Advertisement

Peripheral Effects of Melanocortins

  • Bruce A. Boston
Chapter
Part of the The Receptors book series (REC)

Abstract

Peptides derived from the proopiomelanocortin (POMC) prohormore precursor have been implicated in a wide variety of biologic functions since its discovery in 1977 (1,2), and the cloning of the POMC gene in 1979 (3). Some of the peptides derived from POMC are classified as melanocortins because of their ability to stimulate eumelanogenesis in the melanocyte or to stimulate steroid production in the adrenocortical cell. Although the two most thoroughly studied of the melanocortin biologic functions are adrenocorticotropic hormone (ACTH) stimulation of adrenal steroidogenesis and melanocyte stimulating hormone (MSH) stimulation of eumelanin production, numerous other effects of these peptides have been reported. Melanocortins have been implicated in the regulation of feeding and grooming behavior, learning and memory, thermogenesis, neural regeneration, metabolism, inflammmation, exocrine gland function, and natriuresis (54,79,115,127,134). Many of these alterations in biologic function are clearly mediated via melanocortin receptors in the central nervous system, while others are mediated at least partially by melanocortin receptors in the periphery. In this chapter, we discuss aspects of melanocortin function other than melanogenesis and steroidogenesis that appear to be at least partially a result of interaction with peripheral melanocortin receptors.

Keywords

Insulin Secretion Sertoli Cell Lacrimal Gland Sebaceous Gland Peripheral Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mains, R. E., Eipper, B. A., and Ling, N. (1977) Common precursor to corticotropins and endorphins. Proc. Natl. Acad. Sci. U.S.A. 74, 3014–3018.PubMedCrossRefGoogle Scholar
  2. 2.
    Roberts, J. L. and Herbert, E. (1977) Characterization of a common precursor to corticotropin and beta-lipotropin, cell-free synthesis of the precursor and identification of corticotropin peptides in the molecule. Proc. Natl. Acad. Sci. U.S.A. 74, 4826–4830.PubMedCrossRefGoogle Scholar
  3. 3.
    Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C., Cohen, S. N., and Numa, S. (1979) Nucleotide sequence of cloned cDNA for bovine corticotropinbeta-lipotropin precursor. Nature 278, 423–427.PubMedCrossRefGoogle Scholar
  4. 4.
    Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., and Cone, R. C. (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257, 543–546.CrossRefGoogle Scholar
  5. 5.
    Barret, P., MacDonald, A., Helliwell, R., Davidson, G., and Morgan, P. (1994) Cloning and expression of a new member of the melanocyte-stimulating hormone receptor family. J. Mol. Endocrinol. 12, 203–213.CrossRefGoogle Scholar
  6. 6.
    Chhajlani, V. and Wikberg, J. E. S. (1992) Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett. 309, 417–420.PubMedCrossRefGoogle Scholar
  7. 7.
    Roselli-Rehfuss, L., Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., Low, M. J., and Simerly, R. R. D. C. (1993) Identification of a receptor for y-MSH and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl. Acad. Sci. U. S. A. 90, 8856–8860.PubMedCrossRefGoogle Scholar
  8. 8.
    Gantz, I., Konda, Y., Tashiro, T., Shimoto, Y., Miwa, H., Munzert, G., Watson, S. J., DelValle, J., and Yamada, T. (1993) Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268, 8246–8250.PubMedGoogle Scholar
  9. 9.
    Gantz, I., Miwa, H., Konda, Y., Shimoto, Y., Tashiro, T., Watson, S. J., DelValle, J., and Yamada, T. (1993) Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268, 15,174–15, 179.Google Scholar
  10. 10.
    Gantz, I., Shimoto, Y., Konda, Y., Miwa, H., Dickinson, C. J., and Yamada, T. (1994) Molecular cloning, expression, and characterization of a fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 200, 1214–1220.PubMedCrossRefGoogle Scholar
  11. 11.
    Chhajlani, V., Muceniece, R., and Wikberg, J. E. S. (1993) Molecular cloning of a novel human melanocortin receptor. Biochem. Biophys. Res. Commun. 195, 866–873.PubMedCrossRefGoogle Scholar
  12. 12.
    Desarnaud, F., Labbe, O., Eggerickx, D., Vassart, G., and Parmentier, M. (1994) Molecular cloning, functional expression and pharmacological characterization of a mouse melanocortin receptor gene. Biochem. J. 299, 367–373.PubMedGoogle Scholar
  13. 13.
    Labbe, O., Desarnaud, F., Eggerickx, D., Vassart, G., and Parmentier, M. (1994) Molecular cloning of a mouse melanocortin 5 receptor gene widely expressed in peripheral tissues. Biochemistry. 33, 4543–4549.PubMedCrossRefGoogle Scholar
  14. 14.
