Melanocortins and Adrenocortical Function

  • Martine Bégeot
  • José M. Saez
Part of the The Receptors book series (REC)


Although the existence of a functional relationship between the pituitary gland and the adrenal cortex was revealed by the classic studies of Smith almost seventy years ago (1),the first purified adrenocorticotropin (ACTH) preparation from sheep pituitary was obtained only in 1954 (2), and its structure was determined in the following few years (3). In the 1960s, it was shown that ACTH stimulated cyclic adenosine monophosphate (cAMP) production by bovine adrenocortical slices and that cAMP itself could stimulate steroidogenesis, suggesting the role of cAMP as an obligatory mediator of the effects of ACTH (4). Moreover, several groups presented evidence that the hormones did not have to enter cells to stimulate steroidogenesis, since anti-ACTH antibody added several minutes after ACTH obliterated this effect (5) and ACTH[1–24] linked to cellulose was able to stimulate steroidogenesis of Y-1 adrenal tumor cells (6). Finally, the presence of specific binding of 125I-ACTH[1–39] to adrenal cell subcellular fraction, which contained ACTH-sensitive adenylate cyclase activity, was demonstrated in 1971 (7). Taken together, these findings led to the proposition that the initial event in the action of ACTH on adrenal cells was the binding of the hormone with specific receptors on the cell membrane leading to stimulation of adenylate cyclase and an increase in cAMP production, which in turn mediates an increase in steroidogenesis (8). This classical schema of the mechanism of ACTH action has been questioned for several reasons.


Adrenal Cortex Adrenal Cell Adrenocortical Cell Melanocortin Receptor ACTH Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, P. E. (1930) Hypophysectomy and a replacement therapy in the rat. Am. J. Anat. 45, 205–273.Google Scholar
  2. 2.
    Li, C. H., Geschwind, I. I., Levy, A. L., Harris, J. I., Dixon, J. S., Pon, N. G., and Porath, J. O. (1954) Isolation and properties of alpha-corticotropin from sheep pituitary glands. Nature 173, 251–254.PubMedGoogle Scholar
  3. 3.
    Li, C. H. and Oelofsen, W. (1967) The chemistry and biology of ACTH and related peptides in The Adrenal Cortex Eisenstein, A. B.,ed. Little, Brown, Boston. pp. 185–201.Google Scholar
  4. 4.
    Grahame-Smith, D. G., Butcher, R. W., Ney, R. L., and Sutherland, E. W. (1967) Adenosine 3’,5’-monophosphate as the intracellular mediator of the action of adrenocorticotropic hormone on the adrenal cortex. J. Biol. Chem. 242, 5535–5541.PubMedGoogle Scholar
  5. 5.
    Taunton, O. D., Roth, J., and Pastan, I. (1967) The first step in ACTH action, binding to tissue. J. Clin. Invest. 46, 1122–1129.Google Scholar
  6. 6.
    Schimmer, B. P., Ueda, K., and Sato, G. H. (1968) Site of action of adrenocorticotropic hormone. Biochem. Biophys. Res. Commun. 32, 806–810.PubMedGoogle Scholar
  7. 7.
    Lefkowitz, R. J., Roth, J., Pricer, W., and Pastan, I. (1970) ACTH receptors in the adrenal, specific binding of ACTH-125I and its relation to adenyl cyclase. Proc. Natl. Acad. Sci. U.S.A. 65, 745–752.PubMedGoogle Scholar
  8. 8.
    Halkerston, I. D. K. (1975) Cyclic AMP and adrenocortical function. Adv. Cycl. Nucleot. Res. 6, 100–136.Google Scholar
  9. 9.
    Lowry, P. J., McMartin, C., and Peters, J. (1973) Properties of a simplified bioassay for adrneocorticotropic activity using the steroidogenic response of isolated adrenal cells. J. Endocrinol. 59, 43–55.PubMedGoogle Scholar
  10. 10.
    Rae, P. A. and Schimmer, B. P. (1974) Iodinated derivatives of adrenocorticotropic hormone. J. Biol. Chem. 249, 5649–5653.PubMedGoogle Scholar
  11. 11.
    Saez, J. M., Morera, A. M., and Dazord, A. (1981) Mediators of the effects of ACTH on adrenal cells. Adv. Cycl. Nucleot. Res. 14, 563–579.Google Scholar
  12. 12.
    Buckley, D. I. and Ramachandran, J. (1981) Characterization of corticotropin receptors on adrenocortical cells. Proc. Natl. Acad. Sci. U.S.A. 78, 7431–7435.PubMedGoogle Scholar
  13. 13.
    Carsia, R. V. and Weber, H. (1988) Protein malnutrition in the domestic fowl induces alterations in adrenocortical cell adrenocorticotropin receptors. Endocrinology 122, 681–688.PubMedGoogle Scholar
  14. 14.
    Saez, J. M., Evain, D., and Gallet, D. (1978) Role of cAMP and protein kinase on the steroidogenic action of ACTH, prostaglandin El and dibutyryl cyclic AMP in normal adrenal cells and adrenal tumor cells from humans. J. Cycl. Nucleot. Res. 4, 311–321.Google Scholar
  15. 15.
    Sala, G. B., Hayashi, K., Catt, K. J., and Dufau, M. L. (1979) Adrenocorticotropin action in isolated adrenal cells. The intermediate role of cyclic AMP in stimulation of corticosterone synthesis. J. Biol. Chem. 254, 3861–3865.PubMedGoogle Scholar
  16. 16.
    Rae, P. A., Guttman, N. S., Tsao, J., and Schimmer, B. P. (1979) Mutations in cyclic AMP-dependent protein kinase and corticotropin-sensitive adenyate cyclase affect adrenal steroidogenesis. Proc. Natl. Acad. Sci. U.S.A. 76, 1896–1900.PubMedGoogle Scholar
  17. 17.
    Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., and Cone, R. D. (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257, 1248–1251.PubMedGoogle Scholar
  18. 18.
    Mcllhinney, R. A. J. and Schulster, D. (1975) Studies on the binding of 125I labelled corticotropin to isolated rat adrenocortical cells. J. Endocrinol. 64, 175–184.Google Scholar
  19. 19.
    Yanagibashi, K., Kamiya, N., Ling, G., and Matsuba, M. (1978) Studies on adrenocorticotropic hormone receptor using isolated rat adrenocortical cells. Endocrinol. Jpn. 25, 545–551.PubMedGoogle Scholar
  20. 20.
    Gallo-Payet, N. and Escher, E. (1985) Adrenocorticotropin receptors in rat adrenal glomerulosa cells. Endocrinology 117, 38–46.PubMedGoogle Scholar
  21. 21.
    Ramachandran, J., Muramoto, K., Kenez-Keri, M., Keri, G., and Buckley, D. I. (1980) Photoaffinity labeling of corticotropin receptors. Proc. Natl. Acad. Sci. U.S.A. 77, 3967–3970.PubMedGoogle Scholar
  22. 22.
    Hofmann, K., Stehle, C. J., and Finn, F. M. (1988) Identification of a protein in adrenal particulates that binds adrenocorticotropin specifically and with high affinity. Endocrinology 123, 1355–1363.PubMedGoogle Scholar
  23. 23.
    Mizuno, T., M, O., Itoh, A., Maruyama, T., Hagiwara, H., and Hirose, S. (1989) Affinity labeling of ACTH receptors in bovine adrenal cortex membranes. Biochem. Int. 19, 695–700.PubMedGoogle Scholar
  24. 24.
    Penhoat, A., Jaillard, C., and Saez, J. M. (1993) Identification and characterization of corticotropin receptors in bovine and human adrenals. J. Steroid Biochem. Mol. Biol. 44, 21–27.PubMedGoogle Scholar
  25. 25.
    Mertz, L. M. and Catt, K. J. (1991) Adrenocorticotropin receptors — Functional expression from rat adrenal messenger RNA in Xenopus-Laevis oocytes. Proc. Natl. Acad. Sci. U.S.A. 88, 8525–8529.PubMedGoogle Scholar
  26. 26.
    Cone, R. D. and Mountjoy, K. G. (1993) Molecular genetics of the ACTH and melanocyte-stimulating hormone receptors. Trends Endocrinol. Metab. 4, 242–247.PubMedGoogle Scholar
  27. 27.
    Cammas, F. M., Kapas, S., Barker, S., and Clark, A. J. L. (1995) Cloning, characterization and expression of a functional mouse ACTH receptor. Biochem. Biophys. Res. Commun. 212, 912–918.PubMedGoogle Scholar
  28. 28.
    Kubo, M., Ishizuka, T., Kijima, H., Kakinuma, M., and Koike, T. (1995) Cloning of a mouse adrenocorticotropin receptor-encoding gene. Gene 153, 279–280.PubMedGoogle Scholar
  29. 29.
    Raikhinstein, M., Zohar, M., and Hanukoglu, I. (1994) cDNA cloning and sequence analysis of the bovine adrenocorticotropic hormone (ACTH) receptor. Biochim. Biophys. Acta 1220, 329–332.Google Scholar
  30. 30.
    Albrecht, E. D., Aberdeen, G. W., Babischkin, J. S., Tilly, J. L., and Pepe, G. J. (1996) Biphasic developmental expression of adrenocorticotropin receptor messenger ribonucleic acid levels in the baboon fetal adrenal gland. Endocrinology 137, 1292–1298.PubMedGoogle Scholar
  31. 31.
    Chhajlani, V., Muceniece, R., and Wikberg, J. E. S. (1993) Molecular cloning of a novel human melanocortin receptor. Biochem. Biophys. Res. Commun. 195, 866–873.PubMedGoogle Scholar
  32. 32.
    Gantz, I., Konda, Y., Tashiro, T., Shimoto, Y., Miwa, H., Munzert, G., Watson, S. J., Del Valle, J., and Yamada, T. (1993) Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268, 8246–8250.PubMedGoogle Scholar
  33. 33.
    Gantz, I., Miwa, H., Konda, Y., Shimoto, Y., Tashiro, T., Watson, S. J., Del Valle, J., and Yamada, T. (1993) Molecular cloning, expression and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268, 15174–15719.PubMedGoogle Scholar
  34. 34.
    Desarnaud, F., Labbe, O., Eggerickx, D., Vassart, G., and Parmentier, M. (1994) Molecular cloning, functional expression and pharmacological characterization of a mouse melanocortin receptor gene. Biochem. J. 299, 367–373.PubMedGoogle Scholar
  35. 35.
    Gantz, I., Shimoto, Y., Konda, Y., Miwa, H., Dickinson, C. J., and Yamada, T. (1994) Molecular cloning, expression, and characterization of a fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 200, 1214–1220.PubMedGoogle Scholar
  36. 36.
    Griffon, N., Mignon, V., Facchinetti, P., Diaz, J., Schwartz, J. C., and Sokoloff, P. (1994) Molecular cloning and characterization of the rat fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 200, 1007–1014.PubMedGoogle Scholar
  37. 37.
    Gantz, I., Tashiro, T., Barcroft, C., Konda, Y., Shimoto, Y., Miwa, H., Glover, T., Munzert, G., and Yamada, T. (1993) Localization of the genes encoding the melanocortin-2 (adrenocorticotropic hormone) and melanocortin-3 receptors to chromosomes 18p11.2 and 20g13.2–813.3 by fluorescence insitu hybridization: brief report. Genomics 18, 166–167.PubMedGoogle Scholar
  38. 38.
