.
    Hopkins, S. J. and Rothwell, N. J. (1995) Cytokines and the nervous system I: expression and recognition. Trends Neurosci. 18, 83–88.PubMedCrossRefGoogle Scholar
  125. 108.
    Rothwell, N. J. and Hopkins, S. J. (1995) Cytokines and the nervous system II: actions and mechanisms of action. Trends Neurosci. 18, 130–136.PubMedCrossRefGoogle Scholar
  126. 109.
    Patterson, P. H. (1995) Cytokines in Alzheimer’s disease and multiple sclerosis. Curr. Opin. Neurobiol. 5, 642–646.PubMedCrossRefGoogle Scholar
  127. 110.
    Hruby, V. J., Lu, D., Sharma, S.D., Castrucci, A. L., Kesterson, R. A., Al—Obeidi, F. A., Hadley, M. E., and Cone, R. D. (1995) Cyclic lactam a—melanotropin analogues of Ac—Nle4—cyclo[Asp5, D—Phe7, Lys10]— a—melanocyte—stimulating hormone(4–10)—NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors. J. Med. Chem. 38, 3454–3461.Google Scholar
  128. 110a.
    Tatro, J. B., Huszar, D., Fairchild-Huntress, V., and Huang, Q.-H. (1999) Role of the melanocortin-4 receptor in thermoregulatory responses to central IL1 p. Soc. Neurosci. Abstr. 25, 1558.Google Scholar
  129. 110b.
    Huang, Q. H., Hruby, V. J., and Tatro, J. B. (1999) Role of central melanocortins in endotoxin-induced anorexia. Am. J. Physiol. 276, R864–71.PubMedGoogle Scholar
  130. 111.
    Kobobun, K., O’Donohue, T. L., Handelman, G. E., Sawyer, T. K., Hruby, V. J., and Hadley, M. E. (1983) Behavioral effects of [4—norleucine, 7—D—phenylalanine]—a—melanocyte—stimulating hormone. Peptides 4, 721–724.PubMedCrossRefGoogle Scholar
  131. 112.
    Kawai, Y., Inagaki, S., Shiosaka, S., Shibasaki, T., Ling, N., Tohyama, M., and Shiotani, Y. (1984) The distribution and projection of y—melanocyte stimulating hormone in the rat brain: an immunohistochemical analysis. Brain Res. 297, 21–32.PubMedCrossRefGoogle Scholar
  132. 113.
    Swanson, L. W. (1992) Brain maps: Structure of the Rat Brain. Elsevier, New York.Google Scholar
  133. 114.
    Elmquist, J. K., Scammell, T. E., Jacobson, C. D., and Saper, C. B. (1996) Distribution of fos—like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. J. Comp. Neurol. 371, 85–103.PubMedCrossRefGoogle Scholar
  134. 115.
    Uehara, Y., Shimizu, H., Sato, N., Tanaka, Y., Shimomura, Y., and Mori, M. (1992) Carboxy-terminal tripeptide of alpha-melanocyte-stimulating hormone antagonizes interleukin-1 induced anorexia. Eur. J. Pharmacol. 220, 119–122.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Jeffrey B. Tatro

There are no affiliations available

Personalised recommendations