    Mountjoy, K. G., Mortrud, M. T., Low, M. J., Simerly, R. B., and Cone, R. D. (1994) Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8, 1298–1308.PubMedCrossRefGoogle Scholar
  15. 15.
    Griffon, N., Mignon, V., Facchinetti, P., Diaz, J., Schwartz, J.-C., and Sokoloff, P. (1994) Molecular cloning and characterization of the rat fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 200, 1007–1014.PubMedCrossRefGoogle Scholar
  16. 16.
    Boston, B. A. and Cone, R. D. (1996) Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3–L1 cell line. Enodcrinology 137, 2043–2050.CrossRefGoogle Scholar
  17. 17.
    Chhajlani, V. (1996) Distribution of cDNA for melanocortin receptor subtypes in human tissues. Biochem Mol. Biol. Int. 38, 73–80.PubMedGoogle Scholar
  18. 18.
    Fathi, Z., Lawerence, G. I., and Parker, E. M. (1995) Cloning, expression, and tissue distribution ofa fifth melanocortin receptor subtype. Neurochem. Res. 20, 107–113.PubMedCrossRefGoogle Scholar
  19. 19.
    Tatro, J. B. and Reichlin, S. (1987) Specific receptors for a-melanocyte-stimulating hormone are widely distributed in tissues of rodents. Endocrinology 121, 1900–1907.PubMedCrossRefGoogle Scholar
  20. 20.
    Sanchez-Franco, F., Patel, Y. C., and Reichlin, S. (1981) Immunoreactive adrenocorticotropin in the gastrointestinal tract and pancreatic islets of the rat. Endocrinology 108, 2235–2238.PubMedCrossRefGoogle Scholar
  21. 21.
    Orwoll, E. S. and Kendall, J. W. (1980) Beta-endorphin and adrenocorticotropin in extrapituitary sites:gastrointestinal tract. Endocrinology 107, 438–442.PubMedCrossRefGoogle Scholar
  22. 22.
    Tsong, S.-D., Phillips, D. M., Bardin, C. W., Halmi, N., Liotta, A. J., Margions, A., and Kreiger, D. T. (1982) ACTH and 13-endorphin related peptides are present in multiple sites in the reproductive tract of the rat. Endocrinology 110, 2204–2206.PubMedCrossRefGoogle Scholar
  23. 23.
    Saito, E. Iwasa, S., and Odell, W. D. (1983) Widespread presence of large molecular weight adrenocorticotropin-like substances in normal rat extrapituitary tissues. Endocrinology 113, 1010–1019.PubMedCrossRefGoogle Scholar
  24. 24.
    Larsson, L. I. (1977) Corticotropin-like peptides in central nerves and in endocrine cells of gut and pancreas. Lancet 2, (8052–8053) 1321–1323.CrossRefGoogle Scholar
  25. 25.
    Tanaka, I., Nakai, Y., and Nakao, K., (1982) Presence of immunoreactive y-melanocyte stimulating hormone, adrenocorticotropin, and I3-endorphin in human gastric antral mucosa. J. Clin. Endocrinol. Metab. 54, 392–396.PubMedCrossRefGoogle Scholar
  26. 26.
    Liotta, A., Osathanondh, R., and Krieger, D. T. (1977) Presence of ACTH in human placenta, Demonstration of in vitro synthesis. Endocrinology 101, 1552–1558.PubMedCrossRefGoogle Scholar
  27. 27.
    Lyons, P. D. and Blalock, J. E. (1995) The kinetics of ACTH expression in rat leukocyte subpopulations. J. Neuroimmunol. 63, 103–112.PubMedCrossRefGoogle Scholar
  28. 28.
    Borelli, M. I., Estivariz, F. E., and Gagliardino, J. J. (1996) Evidence for the paracrine action of islet-derived corticotropin-like peptides on the regulation of insulin release. Metabolism 45, 565–570.PubMedCrossRefGoogle Scholar
  29. 29.
    Wintzen, M., Yaar, M., Burbach, J. P. H., and Gilchrest, B. A. (1996) Proopiomelanocortin gene product regulation in keratinocytes. J. Invest. Dermatol. 106, 673–678.PubMedCrossRefGoogle Scholar
  30. 30.
    Genuth, S. and Lebovitz, H. E. (1965) Stimulation of insulin release by corticotropin. Endocrinology 76, 1093–1099.PubMedCrossRefGoogle Scholar
  31. 31.
    Westermeyer, V. W. and Raben, M. S. (1954) Fall in blood sugar from anterior pituitary extract. Endocrinology 54, 173–180.PubMedCrossRefGoogle Scholar
  32. 32.
    Engel, F. L., Fredericks, J., Lopez, E., and Albertson, T. (1958) Some extra-adrenal actions of corticotropin on carbohydrate metabolism in the rat. Endocrinology 63, 768–777.PubMedCrossRefGoogle Scholar
  33. 33.