    Magenis, R. E., Smith, L., Nadeau, J. H., Johnson, K. R., Mountjoy, K. G., and Cone, R. D. (1994) Mapping of the ACTH, MSH, and neural (MC3 and MC4) melanocortin receptors in the mouse and human. Mamm. Genome 5, 503–5508.Google Scholar
  39. 39.
    Penhoat, A., Jaillard, C., and Saez, J. M. (1994) Regulation of bovine adrenal cell corticotropin receptor mRNA levels by corticotropin (ACTH) and angiotensin-II (A-II). Mol. Cell. Endocrinol. 103, R7 - R10.PubMedGoogle Scholar
  40. 40.
    Picard-Hagen, N., Penhoat, A., Hue, D., Jaillard, C., and Durand, P. (1997) Glucocorticoids enhance corticotropin receptor mRNA levels in ovine adrenocortical cells. J. Mol. Endocrinol. 19, 29–36.PubMedGoogle Scholar
  41. 41.
    Lebrethon, M. C., Naville, D., Begeot, M., and Saez, J. M. (1994) Regulation of corticotropin receptor number and messenger RNA in cultured human adrenocortical cells by corticotropin and angiotensin II. J. Clin. Invest. 93, 1828–1833.PubMedGoogle Scholar
  42. 42.
    Mesiano, S., Fujimoto, V. Y., Nelson, L. R., Lee, J. Y., Voytek, C. C., and Jaffe, R. B. (1996) Localization and regulation of corticotropin receptor expression in the midgestation human fetal adrenal cortex: implications for in utero homeostasis. J. Clin. Endocrinol. Metab. 81, 340–345.PubMedGoogle Scholar
  43. 43.
    Penhoat, A., Lebrethon, M. C., Begeot, M., and Saez, J. M. (1995) Regulation of ACTH receptor mRNA and binding sites by ACTH and angiotensin II in cultured human and bovine adrenal, fasciculata cells. Endocr. Res. 21, 157–168.PubMedGoogle Scholar
  44. 44.
    Aberdeen, G. W., Babischkin, J. S., Davies, W. A., Pepe, G. J., and Albrecht, E. D. (1997) Decline in adrenocorticotropin receptor messenger ribonucleic acid expression in the baboon fetal adrenocortical zone in the second half of pregnancy. Endocrinology 138, 1634–1641.PubMedGoogle Scholar
  45. 45.
    Matsuyama Morita, T., Imai, T., Murata, Y., Kambe, F., Funahashi, H., Takagi, H., and Seo, H. (1995) Adrenocorticotropic hormone (ACTH) increases the expression of its own receptor gene. Endocr. J. 42, 475–480.PubMedGoogle Scholar
  46. 46.
    Mountjoy, K. G., Bird, I. M., Rainey, W. E., and Cone, R. D. (1994) ACTH induces up-regulation of ACTH receptor mRNA in mouse and human adrenocortical cell lines. Mol. Cell. Endocrinol. 99, R17 - R20.PubMedGoogle Scholar
  47. 47.
    Cammas, F.M. and Clark, A. J. L. (1995) Tissue distribution of ACTH receptor messenger RNA. J. Endocrinol. 147 (Suppl.), P11.Google Scholar
  48. 48.
    Chhajlani, V. (1996) Distribution of cDNA for melanocortin receptor subtypes in human tissues. Biochem. Mol. Biol. Int. 38, 73–80.PubMedGoogle Scholar
  49. 49.
    Slominski, A., Ermak, G., and Mihm, M. (1996) ACTH receptor, CYP11A1, CYP17 and CYP21A2 genes are expressed in skin. J. Clin. Endocrinol. Metab. 81, 2746–2749.PubMedGoogle Scholar
  50. 50.
    Smith, E. M., Brosnan, P., Meyer, W. J. I., and Blalock, J. E., (1987) An ACTH receptor on human mononuclear leukocytes: relation to adrenal ACTH receptor activity. N. Engl. J. Med. 317, 1266–1269.PubMedGoogle Scholar
  51. 51.
    Grunfeld, C., Hagman, J., Sabin, E. A., Buckley, D. I., Jones, D. S., and Ramachandran, J. (1985) Characterization of adrenocorticotropin receptors that appear when 3T3–L1 cells differentiate into adipocytes. Endocrinology 116, 113–117.PubMedGoogle Scholar
  52. 52.
    Boston, B. A., and Cone, R. D. (1996) Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3–L1 cell line. Endocrinology 137, 2043–2050.PubMedGoogle Scholar
  53. 53.
    Kijima, H., Shimizu, C., Koike, T., Kakinuma, M., and Kubo, M. (1997) Different effect of in vivo ACTH administration on ACTH receptor mRNA levels in mouse adrenal and adipose tissue. Preceedings of the 79th Annual Meeting of the Endocrine Society [Abstract]. P3–538.Google Scholar
  54. 54.
    Naville, D., Barjhoux, L., Jaillard, C., Lebrethon, M. C., Saez, J. M., and Begeot, M. (1994) Characterization of the transcription start site of the ACTH receptor gene, presence of an intronic sequence in the 5’-flanking region. Mol. Cell. Endocrinol. 106, 131–135.PubMedGoogle Scholar
  55. 55.
    Clark, A. J. L. and Cammas, F. M. (1996) The ACTH receptor. Baillières Clin. Endocrinol. Met. 10, 29–47.Google Scholar
  56. 56.
    Naville, D., Jaillard, C., Barjhoux, L., Durand, P., and Begeot, M. (1997) Genomic structure and promoter characterization of the human ACTH receptor gene. Biochem. Biophys. Res. Commun. 230, 7–12.PubMedGoogle Scholar
  57. 57.