    Engel, F. L. and Engel, M. G. (1945) The influence of corticotropin on ketonemia and glycemia in normal and adrenalectomized rats. Endocrinology 55, 845–856.CrossRefGoogle Scholar
  34. 34.
    Miller, W. L. and Krake, J. J. (1963) Effect of corticotropin on exhaled carbon dioxide of mice. Endocrinology 72, 518–522.CrossRefGoogle Scholar
  35. 35.
    Schatz, H., Maier, V., Hinz, H., Schleyer, M., Nierle, C., and Pfeiffer, E. F. (1973) Hypophysis and function of pancreatic islets. III. Secretion and biosynthesis of insulin in isolated pancreatic islets of intact and hypophysectomized rats in the presence of growth hormone, corticotrophin and human chorionic somatotrophin in vitro. Horm. Metab. Res. 5, 29–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Love, T. A., Sussman, K. E., and Timmer, R. F. (1965) The effect of adrenocorticotrophic hormone on plasma insulin and blood glucose in the adrenalectomized rat. Metabolism 14, 632–638.PubMedCrossRefGoogle Scholar
  37. 37.
    Lebovitz, H. E., Genuth, S., and Pooler, K. (1966) Relationships between the structure and biological activities of corticotropin and related peptides, hyperglycemic action of N-acetylated corticotropin and related peptides. Endocrinology 79, 635–642.PubMedCrossRefGoogle Scholar
  38. 38.
    Knudtzon, J. (1984) Alpha-melanocyte stimulating hormone increases plasma levels of glucagon and insulin in rabbits. Life Sci. 34, 547–554.PubMedCrossRefGoogle Scholar
  39. 39.
    Lesault, A., Elchinger, B., and Desbals, B. (1991) Circadian variations and extraadrenal effect of ACTH on insulinemia in rabbit. Horm. Metab. Res. 23, 461–464.PubMedCrossRefGoogle Scholar
  40. 40.
    Ohsawa, N., Kuzuya, T., Tanioka, T., Kanazawa, Y., Ibayashi, H., and Nakao, K. (1967) Effect of administration of ACTH on insulin secretion in dogs. Endocrinology 81, 925–927.PubMedCrossRefGoogle Scholar
  41. 41.
    Kitabchi, A. E., Jones, G. M., and Duckworth, W. C. (1973) Effect of hydrocortisone and corticotropin on glucose-induced insulin and proinsulin secretion in man. J. Clin. Endocrinol. Metab. 37, 79–84.PubMedCrossRefGoogle Scholar
  42. 42.
    Kasperlik-Zaluska, A. A. and Krassowski, J. (1980) Synthetic l-24ACTH-stimulated insulin release in bilaterally adrenalectomized patients. Horm. Res. 12, 10–15.PubMedCrossRefGoogle Scholar
  43. 43.
    Lundquist, T. and Rerup. C. (1967) Blood glucose level in mice. 3. On the nature of corticotrophin-induced hypoglycemia. Acta Endocrinol. 56, 713–725.PubMedGoogle Scholar
  44. 44.
    Axelrod, J. and Weinshilboum, R. (1972) Catecholamines. N. Eng. J. Med. 287, 237–242.CrossRefGoogle Scholar
  45. 45.
    Laborit, H., Baron, C., and Thuret, F. (1976) Action de l’ACTH sur le taux de norepinephrine plasmatique chez le lapin surrenalectomise. Agressologie 17, 27–32.PubMedGoogle Scholar
  46. 46.
    Fenske, M., Fuchs, E., and Probst, R. (1982) Corticosteroid and catecholamine plasma levels in rabbits stressed repeatedly by exposure to a novel environment or by injection of (1–24) ACTH or insulin. Acta Endocrinol. Suppl. 246, 110.Google Scholar
  47. 47.
    Knudtzon, J. (1984) Acute in-vivo effects of adrenocorticotrophin on plasma levels of glucagon, insulin, glucose, and free fatty acids in rabbits, involvement of the alpha-adrenergic nervous system. J. Endocrinol. 100, 345–352.PubMedCrossRefGoogle Scholar
  48. 48.
    Rees, L. H., Cook, D. M., Kendell, J. W., Allen, C. F., Kramer, R. M., Ratcliffe, J. G., and Knight, R. A. (1971) A radioimmunoassay for rat plasms ACTH. Endocrinology 89, 254–261.PubMedCrossRefGoogle Scholar
  49. 49.
    Hummel, A., Lendeckel, U., and Hahn, V. (1992) Presence and regulation of a truncated proopiomelanocortin gene transcript in rat pancreatic islets. Biol. Chem. Hoppe-Seyler 373, 1039–1044.PubMedCrossRefGoogle Scholar
  50. 50.
    Gremlich, S., Roduit, R., and Thorens, B. (1997) Dexamethasone induces post-translational degradation of GLUT2 and inhibition of insulin secretion in isolated pancreatic beta cells. comparison with the effects of fatty acids. J. Biol. Chem. 272, 3216–3222.PubMedCrossRefGoogle Scholar
  51. 51.
    Lambillotte, C., Gilon, P., and Henquin, J. C. (1997) Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J. Clin. Invest. 99, 414–423.PubMedCrossRefGoogle Scholar
  52. 52.
    Beloff-Chain, A., Edwardson, J. A., and Hawthorn, J. (1975) Influence of the pituitary gland on insulin secretion in the genetically obese (ob/ob) mouse. J. Endocrinol. 65, 109–116.PubMedCrossRefGoogle Scholar
  53. 53.
    Bailey, C. J. and Flatt, P. R. (1987) Insulin releasing effects of adrenocorticotropin (ACTH 1–39) and ACTH fragments (1–24 and 18–39) in lean and genetically obese hyperglycaemic (OB/OB) mice. Int. J. Obesity 11, 175–181.Google Scholar
  54. 54.
    Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J., and Cone, R. D. (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 384, 165–168.CrossRefGoogle Scholar
  55. 55.
    Shimizu, H., Tanaka, Y., Sato, N., and Mori, M. (1995) a-melanocyte-stimulating hormone (MSH) inhibits insulin secretion in HIT-T 15 cells. Peptides 16, 605–608.Google Scholar
  56. 56.
    Boston, B. A. Blaydon, K. M. Varnerin, J., and Cone, R. D. (1997) Independent and additive effects of central POMC and leptin pathways on murine obesity. Science 278, 1641–1644.PubMedCrossRefGoogle Scholar
  57. 57.
    Bloom, S. R., Edwards, A. V., and Hardy, R. N. (1978) The role of the autonomic nervous system in the control of glucagon, insulin and pancreatic polypeptide release from the pancreas. J. Physiol. 280, 9–23.PubMedGoogle Scholar
  58. 58.
    Lafontan, M. and Agid, R. (1979) An extra-adrenal action of adrenocorticotrophin, physiological induction of lipolysis by secretion of adrenocorticotrophin in obese rabbits. J. Endocrinol. 81, 281–290.PubMedCrossRefGoogle Scholar
  59. 59.
    Richter, W. O. and Schwandt, P. (1983) In vitro lipolysis of proopiocortin peptides. Life Sci. 33, 747–750.PubMedCrossRefGoogle Scholar
  60. 60.
    Schotz, M. C., Masson, G. M. C., and Page, I. N. (1959) ACTH in vitro on release of nonesterified fatty acids from adipose tissue of adrenalectomized rats. Proc. Soc. Exp. Biol. Med. 101, 159–161.PubMedGoogle Scholar
  61. 61.
    Braun, T. and Hechter, O. (1970) Glucocorticoid regulation of ACTH sensitivity of adenyl cyclase in rat fat cell membranes. Proc. Natl. Acad. Sci. U. S. A. 66, 995–1001.PubMedCrossRefGoogle Scholar
  62. 62.
    Spirovski, M. Z., Kovacev, V.P., Spasovska, M., and Chernick, S. S. (1975) Effect of ACTH on lipolysis in adipose tissue of normal and adrenalectomized rats in vivo. Am. J. Physiol. 228, 382–385.PubMedGoogle Scholar
  63. 63.
    Oelofsen, W. and Ramachandran, J. (1983) Studies of corticotropin receptors on rat adipocytes. Arch. Biochem. Biophys. 225, 414–421.PubMedCrossRefGoogle Scholar
  64. 64.
    Ramachandran, J. and Lee, V. (1976) Divergent effects of adrenocorticotropin and melanotropin on isolated rat and rabbit adipocytes. Biochim. Biophys. Acta 428, 339–346.PubMedCrossRefGoogle Scholar
  65. 65.
    Ramachandran, J., Farmer, S. W., Liles, S., and Li, C. H. (1976) Comparison of the steroidogenic and melanotropic activities of corticotropin, alpha-melanotropin, and analogs with their lipolytic activities in rat and rabbit adipocytes. Biochim. Biophys. Acta 428, 347–354.PubMedCrossRefGoogle Scholar
  66. 66.
    White, J. E. and Engel, F. L. (1958) Lipolytic action of corticotropin on rat adipose tissue in vitro. J. Clin. Invest. 37, 1556–1563.PubMedCrossRefGoogle Scholar
  67. 67.
    Cornelius, P., MacDougald, O. A., and Lane, M. D. (1994) Regulation of adipocyte development. Anna. Rev. Nutr. 14, 99–129.CrossRefGoogle Scholar
  68. 68.