    Penhoat, A., Naville, D., Jaillard, C., Durand, P., and Bégeot, M. (1997) Presence of multiple functional polyadenylation signals in the 3’-untranslated region of human corticotropin receptor cDNA. Biochim. Biophys. Acta 1356, 249–252.PubMedGoogle Scholar
  58. 58.
    Shimizu, C., Kubo, M., Saeki, T., Matsumura, T., Ishizuka, T., Kijima, H., Kakinuma, M., and Koike, T. (1997) Genomic organization of the mouse adrenocorticotropin receptor. Gene 188, 17–21.PubMedGoogle Scholar
  59. 59.
    Cammas, F. M., Pullinger, G. D., Barker, S., and Clark, A. J. L. (1997) The mouse adrenocorticotropin receptor gene, cloning and characterisation of its promoter and evidence for a role for the orphan nuclear receptor steroidogenic factor 1. Mol. Endocrinol. 11, 867–876.PubMedGoogle Scholar
  60. 60.
    Naville, D., Penhoat, A., Barjhoux, L., Jaillard, C., Fontanay, S., Saez, J., Durand, P., and Begeot, M. (1996) Characterization of the human ACTH receptor gene and in vitro expression. Endoc. Res. 22, 337–348.Google Scholar
  61. 61.
    Oelkers, W. (1985) Prolonged ACTH infusion suppresses aldosterone secretion in spite of high renin activity. Acta Endocrinol. 108, 91–97.PubMedGoogle Scholar
  62. 62.
    Kolanowski, J., Esselinck, W., Nagani, C., and Crabbe, J. (1977) Adrenocortical response upon repeated stimulation with corticotrophin in patients lacking endogenous corticotrophin secretion. Acta Endocrinol. 85, 595–607.PubMedGoogle Scholar
  63. 63.
    Baxter, J. D. and Tyrrel, J. B. (1986) The adrenal cortex, Endocrinology and Metabolism (Felig, P., Baxter, J. D., Broadus, A. E., and Frohman, L. A., eds.). McGraw-Hill, New York, 511–650.Google Scholar
  64. 64.
    Simpson, E. R. and Waterman, M. R. (1988) Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu. Rev. Physiol. 50, 427–440.PubMedGoogle Scholar
  65. 65.
    Lebrethon, M. C., Jaillard, C., Naville, D., Begeot, M., and Saez, J. M. (1994) Regulation of corticotropin and steroidogenic enzyme mRNAs in human fetal adrenal cells by corticotropin, angiotensin-II and transforming growth factor 31. Mol. Cell. Endocrinol. 106, 137–143.PubMedGoogle Scholar
  66. 66.
    Rainey, W. E., McAllister, J. M., Byrd, E. W., Mason, J. I., and Carr, B. R. (1991) Regulation of corticotropin responsiveness in human fetal adrenal cells. Am. J. Obstet. Gynecol. 165, 1649–1654.PubMedGoogle Scholar
  67. 67.
    Penhoat, A., Jaillard, C., and Saez, J. M. (1989) Corticotropin positively regulates its own receptors and cAMP response in cultured bovine adrenal cells. Proc. Natl. Acad. Sci. U.S.A. 86, 4978–4981.PubMedGoogle Scholar
  68. 68.
    Rainey, W. E., Viard, I., and Saez, J. M. (1989) Transforming growth factor ß treatment decreases ACTH receptors on ovine adrenocortical cells. J. Biol. Chem. 264, 21474–21477.PubMedGoogle Scholar
  69. 69.
    Naville, D., Barjhoux, L., Jaillard, C., Faury, D., Despert, F., Esteva, B., Durand, P., Saez, J. M. and Begeot, M. (1996) Demonstration by transfection studies that mutations in the adrenocorticotropin receptor gene are one cause of the hereditary syndrome of glucocorticoid deficiency. J. Clin. Endocrinol. Metab. 81, 1442–1448.PubMedGoogle Scholar
  70. 70.
    Naville, D., Barjhoux, L., Jaillard, C., Saez, J. M., Durand, P. and Bégeot, M. (1997) Stable expression of normal and mutant human ACTH receptor. Study of ACTH binding and coupling to adenylate cyclase. Mol. Cell. Endocrinol. 129, 83–90.PubMedGoogle Scholar
  71. 71.
    Kapas, S., Hinson, F. M. C. J. P., and Clark, A. J. L. (1996) Agonist and receptor binding properties of adrenocorticotropin peptides using the cloned mouse adrenocorticotropin receptor expressed in a stably transfected HeLa cell line. Endocrinology 137, 3291–3294.PubMedGoogle Scholar
  72. 72.
    Penhoat, A., Jaillard, C., and Saez, J. M. (1989) Synergistic effects of corticotropin and insulin-like growth factor I on corticotropin receptors and corticotropin responsiveness in cultured bovine adrenocortical cells. Biochem. Biophys. Res. Commun. 165, 355–359.PubMedGoogle Scholar
  73. 73.
    L’Allemand, D., Penhoat, A., Lebrethon, M. C., Ardevol, R., Baehr, V., Oelkers, W., and Saez, J. M. (1996) Insulin—like growth factors enhance steroidogenic enzyme and corticotropin receptor messenger ribonucleic acid levels and corticotropin steroidogenic responsiveness in cultured human adrenocortical cells. J. Clin. Endocrinol. Metab. 81, 3892–3897.PubMedGoogle Scholar
  74. 74.
    Penhoat, A., Naville, D., Jaillard, C., Chatelain, P. G., and Saez, J. M. (1989) Hormonal regulation of insulin-like growth factor I secretion by bovine adrenal cells. J. Biol. Chem. 264, 6858–6862.PubMedGoogle Scholar
  75. 75.