    Richter, W. O. and Schwandt, P. (1987) Lipolytic potency of proopiomelanocorticotropin peptides in vitro. Neuropeptides 9, 59–74.PubMedCrossRefGoogle Scholar
  69. 69.
    Glyn, J. R. and Lipton, J. M. (1981) Hypothermic and antipyretic effects of centrally administered ACTH (1–24) and a-melanotropin. Peptides 2, 177–187.PubMedCrossRefGoogle Scholar
  70. 70.
    Murphy, M. T., Richards, D. B., and Lipton, J. M. (1983) Anitpyretic potency of centrally administered a-melanocyte stimulating hormone. Science 221, 192–193.PubMedCrossRefGoogle Scholar
  71. 71.
    Martin, L. W. and Lipton, J. M. (1990) Acute phase response to endotoxin, rise in plasma a-MSH and effects of a-MSH injection. Am. J. Physiol. 259, R768 - R772.PubMedGoogle Scholar
  72. 72.
    Opp, M. R., Obal, F., Krueger, J. M. (1988) Effects of a-MSH on sleep, behavior, and brain temperature, interactions with IL-1. Am. J. Physiol. 255, R914 - R922.PubMedGoogle Scholar
  73. 73.
    Davidson, J., Milton, A. S., and Rotondo, D. (1992) α-Melanocyte stimulating hormone suppresses fever and increases in plasma levels of prostaglandin E2. J. Physiol. 451, 491–502.Google Scholar
  74. 74.
    Robertson, B., Dostal, K., and Daynes, R. (1988) Neuropeptide regulation of inflammatory and immunologic responses. J. Immunol. 140, 4300–4307.PubMedGoogle Scholar
  75. 75.
    Martin, L. W., Cantania, A., Hiltz, M. E., and Lipton, J. M. (1991) Neuropeptide a-MSH antagonizes IL-6 and TNF induced fever. Peptides 12, 297–299.PubMedCrossRefGoogle Scholar
  76. 76.
    Shih, S. T., Khorram, O., Lipton, J. M., and McCann, S. M. (1986) Central administration of a-MSH antiserum augments fever in the rabbit. Am. J. Physiol. 250, R803 - R806.PubMedGoogle Scholar
  77. 77.
    Samson, W. K., Lipton, J. M., and Zimmer, J. A. (1981) The effect of fever on central alpha-MSH concentration in the rabbit. Peptides 2, 419–423.PubMedCrossRefGoogle Scholar
  78. 78.
    Holdeman, M., Khorram, O., Samson, W. K., and Lipton, J. M. (1985) Fever-specific changes in MSH and CRF concentrations. Am. J. Physiol. 248, R125 - R129.PubMedGoogle Scholar
  79. 79.
    Lipton, J. M. (1989) Neuropeptide alpha-melanocyte stimulating hormone in control of fever, the acute phase response and inflammation., in Neuroimmune Networks, Physiology and Diseases., Goetzl, E. and Spector, N. H. (eds.) Liss, New York. pp. 243–250.Google Scholar
  80. 80.
    Hiltz, M. E. and Lipton, J. M. (1990) Alpha-MSH peptides inhibit acute inflammation and contact hypersensitivity. Peptides 11, 972–982.CrossRefGoogle Scholar
  81. 81.
    Chiao, H., Foster, S., Thomas, R., Lipton, J., and Star, R. A. (1996) a-Melanocytestimulating hormone reduces endotoxin-induced liver inflammation. J. Clin. Invest. 97, 2038–2044.Google Scholar
  82. 82.
    Lipton, J. M., Ceriani, G., Macaluso, A., McCoy, D., Carnes, K., Blitz, J., and Catania, A. (1994) Antiinflammatory effects of the neuropeptide a-MSH in acute, chronic and systemic inflammation. N. Y. Acad. Sci. 741, 137–148.CrossRefGoogle Scholar
  83. 83.
    Grabbe, S., Bhardwaj, R. S., Mahnke, K., Simon, M. M., Schwarz, T., and Luger, T. A. (1996) α-Melanocyte-stimulating hormone induces hapten-specific tolerance in mice. J. Immunology 156, 473–478.Google Scholar
  84. 84.
    Ceriani, G., Diaz, J., Murphree, S., Catania, A., and Lipton, J. M. (1994) The neuropeptide a-MSH inhibits experimental arthritis in rats. Neurooimmunomodulation 1, 28–32.CrossRefGoogle Scholar
  85. 85.
    Lipton, J. M. and Catania, A. (1997) Anti-inflammatory actions of the neuroimmunomodulator a-MSH. Immunol. Today 18, 140–145.PubMedCrossRefGoogle Scholar
  86. 86.
    Lipton, J. M. and Catania, A. (1992) a-MSH peptides modulate fever and inflammation., in Neuro-immunology of Fever Bartfai, T. and Ottoson, D., (eds.) Pergamon Press, New York. pp. 123–126.Google Scholar
  87. 87.