    Penhoat, A., Ouali, R., Viard, I., Langlois, D., and Saez, J. M. (1996) Regulation of primary response and specific genes in adrenal cells by peptide hormones and growth factors. Steroids 61, 176–183.PubMedGoogle Scholar
  76. 76.
    Lebrethon, M. C., Jaillard, C., Naville, D., Begeot, M., and Saez, J. M. (1994) Effects of transforming growth factor—β1 on human adrenocortical fasciculatareticularis cell differentiated functions. J. Clin. Endocrinol. Metab. 79, 1033–1039.PubMedGoogle Scholar
  77. 77.
    Le Roy, C., Leduque, P., Dubois, P. M., Saez, J. M., and Langlois, D. (1996) Repression of transforming growth factor (31 protein by antisense oligonucleotideinduced increase of adrenal cell differentiated functions. J. Biol. Chem. 271, 11027–11033.PubMedGoogle Scholar
  78. 78.
    Ramachandran, J. and Li, C. H. (1967) Structure—activity relationships of the adrenocorticotropins and melanotropins, the synthetic approach. Adv. Enzymol. 29, 391–477.PubMedGoogle Scholar
  79. 79.
    Ramachandran, J. (1973) The structure and function of adrenocorticotropin, in Hormonal Proteins and Peptides ( Li, C. H., ed.) Academic Press, New York. pp. 1–28.Google Scholar
  80. 80.
    Tell, G. P. E., Morera, A. M., and Saez, J. M. (1977) Mechanism of action of adrenocorticotropic hormone in Congenital Adrenal Hyperplasia (Lee, P. A., Plotnick, L. P., Kowarski, A. A., and Migeon, C. J., eds.) Baltimore University Park Press pp. 33–76.Google Scholar
  81. 81.
    Sayers, G., Seelig, S., Kumar, S., Karlaganis, G., Schwyzer, R., and Fujimo, M. (1974) Isolated adrenal cortex cells: ACTH4–23 (NH2), ACTH5–24, ACTH6–24, and ACTH7–23 (NH2): cyclic AMP and corticosterone production. Proc. Soc. Exp. Biol. Med. 145, 176–181.PubMedGoogle Scholar
  82. 82.
    Klemcke, H. G. and Pond, W.G. (1991) Porcine adrenal adrenocorticotropic hormone receptors: characterization, changes during neonatal development and response to a stressor. Endocrinology 128, 2476–2488.PubMedGoogle Scholar
  83. 83.
    Munari-Silem, Y., Lebrethon, M. C., Morand, I., Rousset, B. and Saez, J. M. (1995) Gap junction-mediated cell-to-cell communication in bovine and human adrenal cells: a process whereby cells increase their responsiveness to physiological corticotropin concentrations. J. Clin. Invest. 95, 1429–1439.PubMedGoogle Scholar
  84. 84.
    Seelig, S., Sayers, G., Schwyzer, R., and Schiller, P. (1971) Isolated adrenal cells: ACTH11–24, a competitive antagonist of ACTHl-39 and ACTH1–10. FEBS Lett. 19, 232–234.PubMedGoogle Scholar
  85. 85.
    Seelig, S. and Sayers, G. (1973) Isolated adrenal cells: ACTH agonists, partial agonists, antagonists, cyclic AMP and corticosterone production. Arch. Biochem. Biophys. 154, 230–239.PubMedGoogle Scholar
  86. 86.
    Finn, F. M., Johns, P. A., Nishi, N., and Hofmann, K. (1976) Differential response to adrenocorticotropic hormone analogs of bovine adrenal plasma membranes and cells. J. Biol. Chem. 251, 3576–3585.PubMedGoogle Scholar
  87. 87.
    Bristow, A. F., Gleed, C., Fauchere, J. L., Schwyzer, R., and Schulster, D. (1980) Effects of ACTH (corticotropin) analogues on steroidogenesis and cyclic AMP in rat adrenocortical cells: evidence for two different steroidogenically responsive receptors. Biochem. J. 186, 599–603.PubMedGoogle Scholar
  88. 88.
    Goverde, H. J. M. and Smals, A. G. H. (1984) The anomalous effect of some ACTH fragments missing the amino acid sequence 1–10 on the corticosteroidogenesis in purified isolated rat adrenal cells. FEBS Lett. 173, 23–26.PubMedGoogle Scholar
  89. 89.
    Szalay, K. S., De Wied, D., and Stark, E. (1989) Effects of ACTH—(11–24) on the corticosteroid production of isolated adrenocortical cells. J. Steroid Biochem. 32, 259–262.PubMedGoogle Scholar
  90. 90.
    Robison, G. A., Butcher, R. W., and Sutherland, E. W. (1971) Cyclic AMP.Google Scholar
  91. 91.
    Beall, R.J. and Sayers, G. (1972) Isolated adrenal cells: steroidogenesis and cyclic AMP accumulation in response to ACTH. Arch. Biochem. Biophys. 148, 70–76.PubMedGoogle Scholar
  92. 92.
    Mackie, C., Richardson, M. C., and Schulster, D. (1972) Kinetics and dose-response characteristics of adenosine 3’,5’-monophosphate production by isolated rat adrenal cells stimulated with adrenocorticotrophic hormone. FEBS Lett. 23, 345–348.PubMedGoogle Scholar
  93. 93.
    Moyle, W. R., Kong, Y. C., and Ramachandran, J. (1973) Steroidogenesis and cyclic adenosine 3’,5’-monophosphate accumulation in rat adrenal cells: divergent effects of adrenocorticotropin and its alpha-nitrophenyl sulfenyl derivative. JBiol. Chem. 248, 2409–2417.Google Scholar
  94. 94.
    Perchellet, J. P., Shanker, G., and Sharma, R. K. (1978) Regulatory role of guanosine 3’,5’-monophosphate in adrenocorticotropin hormone-induced steroidogenesis. Science 199, 311–312.PubMedGoogle Scholar
  95. 95.
    Perchellet, J.P., and Sharma, R. K. (1979) Mediatory role of calcium and guanosine 3’,5’-monophosphate in adrenocorticotropin-induced steroidogenesis by adrenal cells. Science 203, 1259–1261.PubMedGoogle Scholar
  96. 96.
    Yanagibashi, K. (1979) Calcium ion as “second messenger” in corticoidogenic action of ACTH. Endocrinol. Jpn. 26, 227–232.PubMedGoogle Scholar
  97. 97.
    Farese, R. V., Rosic, N., Babischkin, J., Farese, M. G., Foster, R., and Davis, J. S. (1986) Dual activation of the inositol-triphosphate-calcium and cyclic nucleotide intracellular signaling systems by adrenocorticotropin in rat adrenal cells. Biochem. Biophys. Res. Commun. 135, 742–748.PubMedGoogle Scholar
  98. 98.
    Catalano, R. D., Stuve, L., and Ramachandran, J. (1986) Characterization of corticotropin receptors in human adrenocortical cells. J. Clin. Endocrinol. Metab. 62, 300–304.PubMedGoogle Scholar
  99. 99.
    Williams, S. A. and Schimmer, B. P. (1983) mRNA from mutant Y-1 adrenal cells directs the synthesis of altered regulatory subunits of type 1 cAMP-dependent protein kinase. J. Biol. Chem. 258, 10215–10218.PubMedGoogle Scholar
  100. 100.
    Wong, M. and Schimmer, B. P. (1989) Recovery of responsiveness to ACTH and cAMP in a protein kinase-defective adrenal cell mutant following transfection with a protein kinase gene. Endocr. Res. 15, 49–64.PubMedGoogle Scholar
  101. 101.
    Birmingham, M. K., Elliot, F. H., and Valero, P. H. L. (1953) The need for the presence of calcium for the stimulation in vitro of rat adrenal glands by adrenocorticotrophic hormone. Endocrinology 53, 687–689.PubMedGoogle Scholar
  102. 102.
    Cheitlin, R., Buckley, D. I., and Ramachandran, J. (1985) The role of extracellular calcium in corticotropin-stimulated steroidogenesis. J. Biol. Chem. 260, 5323–5327.PubMedGoogle Scholar
  103. 103.
    Lefkowitz, R. J., Roth, J., and Pastan, I. (1970) Effects of calcium on ACTH stimulation of the adrenal, separation of hormone binding from adenyl cyclase activation. Nature 228, 864–866.PubMedGoogle Scholar
  104. 104.
    Gallo-Payet, N., Grazzini, E., Côté, M., Chouinard, L., Chorvatova, A., Bilodeau, L., Payet, M. D., and Guillon, G. (1996) Role of Cat, in the action of adrenocorticotropin in cultured human adrenal glomerulosa cells. J. Clin. Invest. 98, 460–466.PubMedGoogle Scholar
  105. 105.
    Mahaffee, D. D. and Ontjes, D. A. (1980) The role of calcium in the control of adrenal adenylate cyclase. J. Biol. Chem. 255, 1565–1571.PubMedGoogle Scholar
  106. 106.
    Shima, S., Kawashima, Y., and Hirai, M. (1979) Effects of ACTH and calcium on cyclic AMP production and steroid output by the zona glomerulosa of the adrenal cortex. Endocrinol. Jpn. 26, 219–225.PubMedGoogle Scholar
  107. 107.
    Enyeart, J. J., Mlinar, B., and Enyeart, J. A. (1993) T-type Cat+channels are required for adrenocorticotropin-stimulated cortisol production by bovine adrenal zona fasciculata cells. Mol. Endocrinol. 7, 1031–1040.PubMedGoogle Scholar
  108. 108.
    Papadopoulos, V., Widmaier, E. P., and Hall, P. F. (1990) The role of calmodulin in the responses to adrenocorticotropin of plasma membranes from adrenal cells. Endocrinology 126, 2465–2474.PubMedGoogle Scholar
  109. 109.
    Garren, L. D., Ney, R. L., and Davis, W. W. (1965) Studies on the role of protein synthesis in the regulation of corticosterone production by adrenocorticotropic hormone in vivo. Proc. Natl. Acad. Sci. U.S.A. 53, 1443–1450.PubMedGoogle Scholar
  110. 110.
    Privalle, C. T., Crivello, J. F., and Jefcoate, C. R. (1983) Regulation of intramitochondrial cholesterol transfer to side-chain cleavage cytochrome P-450 in rat adrenal gland. Proc. Natl. Acad. Sci. U.S.A. 80, 702–706.PubMedGoogle Scholar
  111. 111.
    Papadopoulos, V. (1993) Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: biological role in steroidogenic cell function. Endocr. Rev. 14, 222–240.PubMedGoogle Scholar
  112. 112.
    Stocco, D. M. and Clark, B. J. (1996) Regulation of the acute production of steroids in steroidogenic cells. Endocrine Rev 17, 221–244.Google Scholar
  113. 113.
    Clark, B. J., Wells, J., King, S. R., and Stocco, D. M. (1994) The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells: characterization of the steroidogenic acute regulatory protein (stAR). J. Biol. Chem. 269, 28314–28322.PubMedGoogle Scholar
  114. 114.