    Lipton, J. M. (1990) Modulation of host defense by the neuropeptide a-MSH. Yale J. Biol. Med. 63, 173–182.PubMedGoogle Scholar
  88. 88.
    Lipton, J. M. and Catania, A. (1993) Pyrogenic and inflammatory actions of cytokines and their modulation by neuropeptides, Techniques and interpretations., in Methods in Neuroscience DeSouza, E. B., (ed.) Academic Press, Orlando. FL, pp. 61–79.Google Scholar
  89. 89.
    Catania, A. and Lipton, J. M. (1993) a-Melanocyte stimulating hormone in the modulation of host reactions. Endocr. Rev. 14, 564–576.Google Scholar
  90. 90.
    Ceriani, G., Macaluso, A., Catania, A., and Lipton, J. M. (1994) Central neurogenic antiinflammatory action of a-MSH, Modulation of peripheral inflammation induced by cytokines and other mediators of inflammation. Neuroendocrinology 59, 138–143.PubMedCrossRefGoogle Scholar
  91. 91.
    Luger, T. A., Schauer, E., Trautinger, F., Krutmann, J., Ansel, J., Schwarz, A., and Schwarz, T. (1993) Production of immunosuppressing melanotropins bykeratinocytes. Ann. N. Y. Acad. Sci. 680, 567–570.PubMedCrossRefGoogle Scholar
  92. 92.
    Hiltz, M. E., Catania, A., and Lipton, J. M. (1992) a-Melanocyte stimulating hormone peptides inhibit acute inflammation induced in mice by rIL-1ß, rIL-6, rTNF-a, and endogenous pyrogen but not that caused by LTB4, PAF and rIL-8. Cytokine 4, 320–328.Google Scholar
  93. 93.
    Mason, M. J. and Van Epps, D. (1989) Modulation of IL-1, tumor necrosis factor, and C5a-mediated murine neutrophil migration by a-melanocyte-stimulating hormone. J. Immunol. 142, 1646–1651.PubMedGoogle Scholar
  94. 94.
    Star, R. A., Rajora, N., Huang, J., Stock, R., Catania, A., and Lipton, J. M. (1995) Evidence of autocrine modulation of macrophage nitric oxide synthase by a-melanocyte-stimulating hormone. Proc. Natl. Acad. Sci. U. S. A. 92, 8016–8020.PubMedCrossRefGoogle Scholar
  95. 95.
    Fiorentino, D. F., Zlotnik, A., Mosmann, T. R., Howard, M., and O’Garra, A. (1991) IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147, 3815–3822.PubMedGoogle Scholar
  96. 96.
    Fiorntino, D. F., Zlotnik, A., Vieira, P., Mosmann, T. R., Howard, M., Moore, K. W., and O’Garra, A. (1991) IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Thl cells. J. Immunol. 146, 3444–3451.Google Scholar
  97. 97.
    Lipton, J. M., Macaluso, A., Hiltz, M. E., and Catania, A. (1992) Central administration of the peptide alpha-MSH inhibits inflammation in the skin. Peptides 12, 795–798.CrossRefGoogle Scholar
  98. 98.
    Watanabe, T., Hiltz, M. E., Catania, A., and Lipton, J. M. (1993) Inhibition of IL-1(3-induced peripheral inflammation by peripheral and central administration of analogues of the neuropeptide a-MSH. Brain Res. Bull. 32, 311–314.PubMedCrossRefGoogle Scholar
  99. 99.
    Rajora, N., Boccoli, G., Burns, D., Sharma, S., Catania, A., and Lipton, J. M. (1997) a-MSH modulates local and circulating tumor necrosis factor-a in experimental brain inflammation. J. Neuroscience 17, 2181–2186.Google Scholar
  100. 100.
    De Rotte, A. A., Bouman, H. J., and van Wimersma Greidanus, T. B. (1980) Relationships between a-MSH levels in blood and in cerebrospinal fluid. Brain Res. Bull. 5, 375–381.PubMedCrossRefGoogle Scholar
  101. 101.
    Macaluso, A., McCoy, D., Ceriani, G., Watanabe, T., Beltz, J., Catania, A., and Lipton, J. M. (1994) Antiinflammatory influences of a-MSH molecules, Central neurogenic and peripheral actions. J. Neurosci. 14, 2377–2382.PubMedGoogle Scholar
  102. 102.
    Bhardwaj, R., Becher, E., Mahnke, K., Hartmeyer, M., Schwarz, T., Scholzen, T., and Luger, T. A. (1997) Evidence for the differential expression of the functional alpha-melanocyte-stimulating hormone receptor MC-1 on human monocytes. J. Immunol. 158, 3378–3384.PubMedGoogle Scholar
  103. 103.
    Catania, A., Rajora, N., Capsoni, F., Minonzio, F., Star, R. A., and Lipton, J. M. (1996) The neuropeptide alpha-MSH has specific receptors on neutrophile and reduces chemotaxis in vitro. Peptides 17, 675–679.PubMedCrossRefGoogle Scholar
  104. 104.
    Poole, S., Bristow, A. F., Lorenzetti, B. B., Gaines Das, R. E., Smith, T. W., and Ferreira, S. H. (1992) Peripheral analgesic activities of peptides related to a-melanocyte stimulating hormone and interleukin-1β. Br. J. Pharmacol. 106, 489–492.PubMedCrossRefGoogle Scholar
  105. 105.
    Wilkes, B. C., Sawyer, T. K., Hruby, V. J., and Hadley, M. C. (1983) Differentiation of the structural features of melanotropins important for biological potency and prolonged activity in vitro. Int. J. Peptide. Protein Res. 22, 313–324.CrossRefGoogle Scholar
  106. 106.
    Mugridge, K. G., Perretti, M., Ghiara, P., and Parente, L. (1991) a-Melanocytestimulating hormone reduces interleukin- 1β effects on rat stomach preparations possibly through interference with a type 1 receptor. Eur. J. Pharmacol. 197, 151–155.Google Scholar
  107. 107.
    Bhardwaj, R. S., Schwarz, A., Becher, E., Mahnke, K., Aragane, Y., Schwarz, T., and Luger, T. A. (1996) Pro-opiomelanocortin-derived peptides induce IL-10 production in human monocytes. J. Immunol. 156, 2517–2521.PubMedGoogle Scholar
  108. 108.
    Schauer, E., Trautinger, F., Kock, A., Schwarz, A., Bardwaj, R., Simon, M., Ansel, J. C., Schwarz, T., and Luger, T. A. (1994) Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. J. Clin. Invest. 93, 2258–2262.PubMedCrossRefGoogle Scholar
  109. 109.
    Orias, R. (1970) Natriuretic effect of a-MSH in the water-loaded rat. Proc. Soc. Exp. Biol. 133, 469–474.PubMedGoogle Scholar
  110. 110.
    Lymangrover, J. R., Buckalew, V. M., Harris, J., Klein, M. C., and Gruber, K. A. (1985) Gamma-2 MSH is natriuretc in the rat. Endocrinol. 116, 1227–1229.CrossRefGoogle Scholar
  111. 111.
    Lin, S.-Y., Wiedemann, E., and Humphreys, M. H. (1985) Role of the pituitary in reflex natriuresis following acute unilateral nephrectomy. Am. J. Physiol. 249, F282 - F290.PubMedGoogle Scholar
  112. 112.
    Lin, S.-Y., Humphreys, M. H. (1985) Centrally administered naloxone blocks reflex natriuresis after acute unilateral nephrectomy. Am. J. Physiol. 249, F390 - F395.PubMedGoogle Scholar
  113. 113.
    Ayus, J. C. and Humphreys, M. H. (1982) Hemodynamic and renal functional changes after acute unilateral nephrectomy in the dog, role of carotid sinus baroreceptors. Am. J. Physiol. 242, F181 - F189.PubMedGoogle Scholar
  114. 114.
    Lin, S. Y., Chaves, C., Wiedemann, E., and Humphreys, M. H. (1987) A y-melanocyte stimulating hormone-like peptide causes reflex natriuresis after acute unilateral nephrectomy. Hypertension 10, 619–627.PubMedCrossRefGoogle Scholar
  115. 115.
    Humphreys, M. H., Wiedemann, E., Valentin, J.-P., Chen, X.-W., and Ying, W.-Z. (1993) Natriuretic actions of g-melanocyte-stimulating hormone. Ann. N.Y. Acad. Sci. 680, 545–548.PubMedCrossRefGoogle Scholar
  116. 116.
    Howe, A. and Thody, A.J. (1970) The effect of ingestion of hypertonic saline on the melanocyte-stimulating hormone content and histology of the pars intermedia of the rat pituitary gland. J. Endocrinol 46, 201–208.PubMedCrossRefGoogle Scholar
  117. 117.
    Duchen, L. W. (1968) Changes in the volume of the lobes of the pituitary gland and in the weight and in the weight and water content of organs of rats given hypertonic saline. Endocrinol. 41, 593–600.CrossRefGoogle Scholar
  118. 118.
    Mayan, H., Ling, K.-T., Lee, E. Y., Wiedemann, E., Kalinyak, J. E., and Humphreys, M. H. (1996) Dietary sodium intake modulates pituitary proopiomelanocortin mRNA abundance. Hypertension 28, 244–249.PubMedCrossRefGoogle Scholar
  119. 119.
    Ebling, F. J., Ebling, E., and Skinner, J. (1969) The influence of pituitary hormones on the response of the sebaceous glands of the rat to testosterone. J. Endocrinol. 45, 401–406.CrossRefGoogle Scholar
  120. 120.