    Sugawara, T., Holt, J. A., Driscoll, D., Strauss, J. F., Lin, D., Miller, W. L., Patterson, D., Clancy, K. P., Hart, I. M., Clark, B. J., and Stocco, D. M. (1995) Human steroidogenic acute regulatory protein, functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11.2 and a pseudogene to chromosome 13. Proc. Natl. Acad. Sci. U.S.A. 92, 4778–4782.PubMedGoogle Scholar
  115. 115.
    Lin, D., Sugawara, T., Strauss, J. F., Clark, B. J., Stocco, D. M., Saenger, P., Rogol, A., and Miller, W. L. (1995) Indispensable role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 267, 1828–1831.PubMedGoogle Scholar
  116. 116.
    Herschman, H.R. (1992) Primary response genes induced by growth factors and tumor promoters. Annu. Rev. Biochem. 60, 281–319.Google Scholar
  117. 117.
    Angel, P. and Karin, M. (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1072, 129–158.PubMedGoogle Scholar
  118. 118.
    Imai, T., Seo, H., Murata, Y., Ohno, M., Satoh, Y., Funahashi, H., Takagi, H., and Matsui, N. (1990) Adrenocorticotropin increases expression of c-fos and 3-actin genes in the rat adrenals. Endocrinology 127, 1742–1747.PubMedGoogle Scholar
  119. 119.
    Yang, G., Koistinaho, J., Zhu, S. H., and Hervonen, A. (1989) Induction of c-foslike protein in the rat adrenal cortex by acute stress Immunocytochemical evidence. Mol. Cell. Endocrinol. 66, 163–170.PubMedGoogle Scholar
  120. 120.
    Yang, G., Koistinaho, J., Iadarola, M., Zhu, S. H., and Hervonen, A. (1991) Administration of adrenocorticotropic hormone (ACTH) enhances Fos expression in the rat adrenal cortex. Regul. Pept. 30, 21–31.Google Scholar
  121. 121.
    Kimura, E. and Armelin, H. A. (1990) Phorbol ester mimics ACTH action in corticoadrenal cells stimulating seroidogenesis, blocking cell cycle, changing cell shape, and inducing c-fos proto-oncogene expression. J. Biol. Chem. 265, 3518–3521.PubMedGoogle Scholar
  122. 122.
    Clark, A. J. L., Balla, T., Jones, M. R. and Catt, K. J. (1992) Stimulation of early gene expression by angiotensin II in bovine adrenal glomerulosa cells: role of calcium and protein kinase C. Mol. Endocrinol. 6, 1889–1898.PubMedGoogle Scholar
  123. 123.
    Miyamoto, N., Seo, H., Kanda, K., Hidaka, H., and Matsui, N. (1992) A 3’,5’-cyclic adenosine monophosphate-dependent pathway is responsible for a rapid increase in c-fos messenger ribonucleic acid by adrenocorticotropin. Endocrinology 130, 3231–3236.PubMedGoogle Scholar
  124. 124.
    Viard, I., Hall, S. H., Jaillard, C., Berthelon, M. C., and Saez, J. M. (1992) Regulation of c fos, c-jun and Jun-B messenger ribonucleic acids by angiotensin-II and corticotropin in ovine and bovine adrenocortical cells. Endocrinology 130, 1193–1200.PubMedGoogle Scholar
  125. 125.
    Kimura, T. (1969) Effects of hypophysectomy and ACTH administration on the level of adrenal cholesterol side-chain desmolase. Endocrinology 85, 492–499.PubMedGoogle Scholar
  126. 126.
    Purvis, J. L., Canick, J. A., Mason, J. I., Estabrook, R. W., and McCarthy, J. L. (1973) Lifetime of adrenal cytochrome P-450 as influenced by ACTH. Ann. N.Y. Acad. Sci. 212, 319–342.PubMedGoogle Scholar
  127. 127.
    Waterman, M. R. (1994) Biochemical diversity of cAMP-dependent transcription of steroid hydroxylase genes in the adrenal cortex. J. Biol. Chem. 269, 27783–27786.PubMedGoogle Scholar
  128. 128.
    Caron, K. M., Ikeda, Y., Soo, S. C., Stocco, D. M., Parker, K. L., and Clark, B. J. (1997) Characterization of the promoter region of the mouse gene encoding the steroidogenic acute regulatory protein. Mol. Endocrinol. 11, 138–147.PubMedGoogle Scholar
  129. 129.
    Parker, K. L. and Schimmer, B. P. (1997) Steroidogenic factor 1, a key determinant of endocrine development and function. Endocr. Rev. 18, 361–377.PubMedGoogle Scholar
  130. 130.
    Luo, X. R., Ikeda, Y. Y., and Parker, K. L. (1994) A cell—specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481–490.PubMedGoogle Scholar
  131. 131.
    Sadovsky, Y., Crawford, P. A., Woodson, K. G., Polish, J. A., Clements, M. A., Tourtellotte, L. M., Simburger, K., and Milbrandt, J. (1995) Mice deficient in the orphan receptor steroidogenic factor l lack adrenal glands and gonads but express p450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc. Natl. Acad. Sci. U.S.A. 92, 10939–10943.PubMedGoogle Scholar
  132. 132.
    Idelman, S. (1970) Ultrastructure of the mammalian adrenal cortex. Int. Rev. Cytol. 27, 181–281.PubMedGoogle Scholar
  133. 133.
    Nussdorfer, G. G. (1986) Cytophysiology of the adrenal cortex. Int. Rev. Cytol. 98, 1–405.PubMedGoogle Scholar
  134. 134.
    Hornsby, P. I. (1985) The regulation of adrenocortical function by control of growth and structure, in The Adrenal Cortex ( Anderson, D. C. and Winters, J. S. D., eds.) Butherworths, London pp. 1–31.Google Scholar
  135. 135.