    Thody, A. J. and Shuster, S. (1972) The control of sebum secretion by the posterior pituitary. Nature 237, 346–347.PubMedCrossRefGoogle Scholar
  121. 121.
    Thody, A. J. and Shuster, S. (1973) A possible role of MSH in the mammal. Nature 245, 207–209.PubMedCrossRefGoogle Scholar
  122. 122.
    Thody, A. J., Cooper, M. F., Bowden, P. E., Meddis, D., and Shuster, S. (1976) Effect of a-melanocyte-stimulating hormone and testosterone on cutaneous and modified sebaceous glands in the rat. J. Endocrinol. 71, 279–288.PubMedCrossRefGoogle Scholar
  123. 123.
    Ebling, F. J., Ebling, E., Randall, V., and Skinner, J. (1975) The synergistic action of a-melanocyte stimulating hormone and testosterone on the sebaceous, prostate, preputial, harderian and lachrymal glands, seminal vesicles and brown adipose tissue in the hypophysectomized—castrated rat. J. Endocrinol. 66, 407–412.PubMedCrossRefGoogle Scholar
  124. 124.
    Jahn, R., Padel, U., Porsch, P.-H., and Soling, H.-D. (1982) Adrenocorticotropic hormone and a-melanocyte-stimulating hormone induce secretion and protein phosphorylation in the rat lacrimal gland by activation of a cAMP-dependent pathway. Eur. J. Biochem. 126, 623–629.PubMedCrossRefGoogle Scholar
  125. 125.
    Cripps, M. M., Bromberg, B. B., Patchen-Moor, K., and Welch, M. H. (1987) Adrenocorticotropic hormone stimulation of lacrimal peroxidase secretion. Exp. Eye Res. 45, 673–683.PubMedCrossRefGoogle Scholar
  126. 126.
    Entwistle, M. L., Hann, L. E., Sullivan, D. A., and Tatro, J. B. (1990) Characterization of functional melanotropin receptors in lacrimal glands of the rat. Peptides 11, 477–483.PubMedCrossRefGoogle Scholar
  127. 127.
    Chen, W., Kelly, M. A., Opitz-Araya, X., and Cone, R. D. (1997) Exocrine gland dysfunction in MC5-R deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell 91, 789–798.PubMedCrossRefGoogle Scholar
  128. 128.
    Abel, E. L. and Bilitzke, P. J. (1992) Adrenal activity does not mediate alarm substance reaction in the forced swim test. Psychoneuroendocrinology 17, 255–259.PubMedCrossRefGoogle Scholar
  129. 129.
    Abel, E. L. (1994) The pituitary mediates production or release of an alarm chemosignal in rats. Norm. Behay. 28, 139–145.CrossRefGoogle Scholar
  130. 130.
    Tsong, S.-D., Phillips, D. M., Halmi, N, Krieger, D. T., and Bardin, C. W. (1982) β-Endorphin is present in the male reproductive tract of five species. Biol. Reprod. 27, 755–764.Google Scholar
  131. 131.
    Valenca, M. M. and Negro-Vilar, A. (1986) Pro-opiomelanocortin-derived peptides in testicular interstitial fluid: characterization and changes in secretion after human chorionic gonadotropin or leuteinizing hormone-releasing hormone analog treatment. Endocrinology 118, 32–37.PubMedCrossRefGoogle Scholar
  132. 132.
    Boitani, C., Mather, J. P., and Bardin, C. W. (1986) Stimulation of cAMP production in rat Sertoli cells by a-MSH and des-acetyl a-MSH. Endocrinology 1986, 1513–1518.CrossRefGoogle Scholar
  133. 133.
    Boitani, C., Farini, D., Canipari, R., and Bardin, C. W. (1988) Estradiol and plasminogen activator secretion by cultured rat Sertoli cells in response to melanocytestimulating hormones. J. Androl. 10, 202–209.Google Scholar
  134. 134.
    Eberle, A. N. (1988) The Melanotropins: Chemistry, Physiology and Mechanisms of Action. Karger, Basel, Switzerland. p. 556.Google Scholar
  135. 135.
    Huang, Q. H., Entwistle, M. L., Alvaro, J. D., et al. (1997) Antipyretic role of endogenous melanocortins mediated by central melanocortin receptors during endotoxin-induced fever. J. Neurosci. 17, 3343–3351.PubMedGoogle Scholar
  136. 136.
    Ni, X. P., Kesterson, R. A., Sharma, S. D., et al. (1998) Prevention of reflex natriuresis after acute unilateral nephrectomy by melanocortin receptor antagonists Am. J. Physiol. 274, R931 - R938.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Bruce A. Boston

There are no affiliations available

Personalised recommendations