    Dallman, M. F. (1985) Control of adrenocortical growth in vivo. Endocr. Res. 10, 213–242.Google Scholar
  136. 136.
    Dallman, M. F., Engeland, W. C., Holzwarth, M. A., and Scholz, P. M. (1980) Adrenocorticotropin inhibits compensatory adrenal growth after unilateral adrenalectomy. Endocrinology 107, 1397–1404.PubMedGoogle Scholar
  137. 137.
    Rao, A. J., Long, J. A., and Ramachandran, J. (1978) Effects of antiserum to adrenocorticotropin on adrenal growth and proliferation. Endocrinology 102, 371–378.PubMedGoogle Scholar
  138. 138.
    Lowry, P. J., Silas, L., Linton, E. A., McLean, C., and Estivariz, C. (1983) Progamma-melanocyte stimulating hormone cleavage in adrenal gland undergoing compensatory growth. Nature 306, 70–72.PubMedGoogle Scholar
  139. 139.
    Vinson, G.P., Pudney, J. A., and Whitehouse, B. J. (1985) Review, the mammalian adrenal circulation and the relationship between adrenal blood flow and steroidogenesis. J. Endocrinol. 105/2, 285–294.Google Scholar
  140. 140.
    Estivariz, F. E., Iturriza, F., McLean, C., Hope, J., and Lowry, P. J. (1982) Stimulation of adrenal mitogenesis by N-terminal pro-opiocortin peptides. Nature 297, 419–422.PubMedGoogle Scholar
  141. 141.
    Estivariz, F. E., Carino, M., Lowry, P.J., and Jackson, S. (1988) Further evidence that N-terminal pro-opiomelanocortin peptides are involved in adrenal mitogenesis. J. Endocrinol. 116, 201–206.PubMedGoogle Scholar
  142. 142.
    Ceccatelli, S., Diana, A., Villar, M. J., and Nicotera, P. (1995) Adrenocortical apoptosis in hypophysectomized rats is selectively reduced by ACTH. Neuroreport 6, 342–344.PubMedGoogle Scholar
  143. 143.
    Shepard, T. H., Landing, B. H., and Mason, D. G. (1959) Familial Addison’s disease. Am. J. Dis. Child. 97, 154–162.Google Scholar
  144. 144.
    Migeon, C. J., Kenny, F. M., Kowarski, A., Snipes, C. A., Spaulding, J. S., Finkelstein, J. W., and Blizzard, R. H. (1968) The syndrome of congenital adrenocortical unresponsiveness to ACTH: report of six cases. Pediatr. Res. 2, 501–513.PubMedGoogle Scholar
  145. 145.
    Clark, A. J. L., McLoughlin, L., and Grossman, A. (1993) Familial glucocorticoid deficiency associated with point mutation in the adrenocorticotropin receptor. Lancet 341, 461–462.PubMedGoogle Scholar
  146. 146.
    Tsigos, C., Arai, K., Hung, W., and Chrousos, G. P. (1993) Hereditary isolated glucocorticoid deficiency is associated with abnormalities of the adrenocorticotropin receptor gene. J. Clin. Invest. 92, 2458–2461.PubMedGoogle Scholar
  147. 147.
    Tsigos, C., Arai, K., Latronico, A. C., Digeorge, A. M., Rapaport, R., and Chrousos, G. P. (1995) A novel mutation of the adrenocorticotropin receptor (ACTH—R) gene in a family with the syndrome of isolated glucocorticoid deficiency, but no ACTH—R abnormalities in two families with the triple a syndrome. J. Clin. Endocrinol. Metab. 80, 2186–2189.PubMedGoogle Scholar
  148. 148.
    Clark, A. J. L. and Weber, A. (1994) Molecular insights into inherited ACTH resistance syndromes. Trends Endocrinol. Metab. 5, 209–214.PubMedGoogle Scholar
  149. 149.
    Allgrove, J., Clayden, G. S., and Grant, D. B. (1978) Familial glucocorticoid deficiency with achalasia of the cardia and deficient tear production. Lancet 1, 1284–1286.PubMedGoogle Scholar
  150. 150.
    Weber, A., Wienker, T. F., Jung, M., Easton, D., Dean, H. J., Heinrichs, C., Reis, A., and Clark, A. J. L. (1996) Linkage of the gene for the triple A syndrome to chromosome 12q13 near the type II keratin gene cluster. Hum. Mol. Genet. 5, 2061–2066.PubMedGoogle Scholar
  151. 151.
    Allolio, B. and Reincke, M. (1997) Adrenocorticotropin receptor and adrenal disorders. Horm. Res. 47, 273–278.PubMedGoogle Scholar
  152. 152.
    Parma, J., Duprez, L., Vansande, J., Cochaux, P., Gervy, C., Mockel, J., Dumont, J., and Vassart, G. (1993) Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 365, 649–651.PubMedGoogle Scholar
  153. 153.
    Light, K., Jenkins, P. J., Weber, A., Perrett, C., Grossman, A., Pistorello, M., Asa, S. L., Clayton, R. N., and Clark, A. J. L. (1995) Are activating mutations of the adrenocorticotropin receptor involved in adrenal cortical neoplasia? Life Sci. 56, 1523–1527.PubMedGoogle Scholar
  154. 154.
    Latronico, A. C., Reincke, M., Mendonca, B. B., Arai, K., Mora, P., Allolio, B., Wajchenberg, B. L., Chrousos, G. P., and Tsigos, C. (1995) No evidence for oncogenic mutations in the adrenocorticotropin receptor gene in human adrenocortical neoplasms. J. Clin. Endocrinol. Metab. 80, 875–877.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Martine Bégeot
  • José M. Saez

There are no affiliations available

Personalised recommendations